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cnrs and Ecole Polytechnique∗
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Abstract

This note is devoted to the question: How restrictive is the assump-
tion that preferences be Euclidean in d dimensions. In particular it is
proven that a preference profile with I individuals and A alternatives
can be represented by Euclidean utilities with d dimensions if and only
if d ≥ min(I,A− 1). The paper also describes the systems of A points
which allow for the representation of any profile over A alternatives,
and provides some results when only strict preferences are considered.

1 Introduction

A popular model in Political Science is the “spatial model of preferences”.
It amounts to consider that the alternatives which are the objects of prefer-
ences are points in the Euclidean d-dimensional space IRd, that an individual
is characterized by his or her “ideal point” in that same space, and that al-
ternatives are judged as good as they are close to the ideal point.

One-dimension Euclidean preference profiles are very specific, they show
no Condorcet cycles (Hotelling, 1929, Arrow, 1952, Black, 1958). But this
property is lost as soon as d is at least 2, and the chaotic behavior of ma-
jority rule can be seen in the planar Euclidean model (Davis, de Groot and
Hinish, 1972). Multi-dimensional models are often used as an illustration
of the theory (Stokes, 1963 [16], Enelow and Hinish, 1990), applications to
Public Economics and the theory of taxation are possible (for instance Gev-
ers and Jacquemin, 1987, and De Donder, 2000) but not so common because
of intrinsic limitations of the Euclidean model (Milyo 2000). Empirical use

∗Laboratoire d’Econométrie, Ecole Polytechnique, 1 rue Descartes, 75005 Paris, France.
laslier@poly.polytechnique.fr
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of the spatial model in Politics are numerous, an important problem be-
ing to develop adequate statistical tools for estimation of ideal points (see
Londregan, 2000 [12], Bailey, 2001 [2], Poole, 2005 [14]).

This note is devoted to the following question: how restrictive is the
assumption that a finite preference profile be Euclidean in d dimensions?
We are not aware of any closely related studies. In Graph theory, Johnson
and Slater, 1988 [11], and Gu, Reid and Schnyder, 1995 [9]1, considered the
realization of asymmetric digraphs (also called “weak tournaments”) as the
majority relation associated to some preference profile, when preferences
are supposed to be derived from distances on a graph. Working in a sin-
gle dimension, Brams, Jones and Kilgour, 2002 [4] introduced a distinction
between ordinally and cardinally single-peaked preferences. Euclidean pref-
erences (in one dimension) are a particular type of cardinally single-peaked
preferences.

We restrict our attention to the finite setting and use the following vo-
cabulary. There is a finite number I of individuals i ∈ {1, ..., I} and a finite
number A of alternatives a ∈ {1, ..., A}. A preference Ri for individual i is a
weak order on {1, ..., A}; for alternatives a and b, aRib means that i prefers
a to b, that is strictly prefers (denoted aPib) or is indifferent between a and b
(denoted a ∼i b). A preference is strict if a ∼i b implies a = b. A preference
profile is a vector R = (Ri)

I
i=1. Let RA,I be the set of preference profiles

with I individuals and A alternatives. Let k·k denote the usual 2-norm and
xa · vi denote the usual scalar product in IRd.

Definition 1 A profile R ∈ RA,I is Euclidean of dimension d if there exist
points xa, a = 1, ..., A in IRd such that, for all a and b and for all individuals
i, either there exists a point ωi ∈ IRd such that:

aRib ⇐⇒
°°xa − ωi

°° ≤ °°°xb − ωi
°°° ,

or there exists a direction vi ∈ IRd such that:

aRib ⇐⇒ xa · vi ≥ xb · vi.

If any profile in RA,I is Euclidean of dimension d then we say that d is
sufficient for I orders on A alternatives.

Point xa is called the location of alternative a, point ωi is called the ideal
point of individual i and vi the ideal direction for individual i. Indifference

1Thanks to Michel Le Breton for indicating this reference to us.
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curves are spheres in the first case and hyperplanes (or the whole space) in
the second case. We refer to the first type of preferences as “quadratic”,
or “spheric”We could refer to the second type as “linear”, but the term
“linear preference” is usually used with another meaning, therefore we use
the expression “directional” preference (Rabinowitz and MacDonald, 1989
[15]. The case of complete indifference corresponds to the degenerated ideal
direction vi = 0. Non degenerated directional preferences can be seen as
limit case of quadratic preferences, when the ideal point ωi goes to infinity
in the direction vi. Here are some obvious properties:

Proposition 2 Suppose that d is sufficient for I orders on A alternatives,
then:

(i) d is sufficient on A alternatives for all I 0 ≤ I.
(ii) d is sufficient for I orders for all A0 ≤ A.
(iii) d0 is sufficient for I orders on A alternatives for all d0 ≥ d.

