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Cette note est consacrée à la question:Quelle restriction impose-t-on en faisant l'hypothèse qu'un profil de préférences est euclidien en dimension d ? En particulier on démontre qu'un profil de préférences sur I individus et A alternatives peut être représenté par des utilités euclidiennes en dimension d si et seulement si d est supérieur ou égal à min(I,A-1). On décrit aussi les systèmes de points qui permettent de représenter tout profil sur A alternatives, et on donne quelques résultats quand seules les préférences strictes sont considérées.

Introduction

A popular model in Political Science is the "spatial model of preferences". It amounts to consider that the alternatives which are the objects of preferences are points in the Euclidean d-dimensional space IR d , that an individual is characterized by his or her "ideal point" in that same space, and that alternatives are judged as good as they are close to the ideal point.

One-dimension Euclidean preference profiles are very specific, they show no Condorcet cycles [START_REF] Hotelling | Stability in competition[END_REF][START_REF] Arrow | Social Choice and Individual Values[END_REF][START_REF] Black | The Theory of Committees and Elections[END_REF]. But this property is lost as soon as d is at least 2, and the chaotic behavior of majority rule can be seen in the planar Euclidean model (Davis, de Groot and Hinish, 1972). Multi-dimensional models are often used as an illustration of the theory (Stokes, 1963 [16], Enelow and Hinish, 1990), applications to Public Economics and the theory of taxation are possible (for instance Gevers and Jacquemin, 1987, and De Donder, 2000) but not so common because of intrinsic limitations of the Euclidean model [START_REF] Milyo | A problem with Euclidean preferences in spatial models of politics[END_REF]. Empirical use of the spatial model in Politics are numerous, an important problem being to develop adequate statistical tools for estimation of ideal points (see Londregan, 2000 [12], [START_REF] Bailey | Ideal point estimation with a small number of votes: a random-effects approach[END_REF] [START_REF] Bailey | Ideal point estimation with a small number of votes: a random-effects approach[END_REF], Poole, 2005 [14]).

This note is devoted to the following question: how restrictive is the assumption that a finite preference profile be Euclidean in d dimensions?

We are not aware of any closely related studies. In Graph theory, Johnson and Slater, 1988 [START_REF] Johnson | Realization of majority preference digraphs by graphically determined voting patterns[END_REF], and Gu, Reid and Schnyder, 1995 [START_REF] Gu | Realization of digraphs by preferences based on distances in graphs[END_REF] 1 , considered the realization of asymmetric digraphs (also called "weak tournaments") as the majority relation associated to some preference profile, when preferences are supposed to be derived from distances on a graph. Working in a single dimension, Brams, Jones and Kilgour, 2002 [START_REF] Brams | Single-peakedness and disconnected coalitions[END_REF] introduced a distinction between ordinally and cardinally single-peaked preferences. Euclidean preferences (in one dimension) are a particular type of cardinally single-peaked preferences.

We restrict our attention to the finite setting and use the following vocabulary. There is a finite number I of individuals i ∈ {1, ..., I} and a finite number A of alternatives a ∈ {1, ..., A}. A preference R i for individual i is a weak order on {1, ..., A}; for alternatives a and b, aR i b means that i prefers a to b, that is strictly prefers (denoted aP i b) or is indifferent between a and b (denoted 

a ∼ i b). A preference is strict if a ∼ i b implies a = b. A preference profile is a vector R = (R i ) I i=1 . Let R A,
aR i b ⇐⇒ °°x a -ω i °°≤ °°°x b -ω i °°°,
or there exists a direction v i ∈ IR d such that:

aR i b ⇐⇒ x a • v i ≥ x b • v i .
If any profile in R A,I is Euclidean of dimension d then we say that d is sufficient for I orders on A alternatives. Point x a is called the location of alternative a, point ω i is called the ideal point of individual i and v i the ideal direction for individual i. Indifference curves are spheres in the first case and hyperplanes (or the whole space) in the second case. We refer to the first type of preferences as "quadratic", or "spheric"We could refer to the second type as "linear", but the term "linear preference" is usually used with another meaning, therefore we use the expression "directional" preference (Rabinowitz and MacDonald, 1989 [15]. The case of complete indifference corresponds to the degenerated ideal direction v i = 0. Non degenerated directional preferences can be seen as limit case of quadratic preferences, when the ideal point ω i goes to infinity in the direction v i . Here are some obvious properties: Proposition 2 Suppose that d is sufficient for I orders on A alternatives, then:

(i) d is sufficient on A alternatives for all I 0 ≤ I.

(ii) d is sufficient for I orders for all A 0 ≤ A.

