N

N

A linear programming approach to increasing the weight
of all minimum spanning trees

Mourad Baiou, Fancisco Barahona

» To cite this version:

Mourad Baiou, Fancisco Barahona. A linear programming approach to increasing the weight of all
minimum spanning trees. 2005. hal-00242975

HAL Id: hal-00242975
https://hal.science/hal-00242975

Preprint submitted on 6 Feb 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00242975
https://hal.archives-ouvertes.fr

ECOLE POLYTECHNIQUE

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

A linear programming approach to increasing the weight of
all minimum spanning trees

Mourad Baiou
Francisco Barahona

May 2005

Cahier n°® 2005-012

LABORATOIRE D'ECONOMETRIE

1rue Descartes F-75005 Paris
(33) 155558215
http://ceco.polytechnique.fr/
mailto:labecox@poly.polytechnigue.fr

A linear programming approach to increasing the weight of all

Résumé:

Abstract:

Mots clés :

Key Words :

minimum spanning trees

Mourad Baiou®
Francis Barahona

May 2005

Cahier n° 2005-012

Dans cet article nous étudions le probléeme qui consiste a augmenter au
moindre colt le poids de tous les arbres couvrants de poids minimum. Nous
considérons le cas ou le colt d'augmenter le poids d'une aréte du graphe est
une fonction linéaire par morceaux, convexe et croissante. Nous formulons ce
probleme par un programme linéaire et nous donnons un algorithme
polynomial pour sa résolution et la résolution du son probléeme dual.

Given a graph where increasing the weight of an edge has a nondecreasing
convex piecewise linear cost, we study the problem of finding a minimum
cost increase of the weights so that the value of all minimum spanning trees is
equal to some target value. We formulate this as a combinatorial linear
program and give an algorithm.

Arbres couvrants de poids minimum, sécurisation des réseaux.

Minimum weight spanning trees, packing spanning trees, network
reinforcement, strength problem.y

Classification AMS:

! Laboratoire d’Econométrie, CNRS et Ecole polytechnique.

A LINEAR PROGRAMMING APPROACH TO
INCREASING THE WEIGHT OF ALL MINIMUM
SPANNING TREES

MOURAD BAIOU AND FRANCISCO BARAHONA

ABSTRACT. Given a graph where increasing the weight of an edge has
a nondecreasing convex piecewise linear cost, we study the problem of
finding a minimum cost increase of the weights so that the value of all
minimum spanning trees is equal to some target value. We formulate
this as a combinatorial linear program and give an algorithm.

Keywords: Minimum weight spanning trees, packing spanning trees, network rein-

forcement, strength problem.

1. INTRODUCTION

We deal with a graph G = (V, E) where each edge e € FE has an original
weight w? and we can assign to e a new weight w, > wl. The cost of
giving the weight we is ce(w,). The function c(-) is nondecreasing, convex,
piecewise linear and c.(w?) = 0, see Figure 1. We study the following
problem: Given a value A > 0 find a minimum cost set of weights so that the
weight of a minimum spanning tree is A. We formulate this as a parametric
linear program and study its properties.

Ce

0
W, We

F1cURE 1. Cost of increasing the weight of an edge.

Frederickson and Solis-Oba [6] studied the case when c.(-) is linear and
nondecreasing, so our algorithm is a slight generalization of the one given by
them. We study a linear programming formulation of this problem and show
how to construct a primal and a dual solution. We also show the relation

1

2 M. BAIOU AND F. BARAHONA

between this and other combinatorial problems like network reinforcement
and packing spanning trees.

This paper is organized as follows. In Section 2 we give the linear pro-
gramming formulation. In Section 3 we deal with related combinatorial
problems. In Section 4 we describe the network reinforcement problem. In
Section 5 we give the algorithm that builds a primal and a dual solution.

