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Abstract
We apply the theoretical results on “stochastic approximations and
differential inclusions” developed in Benaim Hofbauer and Sorin (2003)
to several adaptive processes used in game theory including: classical
and generalized approachability, no-regrets procedures (Hart and Mas-
Colell), smooth fictitious play (Fudenberg and Levine) ...

Keywords: Stochastic approximation, differential inclusions, set valued dynamical
systems, approachability, consistency, smooth fictitious play.

1 Introduction

The first paper of this series (Benaim, Hofbauer, Sorin, 2003), henceforth re-
ferred to as BHS, was devoted to the analysis of the long term behavior of a
class of continuous paths called perturbed solution that are obtained as certain
perturbations of trajectories solutions to a differential inclusion in R™

x € M(x). (1)

A fundamental and motivating example is given by (continuous time linear
interpolation of) discrete stochastic approximations of the form

Xn—l—l - Xn - an—}-lYn—i—l (2)

where a, > 0,
EYoi1 | Fn) € M(X,)

and F, is the o-algebra generated by (Xy,...,X,), under conditions on the
increments (Y},) and the coefficients (a,). For example:

(1) Supy, | Yn+1 - E(Yn—l—l ‘ fn) |< o0, and

(ii) a, = o(m).

Following the dynamical system approach to stochastic approximations initi-
ated by Benaim and Hirsch (Benaim (1996, 1999); Benaim and Hirsch (1996,
1999)) it was shown in BHS that the set of limit points of a perturbed solution
is a compact invariant attractor free set for the set-valued dynamical system
induced by (1).

From a mathematical viewpoint, this type of property is a natural generalization
of Benaim and Hirsch’s previous results.! In view of applications, it is strongly

!Benaim and Hirsch’s analysis was restricted to asymptotic pseudo trajectories (perturbed
solutions) of differential equations and flows.



motivated by a large class of problems, especially in game theory, where the
use of differential inclusions is unavoidable since we are dealing with dynamics
where the strategies chosen by a player’s opponents (or nature) are unknown
to the player.

In BHS a few applications where given mainly in the framework of approacha-
bility theory (where one player aims at controlling the asymptotic behavior of
the Cesaro mean of a sequence of vector payoffs corresponding to the outcomes
of a repeated game) and to the study of fictitious play (where each player uses,
at each stage of a repeated game, a move which is a best reply to the past
frequencies of moves of the opponent).

The purpose of the current paper is to explore much further the range of
possible applications of the theory and to convince the reader that it provides
an unified and powerful approach to several questions such as approachability
or consistency. The price to pay is a bit of theory, but as a reward we obtain
neat and simpler (sometime much simpler...) proofs of numerous results arising
in different contexts.

The organization of the paper is as follows. Section 2 summerizes the re-
sults of BHS that will be needed here. In section 3 we first consider generalized
approachability, where the parameters are a correspondence N and a potential
function ) adapted to a set C' and extend results obtained by Hart and Mas-
Colell (2001a). In Section 4 we deal with (internal) consistency (or no regret):
the previous set C' is now the negative orthant and an approachability strat-
egy is constructed explicitely through a potential function P, following Hart
and Mas-Colell (2001a). A similar approach (Section 5) allows also to recover
conditional (or external) consistency properties via generalized approachability.
The next section 6 shows analogous results for an alternative dynamics: smooth
fictitious play. This allows to retrieve and extend certain properties obtained by
Fudenberg and Levine (1995, 1999) on consistency and conditional consistency.
Section 7 deals with several extensions of the previous to the case where the
information available to a player is reduced, and section 8 applies to results
recently obtained by Benaim and BenArous (2003).



2 General framework and previous results

Consider the differential inclusion (1). All the analysis will be done under the
following condition, which corresponds to Hypothesis 1.1 in BHS:

Hypothesis 2.1 (Standing assumptions) M is an upper semi continuous
correspondence from R™ to itself, with compact convex non empty values and
which satisfies the following growth condition. There exists ¢ > 0 such that for
all x € R™
sup ||z]| < ¢ (1+ [|l=]).
z€M(z)

Here || - || denotes any norm on R™.

Note that in most of our applications one has M (x)C Ky where K is a given
compact, so that the growth condition is automatically satisfied.

In order to state the main results of BHS that will be used here, we first
recall some definitions and notation.
The dynamical system {®,};ecr induced by (1) is defined by

®,(z) = {x(t) : x is a solution to (1) with x(0) = z}

where a solution to the differential inclusion (1) is an absolutely continuous
mapping x : R — R™ satisfying

dx(t)
3 © M(x(t))

for almost every ¢ € R.
Given T C R,V C R™, we set

or(V) = U 2uw).

teT veV

Then, given a point x € R™ we let

we(z) =) Pptyo0) ()

>0

denote its w-limit set. The corresponding notion for a set Y, denoted we(Y), is
defined similarly with ®p .oy(Y') instead of @ o) ().

A set A is said invariant if, for all z € A there exists a solution x with x(0) = z
such that x(R) C A, and strongly positively invariant if ®,(A) C A for all ¢ > 0.



A compact set A is called an attracting set if there exists a neighborhood U of
A and a function t from (0,&p) to R with €5 > 0 such that

O,(U) C A

for all € < g9 and t > t(¢), where A° stands for the e—neighborhood of A. If
additionally A is invariant, then A is called an attractor.
Given an attracting set (resp. attractor) A, its basin of attraction is the set

B(A) ={z € R" : we(x) C A}.
When B(A) = R™, we call A a global attracting set (resp. attractor).

Remark The following terminology is sometime used in the literature. A set
A is said asymptotically stable if it is

(i) invariant,

(ii) Lyapounov stable, i.e., for every neighborhood U of A there exists a neigh-
borhood V' of A such that its forward image ®9 o) (V') satisfies @y o) (V) C
U, and

(iii) attractive, i.e., its basin of attraction B(A) is a neighborhood of A.

However, as shown in (BHS, Corollary 3.18) attractors and compact asymptot-
ically stable sets coincide.

Given a closed invariant set L, the induced dynamical system ®* is defined on
L by

@/ (z) = {x(t) : x is a solution to (1) with x(0) = z and x(R) C L}.

A set L is said attractor free if there exists no strict subset A of L which is an
attractor for ®L.

We now turn to the discrete random perturbations of (1) and consider, on
a probability space (2, F, P), random variables X,,,n € N, with values in R™,
satisfying the difference inclusion

Xn—l—l - Xn € an—H[M(Xn) + Un—i—l] (3)

where the coefficients a,, are nonnegative numbers with

Zan = +00.

Such a process (X,) is a Discrete Stochastic Approzimation (DSA) of the dif-
ferential inclusion (1) if the following conditions on the perturbations (U,) and
the coeflicients (a,) hold:



(i) E(Upny1 | Fn) = 0 where F, is the o-algebra generated by (Xi,---,X,,),
(ii) (a) sup, E(||[Un41]]?) < 00 and >~ a2 < +oo or
(b) sup,, ||Uns1|| < K and a, = o).

log(n)

Remark More general conditions on the characteristics (ay,, U,) can be found
in (BHS, Proposition 1.4).

A typical example is given by equations of the form (2) by letting
Un+1 = Yn+1 - E(Yn+1 ‘ fn)

Given a trajectory (X, (w))n>1, its set of accumulation points is denoted by
L(w) = L((X,(w)). The limit set of the process (X,,) is the random set L((X},)).

The principal properties established in BHS express relations between limit
sets of DSA and attracting sets through the following results involving internally
chain transitive (ICT) sets. (We do not define ICT sets here, see BHS Section
3.3, since we only use the fact that they satisfy Properties 2 and 4 below).

