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Résumé: L'article propose une théorie de la compétition électorale ambigüe. Une plate-
forme est ambigüe si les votants peuvent l'interpréter de différentes manières. 
Une telle plate-forme met plus ou moins de poids sur sur les différentes 
options possibles de sorte qu'elle est plus ou moins facilement interprétée 
comme une politique ou une autre. On fait l'hypothèse que les partis politiques 
peuvent contrôler exactement leurs plate-formes mais ne peuvent pas cibler 
celles-ci vers les votants individuellement. Chaque électeur vote d'après son 
interprétation des plate-formes des partis mais est averse à l'ambiguité. On 
montre que ce jeu de compétition électorale n'a pas d'équilibre de Nash. 
Cependant ses stratégies max-min sont les stratégies optimales du jeu 
Downsien en stratégies mixtes. De plus, si les partis se comportent de manière 
suffisament prudente par rapport à l'aversion pour l'ambiguité des électeurs, 
ces mêmes stratégies forment un équilibre.  

 
Abstract: The paper proposes a theory of ambiguous electoral competition. A platform 

is ambigous if voters may interpret it as different policy proposals. An 
ambiguous platform puts more or less emphasis on alternative policies so that 
it is more or less easily interpreted as one policy or the other. I suppose that a 
party can monitor exactly this platform design but cannot target its 
communications to individuals one by one. Each individual votes according to 
her understanding of the parties' platforms but dislikes ambiguity. It is shown 
that this electoral competition has no Nash equilibrium. Nevertheless its max-
min strategies are the optimal strategies of the Downsian game in mixed 
strategies. Furthermore, if parties behave prudently enough and if the voters 
aversion to ambiguity is small enough, these strategies do form an 
equilibrium. 
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1 Introduction

1.1 Position of the problem

How to model ambiguity in electoral competition is a challenge for formal
political science. One one hand, the fact that political speeches are am-
biguous seems obvious. On the other hand, it seems to be the case that
voters dislike parties’ ambiguity. Then the usual assumption that political
speeches are designed to please the electorate should lead politicians to make
non-ambiguous statements. As they all say: “Let me be very clear...”

This paper offers a model in which parties are ambiguous at equilib-
rium, the essential reason being that they fear to loose if they were not.
What is meant by “ambiguity” is that an ambiguous electoral platform can
be interpreted in various ways as a possible policy by otherwise identical
individuals. On the contrary, a non ambiguous platform is such that all
individuals understand it in the same way. Formally, an ambiguous politi-
cal platform is defined as a probability distribution over the set of possible
policies. Consequently, the electoral competition that I study is technically
related to the usual mixed extension of the standard Downsian game played
in pure strategies. Indeed this paper can be seen as a justification of the
mixed equilibrium of the plurality game as describing classical two-party
Downsian competition.

It is a well-known property that electoral competition games played in
mixed strategies have equilibria even in the absence of a Condorcet win-
ner. Consideration of these equilibria is usually criticized on the basis that
parties “do not toss coins”. While it is certainly true that parties do not
chose at random pure strategies, this critique is misplaced since it is only
a critique of one possible interpretation of the linear extension of the pure
strategy game, and it is indeed possible to find other interpretations of the
same mathematical object, interpretations which might be immune to that
particular critique. I propose such a model, in which parties toss no coin,
and whose unique equilibrium can nevertheless be computed by solving the
mixed-strategy plurality game. The main ingredients of the model are the
following:

Voter behavior. A voter chooses which party to vote for on the basis of
(i) what she understands to be the parties’ policies and (ii) the degree of
ambiguity of the platforms. In particular, voters dislike ambiguity. The con-
sequence is that, in the absence of a Condorcet-winner policy, the Downsian
game has no Nash equilibrium.

Party behavior. Parties behave “prudently”; electoral competition is a
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two-player, simultaneous move, zero-sum game. I make the hypothesis that
a party maximizes a weighted sum of (i) its expected vote share and (ii) its
minimum expected vote share. This behavioral assumption reflects a kind
of risk aversion in a game situation. I show that the Downsian game has a
prudent equilibrium.

This introduction discusses informally these points and makes the con-
nection with the literature.

1.2 Modeling ambiguity.

The fact that politicians talks are ambiguous is well known and documented
(Downs, 1957 [13]; Campbell, 1983 [10]). But even if political rhetoric and
the cognitive determinant of persuasion are analyzed in details, few models
are available that help understand the role of ambiguity within democratic
political institutions1. The ambiguity of political discourse is certainly a
complex phenomenon, which should be considered at both levels of the
speaker and the listener (the “sender” and the “receiver”). For instance,
even after a referendum, a situation in which at least the question raised
is clear, one can wonder whether voters are able to explain or justify their
votes2.

This paper concentrates on ambiguity from the point of view of the
sender (the political party). I will suppose that as soon as the message sent
is clear the receiver (the voter) understands it clearly. The origin of ambi-
guity is therefore the political talk. As to the politician, ambiguity can be
intentional or unintentional. Unintentional ambiguity arises from slips of the
tongue, gestures or other kinds of unconscious behavioral signaling. More
importantly, unintentional ambiguity is generated for a party by coordi-
nation problems within the party, when different speakers speak differently,
and by the fact that political parties most often do not communicate directly
with the electors: an important part of political information is mediated by
journalists, if not hearsay or rumor. All these aspects are neglected here
and the paper concentrates on strategic ambiguity.