The rest of this section is devoted to some definitions and notation. For
a family of disjoint node sets {S1,...,S5,} we denote by 6(Si,...,Sy) the
set of edges with both endpoints in different sets of this family. Sometimes
we shall use the notation d¢(S1,...,Sp) to express the fact that this edge
set corresponds to edges in G. We are going to write §(v1,...,v;) instead
of §({v1},...,{v;}). For a vector x € R¥ and a subset A C E, we denote
Y acaz(a) by z(A). If F C E then G' = (V, F) is called a spanning subgraph.
If W c V, and E(W) is the set of edges with both endnodes in W, then
GW) = (W,E(W)) is called the subgraph induced by W. We denote by
n the number of nodes of GG, and by m the number of edges of G. We
abbreviate “minimum weight spanning tree” by MWST.

2. INCREASING THE WEIGHT OF MWSTS: A LINEAR PROGRAM

For every edge e we have a convex nondecreasing piecewise linear cost
function of the weight w,. This is easy to model using linear programming as
follows. Assume that for every edge e there are m, possible slopes d’, ..., d™e
of ¢e(+). For the value w the cost c.(w) can be obtained as the optimal value
of

k

(2) Z xflf + wg =w

k
(3) 0<zF<ul, 1<k<m,.

We assume that d¥ < d¥*1, for k = 1,...,m. — 1. The solution Z of this
linear program is as follows:
(4) there is an index k. > 1 such that
(5) r =k for1<k<k.—1,
(6) ule > zhe = —w? — Z uf >0,
1<k<ke—1

(7) 8 =0, for ke +1 <k < m,.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 3

Thus our problem can be modeled as

(8) min dzx
9) Zwe >)\, for each tree T'
ecT
Me
(10) we = w’ + Z z¥, for each edge e
k=1
(11) 0<z<u.
This is equivalent to
(12) min dx
Me
(13) w(T) + Z Z z¥ >)\, for each tree T
ecT k=1
(14) 0<z<u.

This paper is devoted to the study of the linear program (12)-(14) and
its connections with other problems from polyhedral combinatorics.
The dual problem is

(15) maXZ (A= w"(T))yr — Z oyl

(16) ZyT§d§+o/;, 1<k<me, e€cFE
T:ecT

(17) y, o > 0.

If z is an optimal solution of (12)-(14), it satisfies (5)-(7). So if (g, &)
is an optimal solution of (15)-(17), the complementary slackness conditions
are as follows: for each edge e let k. be defined as in (4), then

(18) S gr>df for 1<k <k -1,
T:ecT

(19) if 0 < ZFe < ufe then Y g =d,

T:ecT

(20) > gr < df, for ke <k < me,
T:ecT

(21) if g7 >0 then Y > zh =X —w’(T).

ecT k

For a weight we let ¢, (we) and ¢ (w.) be the left-hand and right-hand
derivatives of c, at the value w.. Notice that ¢, (w.) < ¢f (we) and the strict
inequality holds at the breakpoints. With this notation conditions (18)-(20)
can be written as

(22) w) < S gr < atw.).
T:ecT

4 M. BAIOU AND F. BARAHONA

3. RELATED COMBINATORIAL PROBLEMS

3.1. Kruskal’s algorithm for MWSTs. We describe Kruskal’s algorithm
[11] for MWSTs, this will be needed in the following sections. Assume that
we have a graph G = (V, E) with edge weights w, for e € E, and the weights
take values w1 < wy < ... < w,. Let

F,={e€ E | we. =w;}.

We can describe Kruskal’s algorithm for MWSTs as follows. Let G1,--- ,G)
be the subgraphs given by the connected components of the spanning sub-
graph defined by Fi, find a spanning tree in each graph G; and shrink it
to a single node. Repeat the same with F5 and so on. All MWSTSs can be
obtained in this way. We illustrate this in Figure 2; the numbers close to
the edges are their weights, we also show the nested family of node sets that
are being shrunk.

FIGURE 2. The subgraphs being shrunk in Kruskal’s algorithm.