Property 1 The limit set L of a bounded DSA is almost surely an ICT set.

Properties of the limit set L will then be obtained through the next result (BHS,
Lemma 3.5, Proposition 3.20 and Theorem 3.23):

Property 2 (i) ICT sets are compact, invariant and attractor free.
(ii) If A is an attracting set with B(A)NL # (0 and L is ICT, then L C A.

Some useful properties of attracting sets or attractors are the two following
(BHS, Propositions 3.25 and 3.27).

Property 3 (Strong Lyapounov) Let A C R™ be compact with a bounded
open neighborhood Uand V : U — [0, 00[. Assume the following conditions:

(1) U is strongly positively invariant,
(i) V7H(0) = A,
(iii) V is continuous and for allx € U\ A,y € ®y(x) and t > 0, V(y) < V(z).

Then A contains an attractor whose basin contains U. The map V is called a
strong Lyapounov function associated to A.



Let A C R™ be a set and U C R™ an open neighborhood of A. A continuous
function V : U — R is called a Lyapunov function for A C R™ if V(y) < V(z)
forallz € U\ A,y € ®y(x),t > 0; and V(y) < V(z) for all z € A,y € Py(x)
and t > 0.

Property 4 (Lyapounov) Suppose V is a Lyapunov function for A. Assume
that V(A) has empty interior. Then every internally chain transitive set L C U
is contained in A and V'|L is constant.



3 Generalized approachability: a potential ap-
proach

We follow here the approach of Hart and Mas-Colell (2001a, 2003). Given a
correspondence N we consider a dynamical system defined by

we Nw)—w. (4)

In addition a “potential function” @ is given. We provide two sets of conditions
on N and () that imply convergence properties of the solutions to (4) and of the
corresponding DSA. When applied in the approachability framework (Blackwell,
1956) this will extend Blackwell’s property.

Throughout this section C' is a closed subset of R™.

Hypothesis 3.1 @ is a C! function from R™ to R such that
@ >0and C={Q =0}

and N is a correspondence satisfying the standard hypothesis (2.1).

3.1 Exponential convergence

Hypothesis 3.2 There exists some positive constant B such that for w €
R™\ C

(VQ(w), N(w) - w) < ~B.Q(w),
meaning (VQ(w),w’ —w) < —B.Q(w) for all w' € N(w).

Theorem 3.3 Let w(t) be a solution of (4). Under hypotheses (3.1) and (3.2),
Q(w(t)) goes to zero at exponential rate and the set C is a global attracting set.

Proof: If w(t) ¢ C

d .
ZQ(w() = (VQ(W(1)), w(t)).
hence d
ZQw(t) < =B.Q(w(1)),
so that

Q(w(1)) < Q(w(0))e™"".
This implies that for any € > 0, any bounded neighborhood V' of C satisfies
®,(V) C C* for t large enough.
Alternatively, Property 3 applies to the forward image W = @y «)(V). .

8



Corollary 3.4 Any bounded DSA of (4) converges to C.

Proof: Being a DSA implies Property 1. C is a global attracting set, thus
Property 2 applies. Hence the limit set of any DSA is included in C. .

3.2 Application: approachability

Following again Hart and Mas-Colell (2001a) and (2003) and assuming hypoth-
esis 3.2, we show here that the above property extends Blackwell’s approacha-
bility theory (Blackwell, 1956; Sorin, 2002) in the convex case. (A first approach
can be found in BHS, §5.)

Let I and L be two finite sets of actions. Consider a two-person game with
vector payoffs described by a I x L matrix A with entries in R™. At each stage
n + 1, knowing the previous sequence of moves h, = (i1, 1, ..., in, ly) player 1
(resp. 2) chooses 4,1 in I (resp. £,41 in L). The corresponding stage payoff is
Int1 = Aipir 0y, and gn, = %anzlgm denotes the average of the payoffs until
stage n. Let X = A(I) denote the simplex of mixed moves (probabilities on
I) and similarly Y = A(L). H, = (I x L)" denotes the space of all possible
sequences of moves up to time n. A strategy for player 1 is a map

U:U’Hn—>X,

by € Hy — 0(hn) = (03(ha))icr

and similarly 7 : |J, H, — Y for player 2. A pair of strategies (o, 7) for the
players specifies at each stage n + 1 the distribution of the current moves given
the past according to the formulae:

Pling1 = i bopr = €| Fn) = 0i(hn)7e(hn),

where F,, is the o-algebra generated by h,,. It then induces a probability on the
space of sequences of moves (I x L)Y denoted P, ..

For z in X we let zA denote the convex hull of the family {zA, = )
L}. Finally d(.,C) stands for the distance to the closed set C.

icl -TiAiZ; le

Definition 3.5 Let N be a correspondence from R™ to itself. A function T
from R™ to X is N-adapted if

Z(w)A C N(w), Yw ¢ C.



Theorem 3.6 Assume hypotheses 3.1, 3.2 and that T is N-adapted. Then any
strateqy o of player 1 that satisfies o(h,) = Z(g,) at each stage n, whenever
gn ¢ C, approaches C: explicitely, for any strategy T of player 2,

d(gn, C)—0 P, a.s.

Proof: The proof proceeds in 2 steps.

First we show that the discrete dynamics associated to the approachability
process is a DSA of (4), like in BHS §2 and §5. Then we apply the previous
Corollary 3.4. Explicitely, the sequence of outcomes satisfy:

1

n——i-l(gnﬂ - gn)-

Int1 — Gn =

Let F, be the o-algebra generated by the histories h,. Then by the choice of
player 1’s strategy E,.(9n+1 | Fn) = Yo belongs to Z(gn)A C N(gn), for any
strategy 7 of player 2. Hence one writes

1
Cn+1

gn—|—1 — Gn (7n - !_]n + (gn—|—1 - ’Yn))

which shows that {g,} is a DSA of (4) (with a, = 1/n and Y11 = gns1 — G,
so that E(Y,+1 | Fn) € N(Gn) — §n)- Then Corollary 3.4 applies. .

Convex case

Assume C convex. Let us show that the above analysis covers Blackwell (1956)’s
original framework . Recall that Blackwell’s sufficient condition for approacha-
bility states that, for any w ¢ C, there exists z(w) € X with:

(w—Tg(w), z(w)A — e(w)) <0 (5)

where I (w) denotes the projection of w on C.
Convexity of C' implies the following property:

Lemma 3.7 Let Q(w) = ||lw — Hg(w)]|3, then Q is C* with VQ(w) = 2(w —
e (w)).

Proof: We simply write ||w]||* for the square of the L? norm.

Qw +v') — Q(w) lw+w' = e (w + w)|* = [lw — e (w)]|*
< w+w' = o) = |lw — e (w)]”

= 2(w',w - Ig(w)) + [Jw']|*.

10



Similarly
Qw+uw)—Qw) > |w+w —Te(w+w)|* - ||lw—e(w + w')|J?
= 2w, w— He(w +w")) + |||

C being convex, Il is continuous (1 Lipschitz), hence there exists two constants
c¢; and ¢y such that

allw'[* < Qw + w') = Q(w) — 2(w', w — Ig(w)) < caflw'||*.
Thus @ is C' and VQ(w) = 2(w — [g(w)). .

Proposition 3.8 If player 1 uses a strateqy o which at each position g, = w
induces a mized move x(w) satisfying Blackwell’s condition (5), then approach-
ability holds: for any strateqy T of player 2,

d(gn, C)—0 P,r a.s.