Political communication is mass communication. If a politician was able
to design a different talk for each elector, maybe each of these talks would
be very clear. Actually, politicians can easily give way to the temptation
of making different promises to different people. Here is for instance how

1Seminal papers are Shepsle, 1972 [31] and Page, 1976 [28].
2Blais, Martin and Nadeau, 1998 [7], after the 1995 referendum on Québec’s sovereignty,

allow for some optimism as to the voters’ ability to justify their votes in a consistent way,
once they are asked open questions and can answer in their own words.
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Lionel Jospin, the french prime minister and future socialist candidate for
presidency, explained himself on that point in front of the militants of his
party:

“Today I talked as a militant, faithful to the militant that I
am. Under other circumstances, I will not have a different tough,
I will not be moved by other values, but I will adopt a different
tone, that will allow to bring our message to the French in their
diversity.”3

An ambiguous electoral platform may be understood differently by in-
dividuals, and politicians would like to target their messages at different
electors. For practical reasons, it is impossible to perfectly realize this tar-
geting. From the normative point of view it is interesting to consider that
a party can not at all target its communication at different voters. This
simply corresponds to an hypothesis of equal information of the electors as
to the party’s platform. The present paper maintains this hypothesis, and
excludes targeting.

One is consequently led to the following idea, which explains the model
of political ambiguity to be used here. Consider (for instance) two policy
positions for a party, say x and y. The party can choose to express the
non ambiguous position x or the non ambiguous position y. It may also talk
in such a way that some voters will understand that the proposal is x and
some will understand y; but the party cannot decide of which voter will
understand x and which voter will understand y.

This is the basic idea in our model of ambiguity. An ambiguous platform
is a probability distribution p over the set of policy positions such that
for position x, p(x) is the proportion of the electorate that understands x
from p. From the party’s point of view, not being able to target voter i
means that p(x) is the probability that voter i understand x from p, and
this probability does not depends upon i’s preference. In this paper it will
be further assumed that the number of (pure) policy positions is finite,
that a party can chose any probability distribution over the set of policy
positions, that there are two parties, and that both parties have the same
set of available policy positions.

3That was before the official annoncement that Jospin was candidate. “Aujourd’hui,
j’ai parlé en militant, fidèle au militant que je suis. Dans d’autres conditions, je n’aurai
pas une pensée différente, je ne serai pas animé par d’autres valeurs, mais j’adopterai une
tonalité qui permettra de conduire notre message vers les Français dans leur diversité.”
Congrès Extraordinaire du Parti Socialiste, Paris, February 24, 2002.
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1.3 Voters

Voters dislike ambiguity. This sounds true, but it is not clear at all why they
do so. In the present paper, the way I model voters disliking ambiguity is
rather crude. I suppose that the ambiguity of a platform is measured by
some exogenously given “ambiguity measure”. This measure is provided by
some function qualitatively similar to the entropy of the platform (the set of
alternatives is finite, in other contexts this measure could be the variance).
Then, with some probability that is proportional to the ambiguity of the
party’s platform, a voter infers from listening to the party’s platform that
“this party is fuzzy”, and with the complement probability, the voter infers
a definite policy. To keep things simple, I assume that the conclusion “this
party is fuzzy” is the worst possible one: It will be said that the voter rejects
the party, and she will not vote for such a party.4.

The coefficient of proportionality between the ambiguity measure and
the probability of rejection is a parameter of the model that measures the
voter’s aversion to ambiguity. It is assumed that this coefficient is the same
for all voters.

1.4 Parties

The objective of a party is to maximize its expected plurality5. There are
two parties and the electoral competition is constant-sum. In the case where
the voters’ preference profile has a Condorcet winner policy, the electoral
competition game between two parties has an equilibrium. In that equilib-
rium parties use non-ambiguous platforms. This classical result will be kept
in our setting.

Consider now the case where the preference profile shows no Condorcet
winner policy. If the voters are not adverse to ambiguity then the game has
an equilibrium, and the equilibrium strategy is ambiguous (the equilibrum
platform is computed by solving the plurality game in mixed strategies). The
problem is that as soon as the voters’ aversion to ambiguity is not exactly
zero, this property is lost and the game has no equilibrium (Proposition 1).

The reason for that absence of equilibrium must be traced back to the
fact that in a mixed-strategy equilibrium all pure strategies that are played

4Exept of course if this voter has also inferred that the other party is ambiguous, in
which case I suppose that the she votes at random.

5As noticed in Laslier, 2000 [18], when p(x) is not the probability that the whole
electorate understands x from p but the proportion of voters that do so, and if the number
of voters is large, maximizing the plurality is equivalent to maximizing the probability of
winning.
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with some probability yield the same payoff. Here, the voters’ aversion
to ambiguity lowers the party’s payoff for ambiguous platforms. The pay-
off function becomes convex rather than linear as it would be in a mixed-
strategy game, so that equilibrium is lost.

The question is thus to predict the behavior of parties playing a constant-
sum game that has no equilibrium. To do so we rely on a concept of prudent
behavior. This concept is valuable for behavioral game theory independently
of the main subject matter of this paper, therefore the concept is developed
with some details in an autonomous appendix. Recall that according to
maximin behavior, the agent chooses the action that performs the best in
the worst situation. This is always possible and, in a constant-sum two-
player game, would be reasonable if the agent was to play first. According
to best response behavior, the agent is supposed to choose the action that
performs the best knowing the other player’s action, but this is of course not
always possible. I simply suppose that a player (a party) is endowed with a
prudence parameter β, which weights in the player’s objective the true utility
level (which depends on the opponent’s action) and the minimum utility
(which does not). When β goes from 0 to 1, the agent’s behavior goes from
best response to maximin. The game in which players’ objective is described
by such a modified utility function is called the prudently modified game.
A β-prudent equilibrium is just a Nash equilibrium of the corresponding
prudently modified game.

Prudent behavior is in line with observations in Experimental Game The-
ory. Up to my knowledge the corresponding equilibrium notion developped
in the present paper has not been mentioned explicitly in the literature, al-
though it may sound familiar to scholars of zero-sum games. When it exists,
prudent equilibrium enjoys very strong theoretical properties, similar both
to strict Nash equilibrium for general games and to min-max equilibrium
in zero-sum games. These properties are mentioned in the appendix. The
typical example of such a situation is a zero-sum game with a unique and
pure equilibrium.