The following results will be proved. In section 2.1 we determine when
dimension d is sufficient; theorem 6 states that d is sufficient for I orders
on A alternatives if and only if d ≥ min{I,A − 1}. In section 2.2 we char-
acterize the systems of locations which are able to represent all preferences;
theorem 9 states that a system of A points in IRd allows for the Euclidean
representation of any preference profile over A alternatives if and only if it
spans a space of dimension A− 1.

Notice that we allow for indifferences, and that preferences with indif-
ferences are used in some proofs. If one only considers profiles of strict pref-
erences, then the smallest necessary number of dimensions is proven to be
between min{I − 1, A− 1} and min{I,A− 1}. Section 2.3 is devoted to the
strict preference case.

2 Results

2.1 Determination of the sufficient dimension

The following result states that any profile is Euclidean provided one con-
siders as many dimensions as there are individuals.

Proposition 3 If d ≥ I, d is sufficient for all A.

Proof. It is enough to prove this for d = I. Define for each alternative a a
point xa in IRI by saying that its i-th coordinate is:

xai = −#{b : aRib}.
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For instance, on axis i, individual i’s best preferred alternative has coor-
dinate −1 and i’s worst alternative has coordinate −A. Then, for some
number M , define i’s ideal point ωi by saying that its coordinate on axis j
is:

ωij =

½
M if j = i
0 if j 6= i.

Then it is easy to see that, forM large enough the points xa and ωi represent
the profile R in IRI . This proves the result using only spheric preferences.

QED

Proposition 4 If d ≥ A− 1 then d is sufficient for all I.

Proof. It is enough to prove this for d = A− 1. Consider the A points xa
in IRA, defined by the coordinate of xa on axis b ∈ {1, ...A} being xab = 1
if a = b and xab = 0 if a 6= b. Notice that the points xa all belong to the

linear space ∆A =
n
y ∈ IRA :

PA
a=1 ya = 1

o
of dimension A− 1. Let a and

b be two alternatives The median to the segment [xa, xb] is a hyperplane
H(a ∼ b) which divides ∆A in two half spaces that can be denoted H(a > b)
and H(b > a), H(a > b) being the set of points in ∆A which are closer to
a than to b. In an Euclidean representation of her preference, an individual
strictly prefers a to b if and only if her ideal point is in H(a > b). Let Ri be
a preference over the set {1, ...A}, the condition for a point ωi to serve as
an ideal point for Ri is thus that ωi belongs to H(a > b) for all a 6= b such
that aRib, and we find that Ri can be represented if and only if:

Ω(Ri) =
\

a6=b:aRib
H(a > b) 6= ∅.

By symmetry, if Ω(Ri) is empty for some preference Ri, it is empty for all
preferences, and this is obviously not the case. Therefore for any preference
Ri, Ω(Ri) 6= ∅ and it follows that for any profile R = (Ri)

I
i=1 there exist

points ωi, i = 1, ...I that represent R in ∆A with respect to the points xa,
a = 1, ..., A. This proves the result using only spheric preferences.

QED

Proposition 5 Dimension d is not sufficient for I = d + 1 individuals
and A = d+ 2 alternatives.
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Proof. Consider the following profile, with I = d + 1 individuals and
A = d + 2 alternatives (to avoid confusion, denote a0, a1..., ai, ...ad+1 the
alternatives): The individual i ∈ {1, ..., d+ 1} strictly prefers alternative ai
to any other and is indifferent between all the others:

aiPiaj for j 6= i
aj ∼i ak for j, k 6= i

For d = 1, consider 3 locations x0, x1 and x2 on a line. These three
locations must be different one from the other. Thus, for the indifferences
to be possible, preferences cannot be directional. Considering the preference
R1, one can see that x1 must be between x0 and x2, and for the preference
R2, x2 must be between x0 and x1, impossible.