Proof: Let N(w) be the intersection of A, the convex hull of the family {Ay; i €
I,¢ € L}, with the closed half space {# € R™; (w — Ill¢(w), 0 — e (w)) < 0}.
Then N is u.s.c. by continuity of II¢, and (5) makes x N-adapted. Furthermore,
the condition

(w—I¢(w), N(w) =T (w)) <0

can be rewritten as
(w =T (w), N(w) — w) < —lw —Te(w)|
which is .
(5VQ(w), N(w) —w) < —Q(w)

with Q(w) = |Jw — [I¢(w)]|?, by the previous Lemma 3.7. Hence hypotheses 3.1
and 3.2 hold and Theorem 3.6 applies. .

Remarks

(i) The convexity of C' was used to get the property of Iz, hence of @ (C!)
and of N (u.s.c.).
Define the support function of C' on R™ by:

we(u) = sup(u, c).
ceC

11



The previous condition of hypothesis 3.2 holds in particular if () satisfies:

(VQ(w), w) —we(VQ(w)) = B.Q(w), (6)
and N fulfills the following inequality:
(VQ(w), N(w)) < we(VQ(w)) Yw e R™\ C (7)

which are the original conditions of Hart and Mas-Colell (2001a, p. 34).

(ii) Blackwell (1956) obtains also a speed of convergence of n~'/2 for the ex-
pectation of the distance: p, = E(d(g,,C)). This corresponds to the
exponential decrease p; = Q(x(t)) < Le™" since in the DSA, stage n ends
at time t, =Y. __ 1/m ~ log(n).

m<n

(iii) BHS proves results very similar to Proposition 3.8 (Corollaries 5.1 and
5.2 in BHS) for arbitrary (i.e non necessarily convex) compact sets C but
under a stronger separability assumption.

3.3 Slow convergence

We follow again Hart and Mas-Colell (2001a) in considering an hypothesis
weaker than (3.2).

Hypothesis 3.9 @ and N satisfy, for weR™ \ C:
(VQ(w), N(w) —w) <0.

Remark This is in particular the case if C' is convex, inequality (7) holds,
and whenever w ¢ C":

(VQ(w), w) > we(VQ(w)) (8)

(A closed half space with exterior normal vector VQ(w) contains C' and N (w)
but not w, see Hart and Mas-Colell (2001a) p.31).

Theorem 3.10 Under hypotheses 3.1 and 3.9, Q is a strong Lyapounov func-
tion for (4).

Proof: Using hypothesis 3.9, one obtains if w(¢)¢C":

%Q(W(t)) =(VQ(w(?)), w(t)) = (VQ(w(?)), N(w(t)) — w(t)) <O0.

12



Corollary 3.11 Assume hypotheses 3.1 and 3.9. Then any bounded DSA of

(4) converges to C.
Furthermore, theorem 3.6 applies when hypothesis 3.2 is replaced by hypothesis

3.9.

Proof: Follows from Properties 1, 2 and 3. The set C' contains a global attrac-
tor, hence the limit set of a bounded DSA is included in C. .

We summarize the different geometrical conditions:

Ne@

Condition (5)

The hyperplane through I (2) orthogonal to z — Ilg(z) separates z and
N(z).



‘ {Q=Q2)}

Conditions (7) and (8)
The supporting hyperplan to C' with orthogonal direction VQ(z) separates

N(z) from z.

Condition of hypothesis 3.9
N(z) belongs to the interior of the half space defined by the exterior normal
vector VQ(z) at z.

14



4  Approachability and consistency

We consider here a framework where the previous set C' is a compact subset of
the negative orthant and the vector of payoffs describes the vector of regrets in
a strategic game, see Hart and Mas-Colell (2001a), (2003).

4.1 No regret and correlated moves

Consider a finite game in strategic form. There are finitely many players labeled
a=1,2,...,A. We let S® denote the finite actions set of player a, S =[], ¢,
and Z = A(S) the set of probabilities on S (correlated actions).

Since we will consider everything from the view point of player 1 it is convenient
to set S' = I, X = A(I) (mixed moves of player 1), L = [[,,; S% and YV =
A(L) (correlated mixed moves of player’s 1 opponents). Throughout, X x Y
is identified with a subset of Z through the natural embedding (z,y) — = X v,
where z x y stands for the product probability of x and y. As usual, I (L,S)
is also identified with a subset of X (Y, Z) through the embedding k£ — d;. We
let U : S — R denote the payoff function of player 1 and we still denote by U
its linear extension to Z, and its bilinear extension to X x Y.

Let m be the cardinality of I and R(z) denote the m-dimensional vector of
regrets for player 1 at z in Z, defined by

R(z) = {U(k,27") = U(2) }ber

where 27! stands for the marginal of z on L
Let D = R™ be the closed negative orthant associated to the moves of player 1.

Definition 4.1 H (for Hannan’s set with respect to player 1) is the set of
probabilities in Z satisfying the no-regret condition for player 1. Formally:

H={2€Z:U(i,z ') <U(2),Vi e I} ={2€Z : R(z) € D}.

Definition 4.2 P is a potential function for D if it satisfies the following set
of conditions:

(i) P is a C' nonnegative function from R™ to R,
(i) P=0iffw € D,

(iii) VP(w) > 0,

(iv) (VP(w),w) > 0,Yw ¢ D.

15



Definition 4.3 Given a potential P for D, the P-regret-based dynamics for
player 1 is defined on Z by
z€ N(z)—z 9)

where

(i) N(z) = p(R(2)) xY C Z, with

ii) p(w) = VPWw) ¢ X whenever w ¢ D and p(w) = X otherwise.
IV P(w)]

Here |V P(w)| stands for the L' norm of VP (w).

This corresponds to a process where only the behavior of player 1 is specified
outside of H.

The associated discrete process is as follows. Let s, € S be the random
variable of profile of actions at stage n, and F, the o-algebra generated by the

history h,, = (s1,..., S,). The average z, = %E o 1 Sm satisfies:
1
Fni1 — Zn = ——[Sn41 — Zu)- 10
Zn4+1 — Zn 7’L+1[8 +1— & ] ( )

Definition 4.4 A P-regret-based strategy for player 1 is specified by the condi-
tions:

(i) For all (7,¢) €e I x L
P('L'n_|_1 - i, En—l—l - g'fn) == P(in+1 - Z|‘7:7L)P(€n—|—1 = —€|.7:n),
(ii) P(iny1 = i|Fn) = pi(R(Z,)) whenever R(Z,) ¢ D, where o(-) = (©1(-),-- -, ©m(+))
is like in definition 4.3.

The corresponding discrete time process (10) is called a P-regret-based discrete
dynamics.

Clearly, one has
Proposition 4.5 The P-regret-based discrete dynamics (10) is a DSA of (9).
The next result is obvious but crucial.
Lemma 4.6 Let z =x Xy € XXY C Z, then
(z,R(z)) =0.

Proof:
One has

> zlUG,y) — Uz x y)] = 0.

el
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4.2 Blackwell’s framework

Given weR™, let w™ be the vector with components w;” = max(wy, 0). Define
Q(w) = Y ,(wi)? Note that VQ(w) = 2w™, hence @ satisfies the condi-
tions (i) — (iv) of definition 4.2. If II denotes the projection on D one has
w —(w) = w* and (w*, [I(w)) = 0.