The main result of the present paper is that the electoral competition
has a prudent equilibrium even when no Condorcet winner policy exists, as
soon as the ratio between the ambiguity aversion of the voters and the pru-
dence of the parties is small enough (Theorem 4). Under that hypothesis,
the outcome of two-party competition can thus be predicted. The predic-
tion is that, in the absence of a Condorcet winner policy, parties chose to
be ambiguous. Moreover, the equilibrium platform is the same for both
parties and is simply obtained by solving the plurality game in mixed strat-
egy. A basic example is provided in which computations can be performed
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explicitely (Proposition 8 in appendix B).

1.5 Related literature

Models of ambiguity in Politics should be placed within the literature on
information transmission by the electoral process (see the survey Calvert,
1986 [9]). Under incomplete information, parties’ proposals may at equilib-
rium look like ambiguous to voters, inasmuch the voters cannot infer from
the platforms all what they would like to infer. The literature on ambiguity
properly speaking tries to understand why and how incomplete information
of the voters can arise for endogeneous strategic reasons even in a world of
complete information.

The first, and certainly one natural way to model ambiguous policy pro-
posal is to say that an “ambiguous” position is the announcement that the
actual policy is to be chosen at random according to some probability dis-
tribution over the set of possible policies. That is proposing lotteries. Then
one must endow the voters with preferences over lotteries. (Fishburn, 1972
[15]) and the simple way to do so is to suppose standard von Neuman and
Morgenstein (vNM) utility functions on the side of the voters. It was early
recognized (Zeckhauser, 1969 [32]) that this approach is bound to produce
preference profiles with no Condorcet winner or, equivalently, models of
electoral competition with no equilibrium. The reason is the following.

The set of lotteries ∆A over a set A of alternatives is a simplex; if A
has k elements, then ∆A is a compact subset of IRk of interior dimension
k − 1. A vNM utility function is a linear numerical function defined on
∆A: indifference curves are hyperplanes. Voting over lotteries with vNM
preferences is a special kind of “spatial voting”. Conversely, any linear
function on ∆A is a vNM function on A. Therefore the requirement that
individual preferences over lotteries satisfy the vNM axioms does not restrict
further the set of admissible profiles on A. The “linear preferences” condition
is the only one to add to the condition that the set of (now extended)
alternatives is a simplex.

But we have learned from the study of spatial voting6 that majority
voting in such an environment has in general no equilibrium, except with
a single dimension. To obtain equilibrium in this framework, one must
impose assumptions that are strong enough to restore equilibrium in (k−1)-
dimension spatial voting with linear preferences.

Most authors use a one-dimensional framework and add various con-
6See the literature on “chaos” that follows McKelvey, 1976 [22].
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sideration to obtain ambiguity at equilibrium. In Alesina and Cukierman,
1990 [1], candidates have their own ideal points and prefer not to commit
exactly before the election. Meirowitz, 2000 [24], argues that candidates dur-
ing the US primary elections may chose to remain ambiguous because they
will be better informed at the moment of the general election. In Aragonès
and Neeman, 2000 [2], voters are expected utility maximizers (they do not
particularly like or dislike ambiguity), and the ambiguity level is a direct
argument of the candidate utility function, not only a candidate wants to
be elected but he wants to be elected on an ambiguous platform.

Another possibility that can work even without single-peaked and one-
dimensional preferences is to restrict the set of alternatives that are available
as possible platforms to a party. For instance one may explore the hypothesis
that all voters will anyway believe that there is a least a probability 1/2 that
a party will implement a given policy. (Reasons for that might be related to
the party’s past record.) If the two sets of possible policies for the two parties
are disjoint, then instability can disappear. Aragonès and Postlewaite, 1999
[4], provide such an example, with 3 policies and 6 voters and such that
one alternative is a Condorcet winner while not being the first choice of a
majority of voters. Then ambiguity can persist at equilibrium.

The model proposed in the present paper does not restrict parties’ strat-
egy sets and it imposes no structure on the set of alternatives, except that
the results are only demonstrated when this set is finite. It includes “voting
over lotteries” as a special case, or more exactly discretized version of it. I
suppose that similar results can be obtained in the infinite case (for instance
in spatial voting), but this raises the technical difficulties associated with the
study of games in which strategies are probability distributions over infinite
sets.

Because it offers a justification for solving electoral competition plural-
ity games in mixed strategies, the present paper must be also be related
to the literature that uses mixed strategies in this context. The optimal
strategies obtained at equilibrium are non degenerated in general, so they
do not provide single policy predictions. Nevertheless, the support of the
optimal strategies (the “Essential set”) is a refinement of most of the usual
majoritarian social choice correspondences such as the Top Cycle, which
corresponds to iterated winning responses, or the Uncovered set, which cor-
responds to undominated strategies (see McKelvey, 1986 [23], Dutta and
Laslier, 1999 [14], Banks, Duggan and Le Breton, 2002 [6]).

On economic domains, it can provide rather sharp predictions, con-
trasting with the common wisdom that two-party pure competition is un-
predictable on more than one dimension. For instance in a model of voting
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over a taxation scheme, De Donder, 1998 [11, 12], computes that the Essen-
tial set represents about 1% of the set of alternatives while the Top cycle
represents 63%. In the pure redistribution (“Divide a dollar”) setting it
predicts that no voter will be promised more than twice the average share
(Myerson, 1993 [25], Laslier and Picard, 2002 [20]) and it is used for tackling
various political questions such as the US presidential campaigning system
(see Brams and Davis 1974 [8] and the literature that followed), the provision
of public goods (Persson and Tabellini, 2000 [30], Lizzeri and Persico, 2001
[21]), the treatment of minorities (Laslier, 2002 [19]) or campaign spend-
ings regulations (Persico and Sahuguet, 2002 [29]). It can be extended to
multi-party competition (Laffond, Laslier and Le Breton, 2000 [17]) and to
dissymmetric two-party competition (Aragones and Palfrey, 2002 [3]).