For d = 2, the profile is:

i = 1 i = 2 i = 3

a1 a2 a3
a0 ∼ a2 ∼ a3 a0 ∼ a1 ∼ a3 a0 ∼ a1 ∼ a2

The result will then be proven by induction on d, starting from d = 2.
For a contradiction, consider an Euclidean representation of the profile in
IR2, with points x0, ..., x3 for the alternatives.

In a first part of the proof, suppose that some individual preference,
for instance R3 is directional. Then x0, x1 and x2 are on a line. For the
preference R1, x1 must be between x0 and x2, and for the preference R2, x2

must be between x0 and x1, impossible.
In a second part of the proof, suppose that all individual preferences are

spheric. It is easy to see that the 4 locations x0, ..., x3 are distinct. For
i = 1, the 3 points x0, x2, x3 are on a circle S1 centered at the ideal point
ω1 and the location x1 is inside the disk, and similarly for i = 2, 3. Denote:

Si = {y ∈ IR2 :
°°y − ωi

°° = °°x0 − ωi
°°},

Bi = {y ∈ IR2 :
°°y − ωi

°° < °°x0 − ωi
°°}.

the profile is such that, for all i 6= j :

xj ∈ Si

xi ∈ Bi.

In particular, x0 is on Si for i = 1, 2, 3.
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We now prove that this is impossible. Consider the inversion of center
x0 and ratio 1, that is the application ψ form IR2 \ {x0} onto itself defined
by:

∀ x ∈ IR2 \ {x0}, ψ(x)− x0 = x− x0

kx− x0k2
.

As is well-known, this application is involutive (ψ(ψ(x)) = x) and transforms
the spheres that contain x0 into hyperplanes that do not contain x0.

For i = 1, 2, 3, denote yi = ψ(xi). Suppose firstly that the points yi are
on a single hyperplane (a line) that does not contain x0. Then, by ψ, the 3
circles Si, i ∈ {1, ..., d+ 1} are identical, which is impossible.

Suppose secondly that the points yi are on a line that contains x0, then
by ψ, the points xi are on that same line. Then the three points x0, x1, x2

being at the same distance from ω3, two of them at least are equal, which
is impossible.

Suppose now that the 3 points yi span IR2. Then there exists a unique
vector (λ1,λ2,λ3) such that:

3X
i=1

λiy
i = x0

3X
i=1

λi = 1.

For i ≥ 1, the center of inversion is on the circle S1 thus its image is a line
that we denote by Di. Moreover, if xi ∈ Bi, its image yi is one the side of
Di opposite to the center x0, therefore λi < 0. Hence it cannot be the case
that xi ∈ Bi for all i.

It remains to complete the induction. Suppose the result is true up to
d − 1 and consider an Euclidean representation of the profile in IRd, with
locations x0, ..., xd+1 for the alternatives.

If one preference, say Rd+1 is directional, then the points x0, ..., xd are
on a hyperplane. Dropping individual d+1 and alternative d+1 yields the
same profile at the previous order, by the induction hypothesis, it cannot
be represented with d− 1 dimensions.

Suppose now that all preferences are spheric. The argument is the same
as for d = 2. The d + 1 spheres Si = {y ∈ IRd :

°°y − ωi
°° = °°x0 − ωi

°°} are
different one from the other and intersect at x0, and for i = 1, ..., d+1, xi is
inside Si. By inversion, points xi are transformed into d+1 points y1, ..., yd+1

that cannot be on a single hyperplane otherwise the points x0, x1, ..., xd+1
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would be either on the same hyperplane or on the same sphere, both sit-
uations being impossible. Thus y1, ..., yd+1 span IRd and the conclusion
follows.

QED

Theorem 6 Dimension d is sufficient for I orders on A alternatives if and
only if d ≥ min{I,A− 1}

Proof. Propositions 3 and 4 prove that d is sufficient if d ≥ min{I,A− 1}.
Conversely, take d < I and d < A − 1, then I ≥ d + 1 and A ≥ d + 2 and
we know from Proposition 5 that d is not sufficient for I = d+1 individuals
on A = d+ 2 alternatives.

QED

2.2 Systems of locations that represent all preferences

Given a number A of alternatives, we identify the systems of points (xa)Aa=1
which are such that any preference over alternatives 1, ..., A can be repre-
sented with these points.