In the game with vector payoff given by the regret of player 1, the set of fea-
sible expected payoffs corresponding to xA (cf. §3.2), when player 1 uses 6, is
{R(2); 2 = 0 x z7'}. Assume that player 1 uses a @) regret based strategy. Since
at w = gy, f(w) is proportional to VQ(w), hence to w*, Lemma 4.6 implies that
condition (5): (w — Hw,zA — IIw) < 0 is satisfied since this quantity reduces
to: (w™, R(y) — w) which equals 0.

Hence a () regret-based strategy approaches the orthant D.

4.3 Convergence of P-regret-based dynamics

We take the image by R (which is linear), of the dynamical system (9) and
obtain the following differential inclusion in R™:

weNw)—w (11)
where A
N(w) = R(p(w) x Y).
The associated discrete dynamics to (10) is given as

_ _ 1 _
Wp41 — Wy = n+1 (wn+1 - wn) (12)

with w, = R(z,).

Theorem 4.7 The potential P is a strong Lyapounov function associated to
the set D for (11), and similarly Po R to the set H for (9). Hence, D contains
an attractor for (11) and H contains an attractor for (9).

Proof: Remark that (VP (w), N(w)) = 0 since VP(w) = 0 for w € D, and by
Lemma 4.6 for w ¢ D. Hence for any w(t) solution to (11)

© Pw(t)) = (VP(w(t)), w(t)) = ~(VP(w(®), w(t)) < 0

and P is a strong Lyapounov function associated to D in view of conditions
(1) — (iv) of definition 4.2. The last assertion follows from Property 3. .
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Corollary 4.8 Any P-regret-based discrete dynamic (10) approaches D in the
payoff space, hence H in the action space.

Proof: D (resp. H) contains an attractor for (11) whose basin of attraction
contains R(Z) (resp. Z) and the process (12) (resp. (10)) is a bounded DSA,
hence Properties 1, 2 and 3 apply. n

Note that a direct proof is available as follows :
Let R the range of R and define, for w ¢ D,

N(w) = {w'eR™; (w', VP(w)) = 0} N R.

Hypotheses (3.1) and 3.9 are satisfied and Corollary 3.11 applies.
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5 Approachability and conditional consistency

We keep the framework of Section 4 and the notation introduced in 4.1, and fol-
low Hart and Mas-Colell (2000), (2001a), (2003). We still consider only player
1 and denote by U his payoff.

Given z = (z5)ses € Z, introduce the family of m comparison vectors of dimen-
sion m (testing k against j with (j, k) € I?)

= Uk, £) = U(j, 0)] 2,0

Remark that if one let (z | j) denote the conditional probability on L induced
by z given j € I and z' the marginal on I, then

{C(, k) (2) }rer = 2 R((2 | 7))
where we recall that R((z | 7)) is the vector of regrets for player 1 at (z | j).

Definition 5.1 The set of no conditional regret (for player 1) is
={%C(j,k)(2) <0,Vj,k eI}

It is obviously a subset of H since

Z{C .]’ }kEI - R(Z)

Property The intersection over all players a of the sets C* is the set of cor-
related equilibria of the game.

5.1 Discrete standard case

Here we will use approachability theory to retrieve the well known fact (see
Hart and Mas-Colell (2000)) that player 1 has a strategy such that the vector
C(Z,) converges to the negative orthant of R™ | where z, € Z is the average
(correlated) distribution on S.

Given s € S define the auxiliary vector payoff B(s) to be the m x m real valued
matrix where, if s = (4,¢) € I x L, hence j is the move of player 1, the only
non-zero line is line j with entry on column k being U(k,¢) — U(j,¢). The
average payoff at stage n is thus a matrix B,, with coefficient

Bt =+ 32 Uk b) ~ UG, 00) = G, R) z2)

m,Zm:]
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which is the test of k versus j on the dates, up to stage n, where j was played.
Consider the Markov chain on I with transition matrix
Ba (4, k)*
b,
for j # k where b, > max; >, B, (j, k)*. By standard results on finite Markov

chains, M,, admits (at least) one invariant probability measure. Let u, = p(B;)
be such a measure. Then (dropping the subcript n)

=3 Mk, j) :Zukwﬂﬁ(l _ZM)'

k] k]

Mn(]a k) =

Thus b disappears and the condition writes

> ukB(k, )" =11 ) B,k

k#j k#j

Theorem 5.2 Any strategy of player 1 satisfying o(hy,) = iy, is an approacha-
bility strategy for the negative orthant of R™” Namely

Vj, k lim B,(j, k)" = a.s.
n—0o0
Equivalently, (Z,) approaches the set of no conditional regret for player 1 :

lim d(z,,C") = 0.

n—oo

Proof: Let () denote the closed negative orthant of R™. In view of proposition
3.8 it is enough to prove that inequality (5)

(b= Tlo(b), 0 — Ta(b)) <0, WbgQ

holds for every regret matrix ¥, feasible under p = u(b).
As usual, since the projection is on the negative orthant Q, b — Ilo(b) = b* and
(b —Tq(b), (b)) = 0. Hence it remains to evaluate

but the coefficient of U (j, ?) is precisely
> Bk, j)uk— i »_ BT (G, k) =0
k k

by the choice of p = pu(b). n
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5.2 Continuous general case

We first state a general property (compare Lemma 4.6):

Lemma 5.3 Given a € ]Rmz, let peX satisfy :

Z :uka(k’j) = Hj Z a(]’k)av] el

k: k#£j k: k#j

then
(a,C(pxy)) =0, VyeY.

Proof: As above one computes:

>3 ali DUk, y) = UG, v)]

but the coefficient of U (4, y) is precisely

Za(k’j)uk — M Za‘(j’ k) =0.

k k

|
Let P be a potential function for €2 the negative orthant of RmZ, for example

P(w) = >, (wf;)?, as in the standard case above.

Definition 5.4 The P-conditional regret dynamics in continuous time is de-

fined on Z by:
z € uz)xY —z (13)

where u(z) is the set of 4 € X that are solution to:
pestkV P (C(2) = MjZkVij(C(Z))

whenever C(z)¢€2 (VP denotes the jk component of the gradient of P). In
particular p(z) = X whenever C(z)€ef.

The associated process in R™ is the image under C:
welCv(w)xY)—w (14)

where v(w) is the set of v € X with
Zkesykvpkj(w) = V]-ZkVij(w).
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Theorem 5.5 The processes (13) and (14) satisfy:
CT (5, k) (2(t) = Wi (£)—1-000.
Proof: Apply Theorem 3.10 with:
N(w) = {w'e®™)*: (VP(w),w') =0} NC
where C is the range C(Z) of C. Since w(t) = C(z(t)) the previous lemma 5.3

implies that w(t) € N(w(t)) — w(t). .
The discrete processes corresponding to (13) and (14) are respectively in Z

1

n—H[Mn+1 X 27741_1 — Zn+ (Zn—|—1 — Hpy1 X er—}l—l)] (15)

Zntl — Zn =
where p,,; satisfies:
keSuZHVij(C(?n)) = Mfzﬂzkvpjk(c(zn))

. 2
and in R™

1

n—H[C(Nn+1 x zn_—|1—1) — Wn + (Wn1 — Cpnt1 X 27:41—1)] (16)

u_)n—H - wn =
Corollary 5.6 The discrete processes (15) and (16) satisfy:
C+(j7 k) (Zn) = '(I]%k’+—>t_)ooo a.s.

Proof: (15) and (16) are bounded DSA of (13) and (14) and Properties 1, 2,
and 3 apply. .

Corollary 5.7 If all players follow the above procedure, the empirical distribu-
tion of moves converges to the set of correlated equilibria.
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6 Smooth fictitious play and consistency

We follow the approach of Fudenberg and Levine concerning consistency (1995)
and conditional consistency (1999) and deduce some of their main results (see
Theorems 6.6, 6.12 below) as corollaries of dynamical properties.