We denote by {G;} the family of subgraphs produced by this algorithm.

3.2. Packing spanning trees. Given a graph G = (V, E') with nonnegative
edge costs d. for e € E, we consider the linear program

(23) min dx
(24) z(T) > 1, for all spanning trees T'
(25) x> 0.
Its dual is
(26) max Z yr
(27) > yr<d., foralle
T:e€T

(28) y > 0.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 5

This last problem can be seen as a packing of spanning trees with capac-
ities d. The value of the dual objective function is the value of the packing.
Let {S1,---,Sp} be a partition of V, let Z be a vector defined as

{ L ifee (S, ,Sp)

(29) Te =
0 otherwise.

It follows from the results of [13] and [12] that the extreme points of the
polyhedron defined by (24)-(25) are as in (29). Thus solving the linear
program (23)-(25) is equivalent to

d(é(sla Co 7Sp))

(30) min — ,

where the minimum is taken over all partitions {Sy,---,S,} of V. This was
called the strength problem in [5].

It follows from linear programming duality that the value of the minimum
in (30) is equal to the value of a maximum packing of spanning trees with
capacities d. Also if § is a maximum packing and {S1,---, Sy} is a solution
of (30), then

for each edge e € §(S1,---,Sp).

Algorithms for the strength problem have been given in [5], [9], [7] and
[4]. The last two references give O(n?) algorithms. For the dual problem
(26)-(28) O(n®) algorithms have been given in [2] and [8].

The following observation will be used later. Let ¢ be a vector that
satisfies (27)-(28). Let k =), gr, and

T:ecT
Then
(31) d(E) = k(n —1),
and
(32) d'(0(S1,-+,5p)) 2 k(p—1)

for any partition {Sq,---,Sp} of V.

3.3. A simple case. Here we discuss a simpler version of problem (12)-
(14). Later we shall see that the original problem reduces to a sequence of
problems of the simpler type.

Assume that every edge has the same original weight w® and that z. is
the amount by which the weight can be increased with a per unit cost de.

6 M. BAIOU AND F. BARAHONA

Then (12)-(14) can be written as

(33) min dx
(34) Z(wo + x.) > A, for all spanning trees T’
ecT
(35) x>0,
or
min dx
Z Te > A — (n— Dw?, for all spanning trees T
ecT
x>0,

that is equivalent to (23)-(25) when A > (n — 1)w®.

3.4. The attack problem. Given a set of nonnegative weights u. for all
e € F, and a nonnegative number k consider

(36) minu(6(S1,...,5p)) —k(p—1),

where the minimization is done over all partitions {S1,...,S,} of V. This
has been called the attack problem in [5]. An O(n®) algorithm was given in
[5] and later an O(n*) was given in [1]. We show here some characteristics
of the solutions of the attack problem (36), these appear in [3].

Lemma 1. Let ® = {Sy,...,S,} be a solution of (36), and let {T1,..., Ty}
be a partition of S;, for some i, 1 <1 <p. Then

u(6(Th, ..., T,;)) — k(g —1) > 0.
Proof. If u(6(Tt,...,T,)) — k(g — 1) < 0 one could improve the solution of
(36) by removing S; from ® and adding {77, ...,T;}. O

Lemma 2. Let ® = {S1,...,S,} be a solution of (36), and let {S;,,...,5;}
be a sub-family of ®. Then

u(é(SZl, e ,Sil)) - k‘(l - 1) <0.
Proof. If u(6(S;,,-..,S;)) —k(—1) > 0, one could improve the solution of
(36) by removing {S;,,...,S;} from ® and adding their union. O

Lemma 3. If u(E) = k(n — 1) and uw(6(S1,---,5p)) > k(p — 1) for every
partition {S1,---,Sp} of V then for k' > k the solution of
(37) minu(é(sla T 7Sp)) - k/(p - 1)

1s the partition of all singletons. The same is true if some edges are deleted
before solving (37).