Lemma 7 If (xa)Aa=1 is a system of A points in IRA−1 that allows for
the Euclidean representation of all preferences then the median hyperplanes
H(a ∼ b), for a, b ∈ {1, ..., A} have a non-empty intersection

Proof. If two such hyperplanes, say H(a ∼ b) and H(c ∼ d) have empty
intersection, it must be the case that one half space H(a < b) or H(a > b)
is included in H(c < d) or H(c > d). If, for instance, H(a < b) ⊆ H(c < d)
the system is unable to represent a preference such that aRib and dRic.
Thus two hyperplanes intersect. Suppose, for a contradiction, that we can
only finds k points, with k < A whose median hyperplanes intersect. For
instance: \

1≤a,b≤k
H(a ∼ b) 6= ∅

but: \
1≤a,b≤k

H(a ∼ b) ⊆ H(1 < k + 1)

this implies that the system is unable to represent preferences such that aIib
for all a, b ≤ k and (k + 1)Pi1.
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QED

Lemma 8 (i) If (xa)Aa=1 is a system of A points in IRA−1 that allow for
the Euclidean representation of all preferences on A alternatives, then the
intersection of the median hyperplanes is a singleton.

(ii) If (xa)A+1a=1 is a system of A + 1 points in IRd that allow for the
Euclidean representation of all preferences on A+1 alternatives then (xa)A+1a=1

spans a space of dimension A.

Proof. The lemma will be proved by induction on A.
For A = 2 point (i) is trivially true. For point (ii), consider three different

points. If they are on a line then one is between the other two, then no
preference can rank this point last.

For A ≥ 2 suppose that both (i) and (ii) are true. To check (i) at
the next order, consider A + 1 points

©
x1, ..., xA+1

ª
⊆ IRA that allow for

the Euclidean representation of any preference on {1, ..., A + 1}.We know
that the intersection of the median hyperplanes is nonempty. If it is not
a singleton then it is some linear space of positive dimension. Let E be
an affine subspace orthogonal to that intersection, the dimension of E is at
most A − 1. Let bx1, ..., bxA+1 be the projections of x1, ..., xA+1 on E. If
ωi ∈ IRA is the ideal point for preference Ri with respect to

©
x1, ..., xA+1

ª
,

let bωi be the projection of ωi on E. Then it is easy to check that:°°xa − ωi
°° ≤ °°°xb − ωi

°°° ⇐⇒ °°bxa − bωi°° ≤ °°°bxb − bωi°°°
so that Ri is well represented. We thus have found Euclidean representation
of preferences over A + 1 alternatives with at most A − 2 dimensions. By
the induction hypothesis (ii), this is impossible. This establish the induction
step for point (i).

To check (ii) at the next order, consider a system (xa)A+2a=1 of A+2 points
in IRd that allows for the Euclidean representation of any preference on A+2
alternatives and suppose, for a contradiction, that these points do not span
a space of dimension A+ 1, which means that they are included in a linear
space of dimension A.

Each subset
©
x1, ..., xA+2

ª
\ {xa} of A + 1 of these points allows for

the euclidean representation of any preference on {1, ..., A + 2} \ {a} and
thus, by point (i), there exist a unique point, call it zA+2, equidistant from
x1,..., xA+1. This point is such that an individual i is indifferent between
alternatives 1, ..., A+1 if and only if ωi = zA+2. If zA+2 ∈ H(1 < A+2), we
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find that an individual cannot have the preference 1Ii2...Ii(A+1)Pi(A+2),
and zA+2 ∈ H(1 ∼ A + 2) or zA+2 ∈ H(A + 2 < 1) would entail similar
preference restrictions, in contradiction with the hypothesis. It thus must
be the case that (xa)A+2a=1 spans a space of dimension A+ 1.

QED

Theorem 9 A system of A points (xa)Aa=1 in IR
d allows for the Euclidean

representation of all preferences over A alternatives if and only if d ≥ A− 1
and (xa)Aa=1 spans a space of dimension A− 1.

Proof. The “only if part” is point (ii) of the previous lemma. The converse
will be proven by induction. For A = 2, it is easy. Take A > 2 and suppose
that (xa)Aa=1 spans a space of dimension A−1, denote it [x1, ..., xA]. Consider
a preference relation Ri.