Like in sections 4 and 5 we continue to adopt player 1 point of view.

6.1 Consistency

Let
V(y) = maxU(z, y).

The average regret evaluation along h,, € H,, is

e(hn) = €n = V(?n) - lZ:;ZIU('LmaEm)

n

where as usual g, stands for the time average of (/) up to time n. (This
corresponds to the maximal component of the regret vector R(Z,)).

Definition 6.1 (Fudenberg and Levine, 1995) Let n > 0. A strategy o for
player 1 is said n-consistent if for any opponents strategy 7

limsupe, < 7P, as.
n—oo

6.2 Smooth fictitious play
A smooth perturbation of the payoff U is a map
Uf(z,y) =Ul(z,y) +ep(z), 0 < e < g
such that:
(i) p: X — R is a smooth function with ||p|| <1,
(ii) argmax,. xU*(.,y) reduces to one point and defines a smooth map
brf:Y - X
called a smooth best reply function,

(iii) D1U%(br®(y),y).Dbr(y) = 0 (for example D;U®(.,y) is 0 at br®(y). This
occurs in particular if br®(y) is interior).
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A typical example is

p(x) = — Zxk log . (17)

which leads to _
exp(U(i,y)/e)

 Yrerexp(U(k,y)/e)
as shown by Fudenberg and Levine (1995, 1999).
Let

br; (y)

2

Ve(y) = maxU*(z,y) = U (br"(y), y).
Lemma 6.2 (Fudenberg and Levine (1999))
DV*(y)(h) = U(br*(y), h).
Proof: One has
DV*(y) = DiU* (br*(y), y)-Dbre (y) + DoU* (br (1), y)
The first term is zero by condition (iii) above. For the second term one has
DyU*(br"(y), y) = DoU(br*(y), y)
which, by linearity of U(z,.) gives the result. .

Definition 6.3 A smooth fictitious play strategy for player 1 associated to the
smooth best response function br® (in short a SFP(g) strategy) is a strategy o°
such that

Eae,r(irH—l | Fn) = br* ()

for any 7.

There are two classical interpretations of SFP(¢) strategies. One is that player
1 chooses to randomize his moves. Another one called stochastic fictitious play
(Fudenberg and Levine (1993), Benaim and Hirsch (1999)) is that payoffs are
perturbed in each period by random shocks and that player 1 plays the best
reply to the empirical mixed strategy of its opponents. Under mild assumptions
on the distribution of the shocks it was shown by Hofbauer and Sandholm (2002)
(Theorem 2.1) that this can always be seen as a SFP(e) strategy for a suitable

p.

24



6.3 SFP and consistency

The discrete dynamics of averaged moves is

_ _ 1 . _ _ _ 1 _
Tpyl — Tp = n——l-l[znﬂ - xn], Yny1 —Yp = nt1 [£n+1 yn] (19)
Let u, = Ul(in,4,) be the payoff at stage n and @,, be the average payoff up to
stage n so that
1
n+1

Lemma 6.4 Assume that player 1 plays a SFP(g) strategy. Then the process
(T, Un, Un) is a DSA of the differential inclusion

[Unt1 — Tp)- (20)

Upt1 — Up =

weNw)—w (21)
where w = (x,y,u) € X XY xR and
N(z,y,u) = {(br(y), B, U(br*(y), #)) : BEY}.

Proof: To shorten notation we write E(. | F,) for E,e (. | F,,) where 7 is any
opponents strategy. By assumption E(i, 1 | F,,) = br®(7,). Set E(€,11 | Fn) =
Bn € Y. Then, by conditional independance of %,,,; and ¢,,;, one gets that
E(unt1 | Fn) = U(br®(gn), 5n)- Hence E((int1, bnt1, Unt1) | Fn) € N(Zn, Yn, Un)-

Theorem 6.5 The set {(z,y,u) € X XY xR : Ve(y) —u < €} is a global
attracting set for (21). In particular, for any n > 0, there erists & such that
for e < &, limsup, ., V(y(t)) —u(t) < n (i.e. continuous SFP(e) satisfies n-
consistency. )

Proof: Let w®(t) = V¢(y(t)) — u(t). Taking time derivative one obtains, using
Lemma 6.2
wi(t) = DVi(y(?))-y(t) —u()

= U(br'(y(t)), 8(1)) — U(br*(y (), y(t)) — U(br*(y(t)), 8(£)) + u(?)

= u( ) = U(br(y(t)),y())
= —w(t) +ep(bri(y(t))).
Hence
we(t)+w(t) <e
so that w®(t) < e+ Ke™* for some constant K and the result follows. ]
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Theorem 6.6 For any n > 0 there exists € such that for ¢ < & SFP(g) is n-
consistent.

Proof: follows from lemma 6.4, Property 1, Property 2 (i7) and Theorem 6.5.

6.4 Remarks and Generalizations

The definition given here of a SFP(e) strategy can be extended in some inter-
esting directions. Rather than developing a general theory we focus on two
particular examples.

1. Strategies based on pairwise comparison of payoffs: Suppose that
p is given by (17). Then, playing a SFP(e) strategy requires for player 1 the
computation of br®(7,) given by (18) at each stage. In case cardinal of S! is very
large (say 2V with N > 10) this computation is just impossible! An alternative
feasible strategy is the following:

Assume that I is the set of vertices set of a connected symmetric graph. Write
i ~ j when i and j are neigbhours in this graph, and let N(i) = {j € I\{i}: i ~
j}. The strategy is as follows: Let 7 be the action chosen at time n (i.e. i, = 1).
At time n + 1, player 1 picks an action j at random in N (7). He then switches

to j (i.e. i,41 = j) with probability

Rligogn) = min 10 exp (L 00 - UG ) |
and keeps i (i.e 4,11 = 1) with the complementary probability 1 — R(3, j, 7).
Here |N(7)| stands for the cardinal of N (7).

Note that this strategy only involves at each step the computation of the payoffs
difference (U(J,9n) — U(i, ¥n)) . While this strategy is not an SFP(e) strategy,
one still has:

Theorem 6.7 For any n > 0 there exists € such that for ¢ < € the strategy
described above is n-consistent.

Proof: For fixed y € Y, let Q(y) be the Markov transition matrix given by
Qi j,y) = e R0, 4, y) for j € N(i), Q(i, j,y) = 0 for j ¢ N(i) U{i}, and
QUi,4,y)) = 1 — 32, Q,7,y). Then Q(y) is an irreducible Markov matrix
having br®(y) as unique invariant probability: this is easily seen by check-
ing that Q(y) is reversible with respect to br®(y). That is br;(y)Q(i, j,y) =

br}(¥)Q (4 %, y)-
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The discrete time process (19), (20) is not a DSA (as defined here) to (21) be-
cause E(i,11 | Fn) # br*(g,). However, the conditional law of 4,1 given F, is
Q(zn, -, Jn) and using the techniques introduced by Métivier and Priouret (1992)
to deal with Markovian perturbations (see e.g. Duflo 1996, Chapter 3.IV) it can
still be proved that the assumptions of Proposition 1.3 in BHS are fulfilled, from
which it follows that the interpolated affine process associated to (19), (20) is a
perturbed solution (see BHS, for a precise definition) to (21). Hence property
1 applies and the end of the proof is similar to the proof of Theorem 6.6 .