Proof. Since a solution of (36) is the partition of all singletons, it follows
from Lemma 2 that

w(d(v1, - ,v)) —k(l—1) <0,

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 7

for any set of nodes {vy,--- ,v;}. Therefore
(38) w(d(vy, -+ ,v)) —K(1—1)<0.

Thus when solving (37), for any partition {Sy,---,Sp}, if [S;| > 1 it follows
from Lemma 1 that one can obtain a partition that is not worse by replacing
S; by all singletons included in S;. The same is true if some edges are deleted
before solving (37). O

Lemma 4. Let ® = {Si,...,S,} be a solution of (36) in G. Let G’ be the
graph obtained by adding one new edge e to G. If there is an index i such
that e C S; then ® is a solution of (36) in G', otherwise a solution of (36)
in G is of the form

' = (®\{S; : i € I}) U{U = UjesSi},

for some index set I C {1,...,p}, and e € §(Si,, Si,), with {i1,ia} CI. The
set I could be empty, in which case ® = ®. See Figure 3.

Proof. Let {T1,...,T,} be a solution of (36) in G’. Assume that there is a
set S; such that S; C U%jle, r>2,and S; N7}, # 0 for 1 <! <r. Lemma
1 implies that

u(5g(Tj1 ns;,... 5, N Sz)) —k(r—1) >0,

and u(6¢r (Tj,,...,T;,)) — k(r — 1) > 0. Therefore {T},,..., T} } can be
replaced by their union. So we can assume that for all ¢ there is an index
Jj(@) such that S; C Tj.

Now suppose that for some index j, T; = ngllSi I > 1. Ife¢

q’

3¢ (Siy,--.,Si,), from Lemma 2 we have that
u(éG/(Sil, .. ,Sil)) —k(l—-1) <0,

and we could replace T; by {S;,,...,S5;,}. If e € 6¢/(S;,,...,S;,), only then
we could have

u(5gr(5i1, - ,Sil)) — k’(l — 1) > 0,
and we should keep T € @' O

4. NETWORK REINFORCEMENT

The network reinforcement problem is defined in a graph G = (V, E) with
edge costs d, edge capacities u and a nonnegative number k called the target.
It consists of finding a subgraph of minimum weight that contains & disjoint
spanning trees. Multiple copies of each edge can be used; for each edge e
the number of copies to be used is bounded by u.. This problem has been
studied in [5], [7] and [3]. The last two references give O(n*) algorithms.
Below we describe the algorithm of [3]. This will be needed in the following
section.

8 M. BAIOU AND F. BARAHONA

)
ol'e}

FIGURE 3. The family ®’ is obtained by combining some sets
in ®.

We solve the linear program

(39) minimize dx

subject to
(40) z(6(S1,-..,5p)) = k(p— 1),

for all partitions ® = {Sy,...,S,} of V,
(41) 0 <ze < Ue.

Instead of using inequalities (40), we use the equivalent extended formu-
lation proposed in [10] as follows. Associate variables y with the nodes and
variables x with the edges of the graph, choose an arbitrary node r, and
solve the linear program below.

(42) min Z dx
2k ifr ¢ S,
(43) z(6(5)) +y(S) > { 0 ifres, for all S C 'V,
(44) y(V) =0,
(45) —r > —u,
(46) 2> 0
Its dual is
(47) max Z 2kwg — Z Uefe
{S:r¢S}

(48) Z wg <d.+ P, foralleecFE,

{S:e€8(8)}
(49) Z wg = for all v,

{S:veS}

(50) w>0, (>0, uunrestricted.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 9

A dual algorithm will be used, constraints (48), (49) and (50) will always
be satisfied and we are going to maximize (47). For the primal problem,
constraints (43), (45), and (46) will always be satisfied, and (44) will be
satisfied at the end. Complementary slackness will be kept at all stages. We
start with an informal description of the algorithm.