2 The model

2.1 Non-ambiguous platforms

We consider a finite set X of possible policy positions for parties. Elements
of X are object of preferences for the individuals; each individual i ∈ I
is endowed with a preference relation Ri over the set X. Following the
Social Choice tradition, a “policy position” is a complete description of
all relevant characteristics, for the voters to express informed preferences.
Notice that the setting does not exclude parties proposing lotteries. There
is no conceptual problem in considering that a particular policy position
contains a statement like “The tax rate to be implemented will 5 or 10
percent, this will be decided after the election by tossing a coin”. The only
requirement is the existence of individual preference relations.

Since elements of X are object of preferences, individuals can compare
parties according to their positions: that is the benchmark model of electoral
competition. With two parties, 1 and 2, if 1 adopts the position x ∈ X and
2 adopts the position y ∈ X, individual i votes for party 1 if she prefers x
to y. The net plurality in favor of x against y is the number:

g(x, y) = # {i ∈ I : xPiy}−# {i ∈ I : yPix} .

From this definition, g(y, x)+ g(x, y) = 0, so that g is the payoff function of
a two-player, symmetric, zero-sum game

hg,−g,X,Xi
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which we call the basic plurality game in pure strategies. As is well-
known, position x is an optimal strategy for that symmetric zero-sum game
if and only if x is a Condorcet winner policy.

2.2 Ambiguous platforms

I define ambiguity as the fact that two individuals may interpret differently
the same policy platform. A political platform is a mix of different policy
positions. Formally this is simply a probability distribution over the set X.
We denote by p and q the two parties’ platforms:

p, q ∈ ∆X .

Clear-cut policy positions are degenerated platforms, which put probability
one on an element x ∈ X, they will simply be denoted as elements of X:
p ≡ x. We will suppose that ambiguity is measured by some (exogenous)
ambiguity function:

a :

½
∆X → IR+
p 7→ a(p)

which satisfy the two properties:

• a(x) = 0 for all x ∈ X
• a is strictly concave.

A standard example of such a function is the non-weighted “entropy”:

e(p) = −
X
x∈X

p(x) log p(x). (1)

According to this measure, the most ambiguous platform is the uniform one,
which puts the same weight on every policy.

2.3 Voters’ behavior

If p(x) = 1, a(p) = 0 and the party’s platform is clear; all voters understand
that the party is proposing policy x. If a(p) > 0, then p is positive on several
alternative positions x, x0,... I make the following assumption: some voters
will understand that the party is proposing policy x, some will understand
x0,... and some will just conclude that “This party’s platform is fuzzy”. I
assume that, when she has to decide which party to vote for, an individual
always prefers a party who — according to her understanding — has proposed
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something, rather than a party whose platform she thinks is fuzzy. Choosing
non-pure platforms is therefore costly for a party in terms of expected votes;
this is how voters’ aversion to ambiguity is incorporated in the party’s payoff
functions.

More precisely, I simply suppose that the number of voters who conclude
from p that “p is fuzzy” is proportional to p’s ambiguity. There is a positive
number α1 (for party 1) such that the proportion of individuals that conclude
from party 1 proposing p that “p is fuzzy” and thus reject 1 is:

a1(p) = α1a(p).

The proportion of individuals that understand x from p being then:

(1− a1(p)) p(x).

The same thing holds for party 2, with a parameter α2. To be com-
pletely precise and to maintain a tractable model, I also suppose that these
proportions of individuals are independent from one party to another, and
independent from individual preferences. Consider, for instance, that subset
of the population with a given preference R0. Among these individuals, a
proportion a1(p)a2(q) infers that both platforms are fuzzy. For x ∈ X, a
proportion (1− a1(p)) p(x)a2(q) thinks that platform 1 means x and plat-
form 2 is fuzzy, and for y ∈ X, a proportion (1− a1(p)) (1− a2(q)) p(x)q(y)
thinks that platform 1 means x and platform 2 means y (if x is preferred
to y according to R0, these individuals will vote for party 1). For these
assumptions to make sense, it is needed that the population I is large, and
then there is no problem in obtaining them as the outcome of a simple
probabilistic model (see Laslier, 2000 [18]).

2.4 The Ambiguous Plurality Game

Under the previous assumptions, the net plurality in favor of party 1 against
party 2 is:

u(p, q) = (1− a1(p)) (1− a2(q)) g(p, q)
+ (1− a1(p)) a2(q) |I|
−a1(p) (1− a2(q)) |I|

where |I| is the total number of individuals and g(p, q) denotes the ex-
pectation of g(x, y) when x, y ∈ X are independently chosen according to
p, q ∈ ∆X :

g(p, q) =
X
x∈X

X
y∈X

g(x, y)q(y)p(x).
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The function g is nothing but the payoff function of the basic plurality game
in mixed strategies:

hg,−g,∆X ,∆Xi
In this game, the objective of a party is the expected number of votes this
party gets.

To save on notation, one can count plurality in proportion of the popu-
lation and thus let |I| = 1. Rewriting, it comes:

u(p, q) = (1− a1(p)) (1− a2(q)) g(p, q)− (a1(p)− a2(q)) (2)

The function u is the payoff function of a zero-sum game:

hu,−u,∆X ,∆Xi
which we call the ambiguous plurality game. Compared with the basic
plurality game in mixed strategies it should be noticed first, that this game
is no longer symmetric, unless α1 = α2, and second (and more importantly),
that the von Neumann theorem does not apply to this game, and indeed the
game does not always have a solution. The following proposition precisely
states when the ambiguous plurality game has a solution.