2. Convex sets of actions: Suppose that X and Y are two convex compact
subsets of finite dimensional Euclidean spaces. U is a bounded function with
U(z,.) linear on Y. The discrete dynamics of averaged moves is

1 1

Tnt1 — Tp = 1 [Tni1 — Tnl, Ynt1 — YUn = n——i-l[y"+1 — Y, (22)

with 2,41 = br®(g,). Let u, = U(z,,y,) be the payoff at stage n and @, be
the average payoff up to stage n so that

_ _ 1 _
Up1 — Up = n+1 [un—{—l - un] (23)

Then the results of the previous section 6.3 still hold.

6.5 SFP and conditional consistency

We keep here the framework of Section 4. Given z € Z, recall that we let 2! € X
denote the marginal of z on I. That is

1 1 RN
25 = (2 )ier with z; = E Zig-

LeL

Let z[i] € R be the vector with components z[i], = z;. Note that z[7] belongs
to tY for some 0 <t < 1. A conditional probability on L induced by z given
1 € I satisfies

2= (2 | iier with (2 | i)z} = e = 2[il

Let [0,1].Y ={ty : 0 <t < 1,y € Y}. Extend U to X x ([0,1] x Y) by
U(z,ty) = tU(z,y) and similarly for V. The conditional evaluation function at
z € Z is

ce(z) = Y V(-UG ) =Y V(= |9)=Uliz [ )] =) zV(zl)=U(2).

i€l
el i€l

27



with the convention that 2}V (z | i) = 2;U(i, 2 | %) = 0 when 2 = 0.

Like in Section 5, conditional consistency means consistency with respect to
the conditional distribution given each event of the form “; was played”. In a
discrete framework the conditional evaluation is thus

cen, = ce(Zzy,)

where as usual z, stands for the empirical correlated distribution of moves up
to stage n.

Conditional consistency is defined like consistency but with respect to (ce,).
More precisely:

Definition 6.8 A strategy o for player 1 is said n-conditionally consistent if
for any opponents strategy 7

limsupce, < nP,;a.s.
n—o0
Given a smooth best reply function br® : Y — X, let us introduce a corre-
spondence Br® defined on [0,1] x Y by Br®(ty)= br®(y) for 0 < ¢t < 1 and
Brf(0) = X. For z € Z, let u°(z) C X denote the set of all u € X that are
solution to the equation

> i = (24)
for some vectors family {b'};c; such that b* € Br®(z[i]).

Lemma 6.9 y° is an u.s.c correspondence with compact conver non empty val-
ues.

Proof: For any vectors family {0'};c; with b € X the function p — >, ; p;b*
maps continuously X into itself. It then has fixed points by Brouwer’s fixed
point theorem, showing that uf(z) # 0. Let p,v € pf(z). That is p = Y, ub’
and v = ). v'c¢" with b*,¢" € Br(z[i]). Then for any 0 <¢ <1tpu+ (1 —t)v =
St + (1 — t)y)d" with d' = % By convexity of Br®(z[i]),d" €
Br®(z[i]). Thus tu + (1 — t)v € pf(z) proving convexity of y°(z).Using the fact
that Br® has a closed graph, it is easy to show that u° has a closed graph, from
which it will follow that it is u.s.c with compact values. Details are left to the
reader.

Definition 6.10 A conditional smooth fictitious play strategy for player 1 as-
sociated to the smooth best response function br® (in short a CSFP(¢) strategy)
is a strategy o° such that o°(h,) € p*(z,).
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The random discrete process associated to CSFP(¢) is thus defined by:

1
En—l—l — En = n—H[Z,,H_l —_ En] (25)

where the conditional law of z,,1 = (in11,fn11) given the past up to time n is
a product law o¢(h,,) x 7(h,). The associated differential inclusion is

z€p(z) xY —z. (26)

Extend br® to a map, still denoted br®, on [0,1] X Y by choosing a nonempty
selection of Br® and define

Ve(2[i]) = U(br"(2[i]), 2[i]) — z; p(br® (2[i]))
(so that if z} > 0 V¢(2[1]) = 2} V¢(z | i) and V¢(0) = 0). Let

e () = VGl ~ UCl) = STV ~U )
The evaluation along a solution ¢t — z(t) to (26) is

WEe(t) = ce®(z(t)).

Theorem 6.11 The set {z € Z : ce*(z) < e} is an attracting set for (26)

whose basin is Z. In particular, conditional consistency holds for continuous
CSFP(e).

Proof: We shall compute

)= S VEall(0) - SUGa()
The last term is p
SU(a(t)) = UG (1), B(1) - Ula(1))

by linearity, with 3(t) € Y and p°(t) € pf(z(t)). We now pass to the first term.
First observe that d

Hence z}(t) > 0 implies z; (s) > 0 for all s > ¢. It then exists ; € [0, oc] such
that z!(s) = 0 for s < 7; and z;(s) > 0 for s > 7;. Consequently the map
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t — Ve(z[i](t)) is differentiable everywhere but possibly at t = 7; and is zero
for t < 7. If t > 75, then

%VE(ZM( ) = %UE( r*(2[i] (), 2[i](t)) — e2; (t)p(br* (2[i] (£)))
= U*(br" (2[d](t)), 2[i] (1)) — z; (H)ep(br® (2[i](t)))  (27)

by Lemma 6.2. If now ¢ < 7, both z[i](t) and £V*(z[i](t)) are zero, so that
equality (27) is still valid.
Finally, using dtz,]( ) = p1&;(8)B(t) — 245 (t), we get that

= Z U* (br(2[i] (1)), 45 (1) B(1) — 2[4)(t))

+ (i (1) = zi(8))ep(bre (2[i] (1)) — U (k" (1), B(1)) + Ula(t)

i

for all (but possibly finitely many) ¢ > 0. Replacing gives
We(t) = —We(t) + A(t)

where

A(t) = =U(u (1), 5(2))
+ Z U* (br® (2[]((2)), i (1) 5(2)) + Z p; (t)ep(bre(2[i] (t)))

Thus one obtains:

At) = )+ > ui () [U(br* (2[d) (1)), B(2)) + ep(br® (2[d](1)))].
Now equation (24) and linearity of U(., y) implies
U(p =Y uiOU(br(2[i](1)), 5(2)))-
Thus

—62/@ p(br®(z[i](t)))

so that -
We(t) < =We(t) + ¢
for all (but possibly finitely many) ¢ > 0. Hence
We(t) < e '(W5(0) —¢) +e

for all ¢ > 0. "



Theorem 6.12 For any n > 0 there exists € > 0 such that for e < & a CSFP(¢)
strategy is m-consistent.

Proof: Let £ = L(Zz,) be the limit set of (z,) defined by (25). Since (z,) is a
DSA to (26) and {z € Z : ce?(z) < ¢} is an attracting set for (26) whose basin
is Z (theorem 6.11), it suffices to apply property 2 (7).

31



7 Extensions

We study in this section extensions of the previous dynamics in the case where
the information of player 1 is reduced: either he does not recall his past moves,
or he does not know the other players moves sets, or he is not told their moves.

7.1 Procedure in law

We consider here procedures where player 1 is uninformed of its previous se-
quences of moves, but know only its law (team problem).

The general framework is as follows. A discrete time process is defined
through a recursive equation by:

Wpt1 — Wy = a’n—HV(wm in-i—l’ En—kl) (28)

where (i,41,%,+1) € I X L are the moves? of the players at stage n + 1 and
V:R™ x I x L - R™ is some bounded measurable map.
A typical example is given, in the framework of approachability (see section
3.2), by
V(w,i, ) = —w + Ay (29)

where A; is the vector valued payoff corresponding to (7,¢) and a, = 1/n. In
such case w, = g, is the average payoff.