At the beginning we set to zero all dual variables. We are going to choose
a partition {Si,...,Sp} of V and increase by € the value of the variables
{wg,}. This will ensure that constraint (49) is satisfied. We have to ensure
that constraints (48) are satisfied for all e € §(S1,...,S5,). We say that an
edge e is tight if its constraint (48) is satisfied as equation. For a tight edge
e € 0(S1,...,5p) we have to increase the value of 3. by 2¢. Let H be the
subgraph defined by the tight edges. The objective function changes by

(260~ 1) = 2u(0 (S1,. ... 5)).
So one should find a partition {S1,...,S,} of V such that
k(p—1) —u(6u(S1,...,5p)) > 0.
Thus we solve
(51) minimize u (3¢ (51, .. .,5p)) — k(p — 1),

among all partitions {Si,...,Sp} of V. This is problem (36) Let & =
{S1,...,5,} be the solution obtained. Let (w, 3, i) be the current dual
solution. If the minimum in (51) is negative we use the largest value of € so
that a new edge becomes tight. This is

(52)
e=-min{d =de— Y = wWs|e€da(S..., %) \u(St, ...}
{S:e€d(5)}

DO | =

If this minimum is taken over the empty set we say that € = co. In this case
the dual problem is unbounded and the primal problem is infeasible. Notice
that 3. = 0 if e is not tight, and when an edge becomes tight it remains
tight.

Now assume that an edge e = {v, ¢} gives the minimum in (52). If there
is more than one edge achieving the minimum in (52) we pick arbitrarily
one. Let ® be the solution of (51) after adding e to H. If ® = ® then
Be could increase and z. should take the value u., to satisfy complementary
slackness; we call this Case 1. Otherwise according to Lemma 4 we have
that

o' = ((I) \ {Sl 11 € I}) U {U = Uielsi},
for some index set I C {1,...,p}, and e € 6(S;,,S;,), with {i1,i2} C I. If so
B remains equal to zero and x. can take a value less than w,, this is called
Case 2. The algorithm stops when the minimum in (51) is zero.

Now we have to describe how to produce a primal solution. At any stage
we are going to have a vector (g, z) satisfying (43), (45), and (46). Equation
(44) will be satisfied only at the end.

10 M. BAIOU AND F. BARAHONA

Complementary slackness will be maintained throughout the algorithm.
For (43), we need that for each set S with wg > 0 the corresponding in-
equality holds as equation. Also we can have T, > 0 only if e is tight, and
if B, > 0 we should have Z, = ue.

Initially we set £ = 0, §, = 2k if u # r and 4, = 0. We have to discuss
the update of (7,) in cases 1 and 2 above.

In Case 1, we set T, = u. and update § as ¥y < Yo — Ue, Yq Ygq — Ue-
Thus for any set S such that e € §(5), if its corresponding inequality (43)
was tight, it will remain tight.

In Case 2, we have that

o = ((I) \ {Sl 11 € I}) U {U = Uielsi},
for some index set I C {1,...,p}, and e € §(S;,, Si,), with {i1,i2} C I. Let

)= { z(0(U)) +y(U) — 2k ifr ¢ U,

| z2(6(0)) +y(U) if r e U.

We update (7,Z) as gy < §p — A/2, Yg < §q — A/2, and T, = A\/2. Thus the
set U becomes tight. The new vector satisfies (43), this is shown in [3].

So at every iteration a new edge becomes tight. In some cases some sets
in the family ® are combined into one. When this family consists of only
the set V' then we have that §(V) = 0 and we have a primal feasible solution
that together with the dual solution satisfy complementary slackness. The
formal description of the algorithm is below.