If there exists an alternative (say alternativeA) which is strictly preferred
to all the other alternatives. The points (xa)A−1a=1 span a space [x

1, ..., xA−1]
of dimension A − 2 therefore, by the induction hypothesis, there exists a
point ω ∈ [x1, ..., xA−1] such that ω with respect to x1, ..., xA−1 represents
the restriction of Ri to {1, ..., A − 1}. Let n, with knk = 1 be a vector in
[x1, ..., xA], orthogonal to [x1, ..., xA−1], we can choose n such that (xA−ω) ·
n > 0. Notice that for any λ, ω+λn represents the restriction of Ri as well.
Moreover, for any xa ∈ [x1, ..., xA−1]:

kω + λn− xak2 = λ2 + kω − xak2

Write xA−ω = xA−yA+yA−ω with yA the projection of xA on [x1, ..., xA−1],
then: °°ω + λn− xA

°°2 = ¡λ− °°xA − yA°°¢2 + °°ω − yA°°2 .
It follows that, for λ large enough, ω+ λn is closer to xA than to xa. Thus,
for λ large enough, ωi = ω + λn represents Ri.

The reasoning is similar if there are several alternatives which are strictly
preferred to the others and among which the individual is indifferent, say
xk+1 ∼i xk+2 ∼i ... ∼i xA. Take eω ∈ [x1, ..., xk] that represents the restric-
tion of Ri to {1, ..., k}. Any ω = eω+y such that y is orthogonal to [x1, ..., xk]
represents this restriction as well. Let E be the set of such ω, E is a linear
space of dimension (A − 1) − (k − 1) = A − k. Let bω be the center of the
sphere in [xk+1, ..., xA] that contains points xk+1, ..., xA, bω represents the re-
striction of Ri to {k+1, ..., A}, and any ω = bω+ z such that z is orthogonal
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to [xk+1, ..., xA] represents this restriction as well. Let F be the set of such
ω, F is a linear space of dimension (A−1)−(A−k−1) = k. Since the whole
space has dimension A− 1, E ∩F contains a line L, which means that there
exists a point t and a vector n with knk = 1 which satisfies the following
property: For all λ, the points in L, which we can denote ω(λ) = t+λn, are
such that ω(λ)− eω is orthogonal to [x1, ..., xk] and ωλ − bω is orthogonal to
[xk+1, ..., xA]. Any such ω(λ) represents both restrictions.

Let ω(eλ) = t+ eλn be the projection of eω on L. Because L is orthogonal
to [x1, ..., xk] ω(eλ) is also the projection on L of x1, ..., xk, and for all λ,

kω(λ)− xak2 =
³
λ− eλ´2 + °°°ω(eλ)− xa°°°2 .

Similarly, let ω(bλ) = t+ bλn be the projection of bω on L, for k+1 ≤ b ≤ A :°°°ω(λ)− xb°°°2 = ³λ− bλ´2 + °°°ω(bλ)− xb°°°2 .
It follows that:

kω(λ)− xak2 −
°°°ω(λ)− xb°°°2 = 2λ³bλ− eλ´+ constant.

If the ω(eλ) = ω(bλ), then both [x1, ..., xk] and [xk+1, ..., xA] are included
in the same hyperplane orthogonal to L, contradicting the hypothesis that
[x1, ..., xA] is the whole space. Thus bλ 6= λ By taking λ large enough and
with the sign of bλ−eλ , the above difference will be positive, so that the ideal
point ω(λ) will assure that alternatives b > k are preferred to alternatives
a ≤ k.

Finally, if Ri is the complete indifference, the center of the sphere that
contains all the points xa can serve as the ideal point.

QED

2.3 Strict preferences

The previous proofs relied on indifferences in preferences. If we restrict our
attention to strict preferences, things are different. Consider the case d = 1.
Proposition 5 implies that there exist a profile of (non strict) preferences with
2 individuals and 3 alternatives, which is not Euclidean in 1 dimension. But,
looking at all the possible cases, it is not difficult to check that any profile
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of strict preferences with 2 individuals and 3 alternatives is Euclidean in 1
dimension.

We know that a profile is Euclidean if d ≥ min{I,A − 1}. For instance
a profile of strict preferences with I = 4 individuals and A = 4 alternatives
can always be represented in d = 3 dimensions, but it is not clear wether
2 dimensions are enough. An example will show that d = 2 is indeed not
enough for 4 individuals and 4 alternatives. Notice that this leaves open
the question “Is any profile of strict preferences with 3 individuals and 4
alternatives Euclidean of dimension 2?” The question for larger d is also left
open.

Note that if a strict preference order of an agent i can be represented as
a directional preference in some direction vi, then it also can be represented
as a spheric preference in the same direction by choosing the location ωi

for the agent i far enough in the direction vi We thus can exclude direc-
tional preferences, and only check whether it is possible to represent strict
preference profiles by spheric preferences.