Proposition 1 (Non robustness of mixed Nash equilibria.) For any α1,α2 >
0, a pair of strategies (p, q) ∈ ∆X ×∆X is a solution for the ambiguous plu-
rality game u if and only if p and q are pure, say p ≡ x and q ≡ y for some
x, y ∈ X, and x and y are optimal strategies in the basic plurality game g.
Thus if the basic plurality game g has no pure solution then the ambiguous
plurality game u has no solution.

Proof. Let x, y ∈ X be optimal strategies for g. For any p ∈ ∆X :
u(p, y) = (1− a1(p)) g(p, y)− a1(p)

≤ g(p, y)
≤ g(x, y).

Likewise for all q:
g(x, y) ≤ u(x, q)

and it follows that (x, y) is a solution for u.
Conversely let (p, q) be a solution for u. From the linearity of the payoff

function g with respect to p, the first player has, according to g, a pure best
response to q. Let x be such a best response:

g(x, q) = g(p, q) = max
p0∈∆(x)

g(p0q) = 0.
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If a1(p) 6= 0, this implies that u(x, q) > u(p, q); since p is a best response
to q according to u, it must be the case that p is pure. We can write p ≡ x
and (for the same reason) q ≡ y. Since pure strategies give the same payoff
in both games, it must then be the case that (x, y) is a solution for g. In the
symmetric game g, this means that both x and y are optimal strategies.

This proposition enlightens a specific feature of mixed strategy equilibria:
these equilibria are unstable with respect to voters’ aversion to ambiguity.
As soon as the parameters α1and α2 that describe this aversion in our model,
are not set to 0 exactly, existence of equilibrium is lost. However it is still
the case that, provided that the parameters α1, α2 are small enough, an
optimal (mixed) strategy for g is a maximin strategy for u:

Proposition 2 Let p∗ be an optimal strategy for g. If α1 is small enough
then:

max
p
min
q
u(p, q) = min

q
u(p∗, q).

Proof. Because g-best responses can be pure, it is easy to see that:

min
q
u(p, q) = (1− α1a(p)) gmin(p)− α1a(p)

min
q
u(p∗, q) = −α1a(p∗).

Since α1a(p)gmin(p) is negative, it follows that:

min
q
u(p, q)−min

q
u(p∗, q) ≤ gmin(p)− α1 [a(p)− a(p∗)] .

The function p 7→ gmin(p) is linear and negative on each of the sets BR−1(y) =
{p ∈ ∆X : gmin(p) = g(p, y)}, and the function p 7→ a(p) − a(p∗) is con-
cave. At p = p∗, gmin(p) = 0 = α1 [a(p)− a(p∗)]. Thus for α1 small enough
gmin(p) ≤ α1 [a(p)− a(p∗)]. There is a finite number of these sets BR−1(y)
(because X is supposed to be finite) and they cover ∆X . Therefore, if α1 is
small enough, gmin(p) ≤ α1 [a(p)− a(p∗)] for all p ∈ ∆X . The result follows.

Of course, one cannot deduce from this remark that the pair (p∗, p∗) of
minimax strategies is a saddle point since, as soon as α1 6= 0 and p is not
pure, minq u(p∗, q) = −α1a(p∗) < 0 = u(p∗, p∗).
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2.5 Parties behavior

We are left with a zero-sum game which has no equilibrium. In order to
predict the outcome of that game, it is supposed that parties behavior is
prudent. Each player k = 1, 2 is characterized by a “prudence” parameter
βk ∈ [0, 1] and maximizes a convex combination of its real utility (which
depends on the opponent’s behavior) and of the worst utility he can get. The
prudently modified ambiguous plurality game (briefly: the prudent
plurality game) is by definition the game:

hû1, û2,∆X ,∆Xi
with:

û1(p, q) = (1− β1)u(p, q) + β1umin(p) (3)

û2(p, q) = − (1− β2)u(p, q)− β2umax(q) (4)

and:

umin(p) = min
q0∈∆X

u(p, q0)

umax(q) = max
p0∈∆X

u(p0, q)

A prudent equilibrium of the ambiguous plurality game hu,−u,∆X ,∆Xi
is, by definition, a Nash equilibrium of the prudently modified ambiguous
plurality game. It is easy to see that the prudent game û has the same
minimax strategies as the game u, for instance for player 1, (3) obviously
implies:

min
q
û1(p, q) = umin(p).

Then proposition 2 writes:

Proposition 3 Let p∗ be an optimal strategy for g. If α1 is small enough
then:

max
p
min
q
û1(p, q) = min

q
û1(p

∗, q)

Prudent behavior in general zero-sum games is described in the appen-
dix. In particular, two results are proved. First, any solution of the zero-sum
game is a Nash equilibrium of the prudently modified game. Second, if the
zero-sum game has a unique solution, then the corresponding Nash equilib-
rium is strict. We now raise the questions: When has the prudent plurality
game an equilibrium? and What are these equilibria when they exist? Three
simplifying will be used.
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1. Voters aversion to ambiguity is the same with respect to both parties:

α1 = α2 = α

2. Parties’ prudence parameters are the same:

β1 = β2 = β

3. The basic plurality game hg,−g,∆X ,∆Xi has a unique solution (p∗, p∗).

It will be easily seen that our results are robust with respect to small
variations in the two first of these hypothesis. As to the third hypothesis,
if the game g has several solutions then results can be found by consider-
ing the optimal strategies that are minimal with respect to the ambiguity
measure. Notice that the uniqueness of the solution, in the case of a plural-
ity game, holds under rather weak conditions: such is for instance the case
if voters’ preferences are linear orderings and there is an odd number of
voters (Laffond, Laslier and Le Breton, 1997 [16]). Recall also that, unlike
in general games, requiring uniqueness of equilibrium in a zero-sum game
is not assuming away a coordination problem between the players, because
equilibrium strategies of zero-sum games are interchangeable.