Network Reinforcement
e Step 0. Start withw =0, 3=0, i =0, §, = 2k if v # 7, , = 0,
T =0,d, =d for all e € E, ® consisting of all singletons, and
H = (V,0).
e Step 1. Compute € as in (52). If € = oo stop, the problem is
infeasible.
Otherwise update wg, «+ wg, + € for S; € ®,
Be « e + 2€ for all e € 5 (51, ..,Sp),
B [+ €
de « d. — 2¢€ for all e € §¢(S1,...,5p) \ 0u(S1,...,Sp).
e Step 2. Let e be an edge giving the minimum in (52), add e to H.

Solve problem (51) in H to obtain a partition ®’.

e Step 3. If ® = & update (7,Z) as in Case 1. Otherwise update
as in Case 2. If &' = {V} stop, the equation g(V) = 0 is satisfied.

Otherwise set ® <+ @’ and go to Step 1.

Since at every iteration a new edge becomes tight, this algorithm takes
at most |F| iterations.

(53)

5. PRODUCING A PRIMAL AND A DUAL VECTOR

5.1. General Procedure. We are going to solve (8)-(11) or (12)-(14) as a
parametric linear program with parameter A. First we set w = w°, z = 0,
y =0, and X equal to the value of a MWST with weights w?.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 11

Then we assume that for A = A! > 0 we have an optimal primal solution
w', and an optimal dual solution y'. We have that if yilp > 0 then

Zwi =\

eeT

and

(54) c; () < D yr <l (w)),
T:eeT

for each edge e.

Let {G;} be the family of graphs produced by Kruskal’s algorithm with
weights w!. In order to increase A by a small amount we have to increase for
some G; the weight of every MWST. Since all weights in G; are the same,
our problem reduces to (33)-(35) or (23)-(25). So we have to solve (30),
where the cost of each edge e is ¢t (w}).

Let G; = (Vi, E;). For a partition P = {Sy,---,Sp} of V; and a vector w
we define

C+(6(Sl7"' 7Sp)7w) = Z C:(we)'
e€d(S1,+,5p)

For each graph GG; we compute o; as the value of the solution of
(55) minc—l—(é(Tliv"' ,T;),wl)/(p— 1)7

among all partitions {77, - ,Tg} of V;.

Let j = argmin{o;}, and 7 = 0. Let {TY{,---,T7} be a partition of V;
that is a solution of (55). Then A is increased by a small value € and the
weights of all edges in dg;, (TY,--- ,Ty) is increased by €/(p — 1).

Now we have to produce a new dual solution that proves the optimality
of the new vector w. For that we are going to produce a packing of spanning
trees of value 7 in each graph G; and then combine them into a dual vector
for the entire graph. First for each graph G; we are going to compute pseudo
costs ¢’ that will be used to find the right packing of spanning trees. For
that we solve the network reinforcement problem with target value 7. For
each edge e we define

=" v

T:eeT

as its capacity and a cost equal to 1. If ¢t (w!) > ¢ we add a parallel

edge with capacity ¢t (w!) — ¢? and cost M, a big number. This problem is
feasible because when all capacities are used we obtain a graph that admits
a packing of spanning trees of value greater or equal to 7. We need the
following lemma.

Lemma 5. Let ¢ be the solution of the network reinforcement problem then
ct(wl) > ¢, > forall e.

12 M. BAIOU AND F. BARAHONA

Proof. The proof is based on the algorithm of Section 4. It starts with the
partition ® consisting of all singletons. Then the dual variables associated
to all sets in ® take the value 1/2. Then one edge e with cost 1 becomes
tight and its primal variable is set to its upper bound cY. Now we have to
see that the algorithm will continue to produce the same partition ® until
all edges with cost 1 become tight.

Let k=3, y%p and k' = 7. We have that k’ > k because k' is the value of
a maximum packing of spanning trees in G; with capacity ¢ (w!) for each
edge e, and y' is a packing that satisfies

(56) > yr < cf(we),
T:eeT
for each edge e.