Proposition 10 For all strict profiles to be Euclidean it is necessary that
d ≥ min{I − 1, A− 1}.

Proof. Consider the profile with d alternatives a1, ..., ad, and d agents
1,...,d with preferences

1 : a1Pa2Pa3P...Pak−1Pak

2 : a2Pa3P...Pak−1PakPa1

3 : a3Pa4P...PakPa1Pa2

...

k : akPa1Pa2P...Pak−2Pak−1

It is enough to check that one cannot find d locations x1, ..., xd for the
alternatives and d locations ω1, ...,ωd for the agents in (d − 2)-dimensional
Euclidean space, such that ||xj1 − ωi|| < ||xj2 − ωi|| if and only if aj1Piaj2 .

Assume to the contrary that such locations can be found. Since prefer-
ences are strict, all points x1, ..., xd must be all different.

First, note that any d points in (d − 2)-dimensional Euclidean space
are affinely dependent, i.e. there exist real numbers α1, ...,αk such that
dP
i=1

αix
i = 0 and

dP
i=1

αi = 0. We can rewrite this condition in the following

way. Leave the members with α > 0 on the left side of each of the two
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equations, and put the members with α ≤ 0 on the right side. Then rename
variables, by calling y1, ..., yn locations with α > 0, and z1, ..., zm locations
with α > 0 (m+ n = d); also rename positive α-s into β-s, and nonpositive
α-s into (−γ)-s (thus, γ-s are nonnegative). We thus obtain for d points
y1, ..., yn, z1, ..., zm representing our d alternatives:

nX
i=1

βiy
i =

mX
j=1

γjz
j , where

nX
i=1

βi =
mX
j=1

γj , βi > 0, γj ≥ 0.

Next, an individual with Euclidean preferences, located at point ω,
prefers b located at y to c located at z, if and only if ||ω − y||2 < ||ω − z||2,
i.e., if and only if y · y − 2ω · y < z · z − 2ω · z.

Think now about our alternatives as points x1, ..., xd, located on the
circle (in that precise order clockwise), each also marked as yi or zj , and
with an attached weight βi or γj .

Start from some yi1 = xt and go clockwise summing up separately all
weights βi, and separately all weights γj , until first sum becomes smaller
then the second. I.e., we start from

P
β = βi1 ≥

P
γ = 0. If next alternative

clockwise on the circle, xt+1, is a y-alternative yi1+1, then
P

β = βi1 +

βi1+1 ≥
P

γ = 0, and we continue. If next alternative x
t+1 is a z-alternative

zj1 , then we continue if
P

β = βi1 ≥
P

γ = γj1 , and stop if
P

β = βi1 <P
γ = γj1 . In general, we stop when for the first time we obtain

P
β =

βi1+βi1+1+βi1+2+... <
P

γ = γj1+γj1+1+γj1+2+..., or, if it never happens,
we stop when we make the whole circle and return to the alternative yi1 = xt.

Assume that we were forced to stop before we made the whole circle.
Then we attach the sum

P
β = βi1 + βi1+1 + βi1+2 + .. we got so far to

the alternative yi1 , call the first y-alternative, clockwise after we stopped,
yi2 (note that we had to stop at some z-alternative), and repeat the same
process, etc.

After no more then n < d steps, we will be starting from some y-
alternative, from which we already were starting before: assume without loss
of generality that when we write down the y-alternatives we were choosing,
yi1 , yi2 , yi3 , ..., the first alternative which repeats itself is yi1 (otherwise just
through away first several alternatives), i.e. our sequence is

yi1 , yi2 , yi3 , ..., yiq−1 , yiq , yi1 , ...

Consider the first q alternatives in this sequence (i.e. the longest sequence
without repetition), yi1 , yi2 , yi3 , ..., yiq−1 , yiq together with attached to them
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sums
P

β . We remember that for each of these alternatives correspondingP
β <

P
γ . Thus the total sum of all their

P
β (we call it

P
ββ) is strictly

smaller then total sum of all corresponding to them
P

γ (we call it
P

γγ).
But in constructing our sequence yi1 , yi2 , yi3 , ..., yiq−1 , yiq we were moving

clockwise along the circle, and since we stopped just before repeating yi1

we made several (say, Q) whole circles. Our sums
P

β were calculated by
summing up all coefficients β along the way, while our

P
γ were calculated

by summing up coefficients γ along the way (probably skipping some γ-s
– ones attached to z-alternatives between some stop and the next after

it y-alternative). Hence,
P

ββ = Q
nP
i=1

βi = Q
mP
j=1

γj ≥ Q
P

γγ , which is a

contradiction to
P

ββ <
P

γγ we just proved.
It follows that, starting from at least some alternative yi1 , we should be

able to make the whole circle keeping
P

β ≥
P

γ all the way.