Assume that player 1 uses a strategy (as defined in section 3.2) of the form

o(hn) = ¥ (wn)

where for each w, ¥(w) is some probability over I. Hence w plays the réle of a
state variable for player 1 and we call such o a 1—strategy. Let Vi, (w) be the
range of V' under o at w, namely the convex hull of

([ Vi ov@w)a e L)
I
Then the associated continuous time process associated to (28) is
w € Vy(w). (30)

We consider now another discrete time process where, after each stage m, player
1 is not informed upon %,, but only upon ¢,,. Define by induction the new input
at stage n 4 1:

Wy — W = G / V (w7, b )b () (d). (31)
I

2For convenience, we keep the notation used for finite games but it is unnecessary to
assume here that the action spaces are finite.
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Remark that the range of V under ¢ (w*) at w* is V,,(w*) so that the continuous
time process associated to (31) is again (30). Explicitely (28) and (31) are DSA
of the same differential inclusion (30).

Definition 7.1 A t-procedure in law is a strategy o of the form o (h,) = ¥ (w})
where for each w, ¥(w) is some probability over I and (w

*
n

) is given by (31).

The key observation is that a procedure in law for player 1 is independent
on the moves of player 1 and only requires the knowledge of the map V and
the observation of the opponents moves. The interesting result is that such
a procedure will in fact induce, under certain assumptions (see hypothesis 7.2
below), in the original discrete process the same asymptotic behavior.

Suppose that player 1 uses a -procedure in law. Then the coupled system
(28, 31) is a DSA to the differential inclusion

(w, w*) € V) (w, w") (32)

where V7 (w, w*) is the convex hull of

([ Vi 0v@) @), [ v ouw)@) ee Ly
I I
We shall assume, from now on, that (32) meets the standing hypothesis 2.1.
We furthermore assume that

Hypothesis 7.2 The map V satisfies one of the two following conditions:

(i) There exists a norm || - || such that w — w + V(w,1,£) is contracting
uniformly in s = (¢, ¢). That is

[lw+V(w, s) = (u+V(u,s)|| < pllw —ul|
for some p < 1.

(ii) V is C' in w and there exists @ > 0 such that all eigenvalues of the
symmetric matrix

oV toyv
a_w(“”s) + a—w(UJ,S)

are bounded by —a.

Remark that hypothesis 7.2 holds trivially for (29).
Under this later hypothesis one has the following result.
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Theorem 7.3 Assume that (w,,, w}) is a bounded sequence. Under a1—procedure

in law the limit sets of (wy,) and (w}) coincide, and this limit set is an ICT set

of the differential inclusion (30). Under a v—strategy the limit set of (wy) is
also an ICT set of the same differential inclusion.

Proof: Let £ be the limit set of (w,,w;). By properties 1 and 2 £ is compact
and invariant. Choose (w,w*) € £ and let t — (w(t), w*(¢)) denote a solution
to (32) that lies in £ (by invariance) with initial condition (w,w*). Let u(t) =
w(t) — w*(t).

Assume condition (i) in hypothesis 7.2. Let Q(t) = ||u(¢)||. Then for all
0<s<1

Q(t +5) = [[u(t) + a(t)s + o(s)[| = [[(1 — s)u(t) + (a(t) +u(?))s + o(s)]|
< (1=9)Q(t) + s|[u(t) +u(®)[| + ofs).

Now u(¢) + u(t) can be written as

w(t) —w'(t) +/ [V(w(t),6,£) = V(w"(2), 4, O] Y (w" (2)) (di)dv (£)

IxXL

for some probability measure v over L. Thus by condition (%)
Qt+s) < (1 —5)Q(t) + 5pQ(t) + o(s).
From which it follows that
Q) < (- 1)QM)
for almost every ¢t. Hence, for all t > 0 :
Q(0) < ¥ VIQ(—t) < V'K

for some constant K. Letting t — +oo shows that Q(0) = 0. That is w = w*.
If one now assume condition (i7). Let || - || denote the Euclidean norm on
R™ and (-, -) the associated scalar product. Then

(V(w,s)—V(w*,s),w—w*)z/O (0, V (w* +u(w—w"),s).(w—w"),w—w")du

< —Slhw -

Therefore



from which it follows (like previously) that Q(0) = 0.
We then have proved that given hypothesis 7.2, (w,) and (w}) have the same
limit set under a ¢—procedure in law . Since (w}) is a DSA to (30), this limit

set is ICT for (30) by property 1. The same property holds for (w,) under a
Y—strategy.

]
Remark Let R denote the set of chain-recurrent points for (28). Hypothesis
7.2 can be weakened to the assumption that conditions (i) or (i7) are satisfied
for V restricted to R x I x L.

The previous result applies to the framework of Sections 4 and 5 and show
that the discrete regret dynamics will have the same properties when based on
the (conditional) expected stage regret E,R(s) or E,C(s).

7.2 Best prediction algorithm

Consider a situation where at each stage n an unknown vector U, (€ [—1,+1])
is selected and a player chooses a component 7, € I. Let w, = U». Assume
that U, is announced after stage n.

Consistency is defined trough the evaluation vector V;, with V! = Ul —@,,i € I,
where, as usual, U, is the average vector and @, the average realization.
Conditional consistency is defined through the evaluation matrix W,, with Wi* =
(1/7) (X iy U — win)-

This formulation is related to on line algorithms, see Foster and Vohra (1999)
for a general presentation. In the previous framework the vector U, is U(.,4,)
where ¢, is the choice of players other than 1 at stage n. The claim is that
all previous results go through (V;, or W,, converges to the negative orthant)
when dealing with the dynamics expressed on the payoffs space. This means
that player 1 does not need to know the payoff matrix, nor the set of moves of
the other players; only a compact range for the payoffs is requested. A sketch
of proofs is as follow.

7.2.1 Approachability: consistency

We consider the dynamics of section 4. The regret vector R* if 7 is played, is
R*(i) = {U? — U'}er. Lemma 4.6 is now for § € A(I)

(0,R*(F)) =0
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since R*(#), the expectation of R* under @ is

R*(0) =) 0GR (i) = {U7 — (0,U)};

i€l

hence the properties of the P-regret based dynamics on the payoff space R™
still hold (Theorem 4.7 and Corollary 4.8).

7.2.2 Approachability: conditional consistency

The content of Section 5 extends as well. The I x I regret matrix is defined, at
stage n, given the move 7,, by all lines being 0 except line 7, which is the vector
{UJ — U:};cs. Then the analysis is identical and the convergence of the regret
to the negative orthant holds for P-conditional regret dynamics as in Theorem
5.5 and Corollary 5.6.

7.2.3 SFP: consistency

In the framework of Section 6, the only hypothesis used on the set Y was that
it was convex compact, hence one can take L = [—1,+1]f and U(x, /) = (z, £).
Then all computations go through.

7.2.4 SFP: conditional consistency

For the analog of Section 6.5 let us define the I x I evaluation matrix M, is
at stage n and given the move %,, by all lines equal to 0 except line 7, being
the vector U,,. Its average at stage n is M,. u, is an invariant measure for the
Markov matrix defined by the family BR¢(M}), where (M!) denotes the i-line

of (M,).

7.3 Partial information

We consider here the framework of section 7.2 but where only w,, is observed by
player 1, not the vector U,. In a game theoretical framework, this means that
the move of the opponent at stage n is not observed by player 1 but only the
corresponding payoff U (i, £,) is known.