Theorem 4 Let p∗ ∈ ∆X be the unique optimal strategy of the basic plural-
ity game hg,−g,∆X ,∆Xi. If the ratio α/β is small enough, then (p∗, p∗) is
a strict Nash equilibrium of the prudent plurality game hû1, û2,∆X ,∆Xi.

Proof. In order to prove this result, on just has to compute the difference
û1(p, p

∗)− û1(p∗, p∗).

• If p 6= p∗, umin(p) = u(p, y(p)), where y(p) is some pure g-best response
to p. This is because g is linear and therefore always admits pure best
responses, and because ambiguity is zero on pure strategies. Thus for
such a y(p):

umin(p) = (1− αa(p)) g(p, y(p))− αa(p).

• If p = p∗, best responses to the optimal strategy p∗ give g(p∗, y(p∗)) =
0, because the value of the symmetric game g is 0, so:

umin(p
∗) = −αa(p∗).

14



It follows that:

û1(p
∗, p∗) = (1− β)u(p∗, p∗)− βαa(p∗)

= −βαa(p∗)

and that, for p 6= p∗:

û1(p, p
∗) = (1− β)u(p, p∗) + β (1− αa(p)) g(p, y(p))− βαa(p).

Notice that g(p, p∗) ≤ 0, so:

u(p, p∗) = (1− αa(p)) (1− αa(p∗)) g(p, p∗)− α (a(p)− a(p∗))
≤ −α (a(p)− a(p∗))

thus:

û1(p, p
∗) ≤ − (1− β)α (a(p)− a(p∗)) + β (1− αa(p)) g(p, y(p))− βαa(p).

Computing the difference:

f(p) = û1(p, p
∗)− û1(p∗, p∗)

one finds:

f(p) ≤ −α (a(p)− a(p∗)) + β (1− αa(p)) g(p, y(p))

Using the fact that g(p, y(p)) ≤ 0, one can write:

f(p) ≤ −α (a(p)− a(p∗)) + βg(p, y(p)) (5)

The function p 7→ g(p, y(p)) is piecewise linear, its value is 0 at p = p∗ and
is strictly negative at p 6= p∗. By assumption, the function p 7→ a(p)− a(p∗)
is strictly concave and its value is 0 at p = p∗, it follows that if the ratio
α/β is small enough, g(p, y(p)) < (α/β) (a(p)− a(p∗)) for all p ∈ ∆X such
that p 6= p∗. Thus f(p) < 0, which proves that p∗ is a strict best response
to itself. By symmetry, (p∗, p∗) is a strict Nash equilibrium.
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A Prudent behavior in zero-sum games

Let S1 and S2 be two sets. A simultaneous-move, two-person, zero-sum game

hu,−u, S1, S2i
is defined by a function:

u :

½
S1 × S2 → IR
(s1, s2) 7→ u(s1, s2)

The (standard) assumption is made on the function u that, for any s1 and
s2 the numbers

umin(s1) = min
s02∈S2

u(s1, s
0
2)

umax(s2) = max
s01∈S1

u(s01, s2)

exist and correspond to some “best response” strategies. By definition, a
pair of optimal strategies, or “solution”, is a pair (s∗1, s∗2) ∈ S1 × S2 which
forms a saddle-point, that is:

umax(s
∗
2) = u(s

∗
1, s

∗
2) = umin(s

∗
1).

As it is well-known since von Neumann and Morgenstern, 1944 [27], such a
pair exists if and only if two principles meet (see Bacharach, 1987 [5]):

According to the Equilibrium principle, a player chooses a best response
to the other players’ choices. This is certainly what the player would do
if he was to play last. The Equilibrium principle is considered a necessary
condition for rational choice (see for instance Myerson, 1999 [26]).

According to the Maximin principle, a player, when uncertain about the
other players’ choices, considers the worst situation for her. For instance
for player 1, this worst payoff is umin(s1). In a two-person, zero-sum game,
considering the worst possible case is certainly what a player would do if she
was to play first.

The rule of behavior embodied in the Maximin principle is wise but too
extreme. In what follows, this principle is somehow weakened, hoping that
the weakened version can match the Equilibrium principle. Given β1 ≥ 0
and β2 ≥ 0, let:

û1(s1, s2) = (1− β1)u(s1, s2) + β1umin(s1) (6)

û2(s2, s1) = − (1− β2)u(s1, s2)− β2umax(s2) (7)
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The new game hû1, û2, S1, S2i is called the prudently modified game for
hu,−u, S1, S2i, with parameters β1,β2. The function ûk can be interpreted
as the payoff function to player k if there is a probability (1− βk) that player
k plays the simultaneous-move game u and a probability βk that player k
plays first (and the other player plays second) in a game with sequential
moves and the same payoff function u. To state this more precisely, we
consider a three-stage, extensive form game, whose tree is depicted in figure
1.

1a
2b

1c

1b

2a

2a

2c

2a

1aN

n2

n0

n1

Figure 1: Extended Game

In this game, Nature moves first by selecting one out of three possibilities
n0, n1, n2. After n0, players 1 and 2 play the simultaneous-move game g.
After nk, player k moves before the other player. Player k knows when she is
playing after the other player, but does not know wether she is playing before
him or wether they play simultaneously. For instance player 1 has 1 +#S2
information sets, where #S2 is the number (possibly infinite) of strategies
in g for player 2. Her first information set (labelled 1a in the picture)
corresponds to the situation in which she only knows that she is not playing
second. The other information sets (in the picture, where #S1 = #S2 = 2,
they are labelled 1b and 1c) correspond to her knowing which action player
2 has chosen. The description of the Extended game is complete once we
let ν0, ν1, ν2, be the (common knowledge) probability of the three states of
Nature.