Without loss of generality, assume yi1 = y1 = xt.
Consider the agent t for whom the alternative at, located at y1 = xt, is

the best one. Assume that this agent t is located at point ω. We know that
she prefers an alternative b, located at y, to an alternative c, located at z,
if and only if y · y − 2ω · y < z · z − 2ω · z.

Given our profile, we know that preferences of this agent t decrease when
we go along our circle clockwise (starting from y1 = xt), and on the way
the sum of weights β at y-alternatives is always at least as big as the sum
of weights γ at z-alternatives, all weights β, γ being nonnegative. Thus, we
obtain that

nX
i=1

βi
¡
yi · yi − 2ω · yi

¢
<

mX
j=1

γj
¡
zj · zj − 2ω · zj

¢
or, given that

nP
i=1

βiy
i =

mP
j=1

γjz
j , that

nP
i=1

βiy
i · yi <

mP
j=1

γjz
j · zj .

Now, if we repeat the same circle argument from the beginning, but

for z-alternatives, we obtain that
nP
i=1

βiy
i · yi >

mP
j=1

γjz
j · zj , the desired

contradiction.

Proposition 10 tells us that for any strict profile to be representable in d
dimensions it has to be true that d ≥ min{I − 1, A− 1}, while Propositions
4 and 3 tell that it is enough to have d ≥ min{I,A − 1}. Thus, we know
the minimal necessary number of dimensions needed to represent all strict
profiles, for all cases with min{I − 1, A− 1} = min{I,A− 1}.

13



Assume thatmin{I−1, A−1} 6= min{I,A−1}. Thenmin{I−1, A−1} =
I − 1 = min{I,A − 1} − 1 < A − 1, so this is the case of I agents and
A ≥ I + 1 alternatives. For this case, our results give that the smallest
necessary number of dimensions d is such that I − 1 ≤ d ≤ I.

The next proposition tells us that, for any I, for A large enough it is
necessary to use I dimensions.

Proposition 11 1) There exists a strict profile with I agents and A = 2I

alternatives, such that it cannot be represented with I − 1 dimensions.
2) All strict profiles with I agents and A = I + 1 alternatives can be

represented with I − 1 dimensions.

Proof. 1) Consider a following strict profile with I agents and A = 2I

alternatives aS, S ⊂ {1, ..., I}. Let, for any agent i ∈ I, all aS such that
i ∈ S be above a∅, while all aS such that i /∈ S be below a∅. For such a
profile, for any subset S ⊂ {1, ..., I}, S 6= ∅, there is exactly one alternative
aS 6= a∅, such that all agents from S prefer aS to a∅, while all agents from
{1, ..., I}\S prefer a∅ to aS .

We check that any such profile cannot be represented as Euclidean in
I − 1 dimensions.

Assume to the contrary that there is such a representation, and consider
the inversion with the center at a = a∅ and ratio 1. Each sphere with
the center at the location of an agent, containing a = a∅, transforms in a
hyperplane. There are I such hyperplanes, and they divide the (I − 1)-
dimensional Euclidean space in at most 2I − 1 different areas.

Consider now the images under this inversion of the following 2I points:
locations of 2I − 1 alternatives, namely all except the alternative a = a∅,
and some point b which is further then a = a∅ from any agent. All these 2I

images must be in different areas, since for any two of our points there is
at least one agent for whom one of these points is closer then a = a∅, while
another one is further then a = a∅. This is the desired contradiction.

2) Fix a strict profile with I agents and A = I +1 alternatives. There is
at least one alternative, say a, such that it is not the last in the preferences of
any agent. Locate all remaining I alternatives in the vertices of the simplex
in IRI−1, and locate alternative a in the center of this simplex. It is easy
to see that any strict preference order which does not have a as its last
alternative can be represented by locating an agent with such order at some
point in this (I − 1)-dimensional space.
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