Here G; = (V;, E;) with V; = {v,--- ,v},}. We have that
OB e}) = klp 1)
for the trivial partition, see (31); and
60(6(S17 SRR Sq)) > k(q - 1)

for any other partition {Si,...,5;} of V;, see (32). Lemma 3 implies that
the reinforcement algorithm will use the trivial partition until each edge e
with cost 1 becomes tight and its primal variable takes the value ¢l. Since
the algorithm never decreases the value of a variable we have ¢/, > .

The definition of the capacities implies ¢t (w!) > ¢.. O

When solving the network reinforcement problem we are minimizing so
the solution ¢’ is minimal, thus there is a packing of spanning trees y* in G;
of value 7 and such that

(57) Z v = ¢, for all e € E;.
T:ecT
Therefore
(58) c(w) < D> yr< Y yh <ef(w)),
T:ecT T:ecT

for each edge e € E;.
For the graph G; we have that

> ur=cl(w)

T:ecT
for each edge e € dg; (17, ,Tg). This is because 7 is the value of a maxi-
mum packing of spanning trees in G; and all capacities in Jg;, (1y,---,17)

should be used by this packing.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 13

Then these packings are combined to produce a packing of spanning trees
in the original graph as described in the next subsection. This dual solu-
tion satisfies the complementary slackness conditions with the new primal
solution. This is a proof of optimality. ' '

We can continue increasing A and the weights of the edges in d¢; (1¢,---,13)
until either a breakpoint of the cost function of some edge is found, this is
called a Type I iteration; or the weights of the edges in d¢; (TY,--- ,Ty) reach
a value equal to the value of the edges in the graph G; containing G/;, in this
later case only the family {G;} changes, this is called a Type 2 iteration. In
either case we restart as in the beginning of this section. If none of these
cases is found, i. e. there is no limit for increasing A, the algorithm stops.

5.2. Combining Dual Vectors. Let {G;} be the family of graphs pro-
duced by Kruskal’s algorithm, we have to describe how to combine the dual
vectors produced for each graph G;. This is done as follows.

Let Gg be a graph and Gy an induced subgraph of Gy. Let G5 be the
graph obtained from Gy by shrinking GG to a single node. Assume that we
have a packing of spanning trees y' of G and a packing y? of Gy both of
value 7. We pick y%ﬂ > (0 and y% >0, we set p = min{y}, y%} and associate
this value to T'U S that is a tree of the graph G¢. We subtract p from y}p
and y% and continue.

This procedure is applied recursively to the family {G;}.

5.3. The algorithm. Now we can give a formal description of the algo-
rithm:

e Step 0. Set w = w’, z =0, y =0, and X equal to the value of a
MWST with weights w?. Set k. = 1 for each edge e.

e Step 1. Let w1 < wy < ... < w, be the different values of the
weights w. We set w,11 = oo. Let {G;} be the family of graphs
produced by Kruskal’s algorithm.

For each graph G; = (V;, E;) compute

o; = min ¢ (§(TY, - - - ,T;),w)/(p - 1),

among all partitions {77, - ,Tg} of V;.
Let j = argmin{o;}, and o; = ¢"(0(T},--- ,T}),w)/(p — 1) for a
partition {le, e ,Tg} of V;. Let w; be the weight of the edges in
Ej, l <r.

e Step 2. Let py = min{ul —zk : e € dg, (T/,--- T},
p=min{py, w11 —w}. If p= o0, stop.
Otherwise set z¥¢ « a4 p w, « we+p, foralle € da, (le, T,
If p = p1 go to Step 3, otherwise go to Step 4.

e Step 3. Set k. k. +1forall e € (5Gj(T1j, - T3) with zke = ke,
Produce a new dual solution as described in Subsection 5.1.

e Step 4. Set A — A+ p(p —1). Go to Step 1.

14 M. BAIOU AND F. BARAHONA

5.4. Complexity Analysis. Clearly an upper bound for the number of
type 1 iterations is) | . me. Now we have to derive a bound for the number
of type 2 iterations.