When a players knows she is playing second, she plays7 a best response
to the other player’s observed action. The payoff u being zero-sum, player

7By the usual dominance argument of backward induction.
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1 will get the payoff mins2∈S2 u(s1, s2) if player 2 plays second. Denote by
s1 and s2 the (pure) strategies the players respectively play when they do
not know they play second. When she does not know she is playing second,
player 1 expected payoff is:

ν0
ν0 + ν1

u(s1, s2) +
ν1

ν0 + ν1
umin(s1).

Letting β1 =
ν1

ν0+ν1
, this is nothing but the payoff û1 in equation (6).

Thus solving for the Extended game amounts to solving for the simultaneous-
move game defined by û = (û1, û2) in equations (6) and (7).

Proposition 5 If (s∗1, s∗2) is a solution of the zero-sum game u, then (s∗1, s∗2)
is a Nash equilibrium for the prudently modified game û.

Proof. Let s1 ∈ S1. Because of the min in the definition of û1:

û1(s1, s
∗
2) ≤ u(s1, s∗2). (8)

Because s∗1 is a g-best response to s∗2:

u(s1, s
∗
2) ≤ u(s∗1, s∗2). (9)

Because, for player 2, s∗2 is a best response to s∗1 in the zero-sum game u:

u(s∗1, s
∗
2) = min

s02∈S2
u(s∗1, s

0
2),

therefore:
u(s∗1, s

∗
2) = û1(s

∗
1, s

∗
2),

and we find that û1(s1, s∗2) ≤ û1(s∗1, s∗2). The same reasoning for the other
player completes the proof.

In the next proposition, a strict Nash equilibrium is a Nash equilibrium
such that, for any player, any alternative action provides a payoff strictly
lower than the equilibrium payoff.

Proposition 6 If (s∗1, s∗2) is the unique solution of the zero-sum game u,
then (s∗1, s∗2) is the unique Nash equilibrium for the prudently modified game
û, and this equilibrium is strict.
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Proof. To prove uniqueness, for any couple of strategies (s1, s2) 6=
(s∗1, s∗2), consider the responses s∗1 and s∗2 in the game bu for the two players:

∆1 = û1(s
∗
1, s2)− û1(s1, s2)

= (1− β1) [u1(s
∗
1, s2)− u1(s1, s2)]

+β1

·
v1 −min

t2
u1(s1, t2)

¸
∆2 = û2(s1, s

∗
2)− û2(s1, s2)

= (1− β2) [u2(s1, s
∗
2)− u2(s1, s2)]

+β2

·
v2 −min

t1
u2(t1, s2)

¸
where v1 = mint2 u(s1, t2) is the value of the zero-sum game u for the first
player and v2 = −v1 is the value for the second player. Summing and taking
into account the different prudent parameters, one gets:

∆1
1− β1

+
∆2
1− β2

= u1(s
∗
1, s2) + u2(s1, s

∗
2)

+
β1

1− β1

·
v1 −min

t2
u1(s1, t2)

¸
+

β2
1− β2

·
v2 −min

t1
u2(t1, s2)

¸
.

Because (s∗1, s∗2) is an equilibrium, u1(s∗1, s2) + u2(s1, s
∗
2) ≤ u1(s

∗
1, s

∗
2) +

u2(s
∗
1, s

∗
2) = 0, hence the first term is non-negative. By definition, v1 ≥

mint2 u1(s1, t2) and v2 ≥ mint1 u2(t1, s2), but because (s1, s2) is not a so-
lution for u, at least one of these two inequalities is strict. Therefore
∆1
1−β1 +

∆2
1−β2 > 0 and one of the two numbers ∆1 and ∆2 is positive. Thus

(s1, s2) is not a Nash equilibrium of bu.
Suppose that (s∗1, s∗2) is not strict. For instance, let s1 6= s∗1 be such

that û1(s1, s∗2) = û1(s∗1, s∗2). Then the inequalities in the previous proof are
equalities, in particular the first one (8):

û1(s1, s
∗
2) = u(s1, s

∗
2).

This implies by definition of û1 that:

u(s1, s
∗
2) = min

s02∈S2
u(s1, s

0
2).

In the zero-sum game u, this means that s∗2 is a best response for player 2
to s1. The inequality (9) is an equality too:

u(s1, s
∗
2) = u(s

∗
1, s

∗
2),
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therefore s1, like s∗1 is a best response to s∗2. It follows that (s1, s∗2) is an
equilibrium for u, contradicting uniqueness.

As the Maximin principle, the property that a solution is a maximin
profile also transfers from the zero-sum game to its non zero-sum prudent
modification. Say that the strategy profile (s∗1, s∗2) is a maximin profile
for û if:

û1(s
∗
1, s

∗
2) = min

s2
û1(s

∗
1, s2) = maxs1

min
s2
û1(s1, s2),

û2(s
∗
1, s

∗
2) = min

s1
û2(s1, s

∗
2) = maxs2

min
s1
û2(s1, s2).

The definition is here stated for the game û, but can be given for any game.
The definition is well illustrated by the following game (game 1):

(game 1) L R
U (0,0) (1,2)
D (2,1) (-1,-1)

Game 1 has two Nash profiles, (U,R) and (D,L), and a maximin profile (U,L).
Notice also that a maximin profile is more than a collection of strategies each
of which independently maximizes the player’s minimal payoff. For instance
in the game:

(game 2) L R
U (1,1) (0,2)
D (2,0) (-1,-1)

the maximin strategies are U and L, like in the previous example; but (U,L)
is not a Maximin profile because the maxmin for the line player obtains
when she plays U and her opponent plays R (instead of L). Game 2 has no
Maximin profile.