This problem has been studied in Auer and Alii (1995), Fudenberg and Levine
(1999), Hart and Mas-Colell (2001b) and in a game theoretical framework by
Banos (1968) and Megiddo (1980) (note that working in the framework of 7.2 is
more demanding than finding an optimal strategy in a game, since the payoffs
can actually vary stage after stage).
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needed?

The basic idea is to generate, from the actual history of payoffs and moves
{~wn,in} and the knowledge of the strategy o a sequence of pseudo vectors
U, € R® to which the previous procedures applies.

7.3.1 Consistency
We follow Auer and Alii (1995) and define U, by

where as usual i, is the component chosen at stage n and o7, stands for o (h,—1)(%).-
The associated pseudo regret vector is {R!, = U! — wy }icr- Notice that

E(Rmhn—l) = U'Ii — (O, Un)

hence, in particular 3
<Gna E(Rn|hn71)> =0.

To keep (7” bounded one defines first 7, adapted to the vector [7” as in Section
7.2, namely proportional to VP (-1 S R,), see section 4 then ¢ is defined

ol =01-81+§/K

for 6 > 0 small enough and K = #1.
The discrete dynamics is thus

= = 1 -~ =
R, — Rn+1 = E(Rn—l—l - Rn)

The corresponding dynamics in continuous time satisfies:

with a(t) = Uy — (p(t), U;) for some measurable process U; with values in [—1,1]
and p(t) = (1 — 9)q(t) + §/K with

VP(w(t)) = [[VP(w(?))lq(t)-
Define the condition
(VP(w),w) > B||VP(w)||[|w"]| (33)

on RS \ D for some positive constant B (satisfied for example by P(w) =

22 (wi)?).
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Proposition 7.4 Assume that the potential satisfies in addition (83). Then
consistency holds for the continuous process R; and both discrete processes Ry,
and R,.

Proof: One has

S Pw) = (VP@(), ()
= (VP@(®), a(t) ~ w(t)
Now
(VP@(t), o) = IVP@()ia), of)

0
TP~ Tk W

= [[VP((®))IK

IA

IV PO 5k

for some constant R since (p(t),«(t)) = 0 and the range of « is bounded. It
follows, using (33), that given ¢ > 0, § > 0 small enough and ||w*(¢)|| > ¢
implies

d 5 .
o Pw®) < IIVP(w(t))II(mR—LBIIIIw )

< —IVP(w(t))l|Le/2.
Now (VP(w),w) > 0 for w ¢ D implies |VP(w)|| > a > 0 on ||w™|| > e.
Let 8 > 0, A = {P < p} and choose ¢ > 0 such that ||w"|| < ¢ is included
A. Then the complement of A is an attracting set and consistency holds for
the process R;, hence as in section 4, for the discrete time process R,. The
result concerning the actual process R, with RF = U* —w,, finally follows from

another application of Theorem 7.3 since both processes have same conditional
expectation. "

7.3.2 Conditional consistency

A similar analysis holds in this framework. The pseudo regret matrix is now
defined by

o Z.
Cn(i, J) = ;Uél{j:in} — Up iz}

hence ~ o '
E(Cu(i,9)|hn-1) = 0, (U, — Up)
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and this relation allows to invoke ultimately Theorem 7.3, hence to work with
the pseudo process. The construction is similar to subsection 5.2, in particular
equation (A6). u(w) is a solution of

Zu w) Vi P( ZWP

and player 1 uses a perturbation v(t) = (1 — §)u(w(t)) + du where u is uniform.
Then the analysis is as above and leads to

Proposition 7.5 Assume that the potential satisfies in addition (33). Then
consistency holds for the continuous process C; and both discrete processes C,,
and C,,.
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8 A learning example

We consider here a process analyzed by Benaim and Ben Arous (2003). Let
S=H0,...,K},

K
X =A(S)={z e REt 1 3 ZO,Zxk =1}
k=0

be the K dimensional simplex, and f = {fx},k € S a family of bounded real
valued functions on X. Suppose that a “player” has to choose an infinite se-
quence Ty, s, ... € S (identified with the extreme points of X') and is rewarded
at time n + 1 by

Ynt+1 = fmn+1 (fn)

where .
1<m<n
Let ]
Yn = — Z Ym
n 1<m<n

denote the average payoff at time n. The goal of the player is thus to maximize
its long term average payoff lim inf ¢,,. In order to analyze this system note that
the average discrete process satisfies

(xn+1 - jn),

(f:vn+1 (En) - gn)

jn—kl —ZTnp =

—3 |~

Yntl1 — Yn = —
n

Therefore, it is easily seen to be a DSA of the following differential inclusion
(Xa Y) € _(X7 Y) + N(X7 Y) (34)

where (z,y) € X X [a_,ay], a_ = infgx fi(z), 04 = supg x fe(z) and N is
defined as
N(z,y) ={(0,0, f(x))) : 0 € X}

Definition 8.1 f has a gradient structure if, letting
K K
gk(xla"'axK) = f0(1 _Zxkaxla"'axK) _fk:(l _Zxkaxla"',xl()
k=1 k=1
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there exists a C! function V, defined in a neighborhood of
Z={2eRF z={z},k=1,..., K, with (2¢,2) € X for some z, € [0,1]},

satisfying
VV(z) = g(2).

Theorem 8.2 Assume that f has a gradient structure. Then every compact
invariant set of (34) meets the graph

S=A{(z,y) € X x[a_,ay] 1y = (f(x), 2)}.

Proof: We follow the computation in Benaim and Ben Arous (2003). Note
that (34) can be rewritten as

T+zeX

Hence

A R
[ Gw).a) - uda
| )it

t
1
t
+

but z(u) € X implies

(fe(w) i) = 3 fele(u)isv)
= 3 [~ fola(w) + fula(u))in(w)
= Y ) a() = — SV (o)

where z(u) € R™ is defined by zx(u) = zx(u). So that

:/ T ( ((w), 2(w)) — y(u))du =

t

(s +1) +V(z(s +1) — (y(s) + V(2(5))
t

and the right hand term goes to zero uniformly (in s, y, z) as t—o0. Let now £ be
a compact invariant set. Replacing £ by one of its connected components we can
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always assume that £ is connected. Suppose that £LNS = 0. Then ({f(z),z)—y)
has constant sign on £ (say > 0) and, by compactness, is bounded below by a
positive number §. Thus for any trajectory ¢ — (x(t),y(t)) contained in £

[ e, ) - y)au = 5

t
A contradiction. "

Corollary 8.3 The limit set of {(Zn, Jn)n} meets S. In particular

lim inf g,, < sup(z, f(z)).
zeX

If, furthermore (x,) is such that lim, o T, = x* then

lim g, = sup(z*, f(z")).

n—oo zeX
Proof : One uses the fact that the discrete process is a DSA hence the limit set
is invariant, being ICT by Property 2. The second part of the corollary follows
from the proof part (a) of Theorem 4 in Benaim and Ben Arous (2003).

9 Concluding remarks

The main purpose of the paper was to show that stochastic approximation tools
were extremely effective for analyzing several game dynamics and that the use of
differential inclusions was needed. Note that certain discrete dynamics cannot
enter in this framework: one example is the procedure of Hart and Mas-Colell
(2001a) which depends both on the average regret and on the last move. The
corresponding continuous process generates in fact a differential equation of
order 2. Moreover, as shown in Hart and Mas-Colell (2003) this continuous
process has regularity properties not shared by the discrete counterpart.
Among the open problems not touched upon in the present work are the ques-
tions related to the speed of convergence and to the convergence to a subset of
the approachable set.
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