Lemma 6. Between any two iterations of type 1 there are at most
(n —1)(m — 1) dterations of type 2.

Proof. At any stage of the algorithm there are at most m different values
for the edge weights. Let w; < wg -+ < w, be all these values. Let p(w;) be
the number of edges of weight w; in any MWST. At each iteration of type
2 there is an index ¢ such that p(w;) decreases and p(w;4+1) increases. Thus
there are at most (n — 1)(m — 1) consecutive type 2 iterations. O

At each iteration one has to solve the strength problem (30) for each
graph G;. Let n; be the number of nodes of G;. Since this family of node
sets is nested, we have that > n; < 2(n — 2). So the complexity of this
sequence of strength problems is O(n?).

Finding a packing of spanning trees has a complexity O(n®), with the
same arguments as above we have that the complexity of computing the
packings for all graphs G; is O(n®). We can state the following.

Theorem 1. The complexity of producing the primal solution is O(mn® > m.),
and the complexity of producing the dual solution is O(mn®> m.).

ACKNOWLEDGMENTS

Part of this work was done while the first author was visiting the T. J.
Watson Research Center of IBM and while the second author was visiting the
Laboratoire d’Econométrie de L’Ecole Polytechnique in Paris. The financial
support of both institutions is greatly appreciated.

REFERENCES

[1] F. BARAHONA, Separating from the dominant of the spanning tree polytope, Op. Re-
search Letters, 12 (1992), pp. 201-203.

[2] F. BARAHONA, Packing spanning trees, Math. Oper. Res., 20 (1995), pp. 104-115.

[3] F. BARAHONA, Network reinforcement, tech. rep., IBM Watson Reserach Center,
Yorktown Heights NY 10598. Also in www.optimization-online.org, 2002.

[4] E. CHENG AND W. H. CUNNINGHAM, A faster algorithm for computing the strength
of a network, Inf. Process. Lett., 49 (1994), pp. 209-212.

[5] W. H. CUNNINGHAM, Optimal attack and reinforcement of a network, J. of ACM, 32
(1985), pp. 549-561.

[6] G. N. FREDERICKSON AND R. SoLIS-OBA, Increasing the weight of minimum span-
ning trees, J. Algorithms, 33 (1999), pp. 244-266.

[7] H. N. GaBow, Algorithms for graphic polymatroids and parametric s-sets, J. Algo-
rithms, 26 (1998), pp. 48-86.

[8] H. N. GaBow AND K. S. MANU, Packing algorithms for arborescences (and spanning
trees) in capacitated graphs, Math. Programming Ser. B, 82 (1998), pp. 83-1009.

[9] D. GuUsFIELD, Computing the strength of a graph, SIAM J. Comput., 20 (1991),
pp- 639-654.

AN LP APPROACH TO INCREASING THE WEIGHT OF MWSTS 15

[10] M. JUNGER AND W. R. PULLEYBLANK, New primal and dual matching heuristics,
Algorithmica, 13 (1995), pp. 357-380.

[11] J. B. KRUSKAL, JR., On the shortest spanning subtree of a graph and the traveling
salesman problem, Proc. Amer. Math. Soc., 7 (1956), pp. 48-50.

[12] C. S. J. A. NASH-WILLIAMS, Edge-disjoint spanning trees of finite graphs, J. London
Math. Soc., 36 (1961), pp. 445-450.

[13] W. T. TUTTE, On the problem of decomposing a graph into n connected factors, J.
London Math. Soc., 36 (1961), pp. 221-230.

(M. Baiou) LABORATOIRE D’ECONOMTRIE DE L’ECOLE POLYTECHNIQUE, 1 RUE DESCARTES,
75005 PARIS.
E-mail address, M. Baiou: baiou@custsv.univ-bpclermont.fr

(F. Barahona) IBM T. J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NY
10589, USA
E-mail address, F. Barahona: barahon®@us.ibm.com