Proposition 7 If (s∗1, s∗2) is a solution of the zero-sum game u, then (s∗1, s∗2)
is a maximin profile for the prudently modified game û.

Proof. First notice that, as a straightforward consequence of the defin-
ition of û, for any s1 ∈ S1:

min
s2
û1(s1, s2) = min

s2
u(s1, s2). (10)

Let (s∗1, s∗2) be a solution of u, then u(s∗1, s∗2) = mins2 u(s∗1, s2) implies that:

û1(s
∗
1, s

∗
2) = u(s

∗
1, s

∗
2),
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and (10) gives:

u(s∗1, s
∗
2) = mins2

u(s∗1, s2) = mins2
û1(s

∗
1, s2),

so that we proved the first point:

û1(s
∗
1, s

∗
2) = mins2

û1(s
∗
1, s2).

Next, for any s1:

min
s2
û1(s1, s2) ≤ û1(s1, s

∗
2)

= (1− β)u(s1, s
∗
2) + βumin(s1)

≤ u(s∗1, s
∗
2) = û1(s

∗
1, s

∗
2)

= min
s2
û1(s

∗
1, s2),

gives the second point:

û1(s
∗
1, s

∗
2) = maxs1

min
s2
û1(s1, s2).

The same reasoning is of course valid for the other player, hence the result.
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B Example: the Condorcet 3-cycle

The simplest situation in which the Downsian game has no pure equilib-
rium involves 3 alternatives forming a “Condorcet cycle”. Let the set of
alternatives be:

X = {a, b, c}
and the basic plurality be given by the matrix:

g(·, ·) a b c

a 0 +1 −1
b −1 0 +1

c +1 −1 0

This situation is called the simple 3-cycle (the game is the standard Paper,
Rock, Scissors game). It is easy to see that the unique optimal strategy is:

p∗ = (1/3, 1/3, 1/3)

Proposition 8 In the simple 3-cycle, suppose that the voters measures am-
biguity of a platform by its entropy with respect to the uniform distribution.
Let α be the aversion of voters to ambiguity and let β be the prudence para-
meter of both parties. Then, if

α

β
≤ 1

log 4
' .72 (11)

(p∗, p∗) is an equilibrium of the prudent game.

Proof. In order to find the conditions for (p∗, p∗) to be an equilibrium
of the prudent game, one computes, for any p ∈ ∆X :

g(p, p∗) = 0

u(p, p∗) = αa(p∗)− αa(p)

umin(p) = (1− αa(p)) gmin(p)− αa(p)

û1(p, p
∗) = (1− β)u(p, p∗) + βumin(p)

= (1− β)α (a(p∗)− a(p))
+β (1− αa(p)) gmin(p)− βαa(p)

û1(p
∗, p∗) = −βαa(p∗)
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f(p) = û1(p, p
∗)− û1(p∗, p∗)

= α (a(p∗)− a(p)) + β (1− αa(p)) gmin(p)

The value gmin(p) is easily computed; this minimum value is obtained
for one of the three pure strategies

gmin(p) = min {g(p, a), g(p, b), g(p, c)}
= min {p(c)− p(b), p(a)− p(c), p(b)− p(a)}

The platforms p such that gmin(p) = p(c)−p(b) are the ones such that a is a
best response to p. It is a convex subset of ∆X , defined by the inequalities
g(p, a) ≤ g(p, x), for x = b, c. We can denote this set as:

BR−1(a) = {p ∈ ∆X : gmin(p) = g(p, a)}
Here:

BR−1(a) = {p ∈ ∆X : p(c) ≤ 1/3 ≤ p(b)}
and BR−1(a) is a convex polyhedron whose four extreme points are:

(0, 1, 0), (0,
2

3
,
1

3
), (
1

3
,
1

3
,
1

3
), (
2

3
,
1

3
, 0).

On BR−1(a) the function we wish to be negative is:

f(p) = α (a(p∗)− a(p)) + β (1− αa(p)) (p(c)− p(b)) .
One can majorize:

f(p) ≤ α (a(p∗)− a(p)) + β (p(c)− p(b)) = δ(p).

At the extreme points of BR−1(a) one finds:

δ(0, 1, 0) = αa(p∗)− β

δ(0,
2

3
,
1

3
) = α

µ
a(p∗)− a(0, 2

3
,
1

3
)

¶
− β

3

δ(
1

3
,
1

3
,
1

3
) = 0

δ(
2

3
,
1

3
, 0) = α

µ
a(p∗)− a(2

3
,
1

3
, 0)

¶
− β

3

Taking the entropy as the measure of ambiguity:

a(p∗) = e(p∗) = log 3

a(0,
2

3
,
1

3
) = a(

2

3
,
1

3
, 0) = log 3− 2

3
log 2
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so that:

f(0, 1, 0) = α log 3− β

f(0,
2

3
,
1

3
) = α

2

3
log 2− β

3

f(
1

3
,
1

3
,
1

3
) = 0

(and f(23 ,
1
3 , 0) = f(0, 23 ,

1
3).) We therefore find two conditions for f to be

negative at the extreme points of BR−1(a). The first one, β ≥ α log 3, is
implied by the second, β ≥ α log 4, which is precisely the equation (11)
stated in the proposition. This equation is a sufficient condition for f to be
negative at the extreme points of BR−1(a).

A sufficient condition for δ, and thus f , to be negative on the whole set
BR−1(a) is then that δ be convex on that set. Notice that δ, as a function
of p, is the sum of a constant αa(p∗), a linear function +β (p(c)− p(b)),
and the function −αa(p), which is convex by assumption; thus δ is convex,
and (11) is sufficient for f to be positive on BR−1(a). The same condition
obviously works for BR−1(b) and BR−1(c), so that (11) is sufficient for f to
be negative for all p.
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