(iii) d 0 is sufficient for I orders on A alternatives for all d 0 ≥ d.

The following results will be proved. In section 2.1 we determine when dimension d is sufficient; theorem 6 states that d is sufficient for I orders on A alternatives if and only if d ≥ min{I, A -1}. In section 2.2 we characterize the systems of locations which are able to represent all preferences; theorem 9 states that a system of A points in IR d allows for the Euclidean representation of any preference profile over A alternatives if and only if it spans a space of dimension A -1.

Notice that we allow for indifferences, and that preferences with indifferences are used in some proofs. If one only considers profiles of strict preferences, then the smallest necessary number of dimensions is proven to be between min{I -1, A -1} and min{I, A -1}. Section 2.3 is devoted to the strict preference case.

Results

Determination of the sufficient dimension

The following result states that any profile is Euclidean provided one considers as many dimensions as there are individuals.

Proposition 3 If d ≥ I, d is sufficient for all A.
Proof. It is enough to prove this for d = I. Define for each alternative a a point x a in IR I by saying that its i-th coordinate is:

x a i = -#{b : aR i b}.
For instance, on axis i, individual i's best preferred alternative has coordinate -1 and i's worst alternative has coordinate -A. Then, for some number M , define i's ideal point ω i by saying that its coordinate on axis j is:

ω i j = ½ M if j = i 0 if j 6 = i.
Then it is easy to see that, for M large enough the points x a and ω i represent the profile R in IR I . This proves the result using only spheric preferences. . Let R i be a preference over the set {1, ...A}, the condition for a point ω i to serve as an ideal point for R i is thus that ω i belongs to H(a > b) for all a 6 = b such that aR i b, and we find that R i can be represented if and only if:

QED

Ω(R i ) = \ a6 =b:aR i b H(a > b) 6 = ∅.
By symmetry, if Ω(R i ) is empty for some preference R i , it is empty for all preferences, and this is obviously not the case. Therefore for any preference R i , Ω(R i ) 6 = ∅ and it follows that for any profile R = (R i ) I i=1 there exist points ω i , i = 1, ...I that represent R in ∆ A with respect to the points x a , a = 1, ..., A. This proves the result using only spheric preferences. 

QED

a i P i a j for j 6 = i a j ∼ i a k for j, k 6 = i
For d = 1, consider 3 locations x 0 , x 1 and x 2 on a line. These three locations must be different one from the other. Thus, for the indifferences to be possible, preferences cannot be directional. Considering the preference R 1 , one can see that x 1 must be between x 0 and x 2 , and for the preference R 2 , x 2 must be between x 0 and x 1 , impossible.

For d = 2, the profile is:

i = 1 i = 2 i = 3 a 1 a 2 a 3 a 0 ∼ a 2 ∼ a 3 a 0 ∼ a 1 ∼ a 3 a 0 ∼ a 1 ∼ a 2
The result will then be proven by induction on d, starting from d = 2. For a contradiction, consider an Euclidean representation of the profile in IR 2 , with points x 0 , ..., x 3 for the alternatives.

In a first part of the proof, suppose that some individual preference, for instance R 3 is directional. Then x 0 , x 1 and x 2 are on a line. For the preference R 1 , x 1 must be between x 0 and x 2 , and for the preference R 2 , x 2 must be between x 0 and x 1 , impossible.

In a second part of the proof, suppose that all individual preferences are spheric. It is easy to see that the 4 locations x 0 , ..., x 3 are distinct. For i = 1, the 3 points x 0 , x 2 , x 3 are on a circle S 1 centered at the ideal point ω 1 and the location x 1 is inside the disk, and similarly for i = 2, 3. Denote:

S i = {y ∈ IR 2 : °°y -ω i °°= °°x 0 -ω i °°}, B i = {y ∈ IR 2 : °°y -ω i °°< °°x 0 -ω i °°}.
the profile is such that, for all i 6 = j :

x j ∈ S i x i ∈ B i .
In particular, x 0 is on S i for i = 1, 2, 3.

We now prove that this is impossible. Consider the inversion of center x 0 and ratio 1, that is the application ψ form IR 2 \ {x 0 } onto itself defined by:

∀ x ∈ IR 2 \ {x 0 }, ψ(x) -x 0 = x -x 0 kx -x 0 k 2 .
As is well-known, this application is involutive (ψ(ψ(x)) = x) and transforms the spheres that contain x 0 into hyperplanes that do not contain x 0 .

For i = 1, 2, 3, denote y i = ψ(x i ). Suppose firstly that the points y i are on a single hyperplane (a line) that does not contain x 0 . Then, by ψ, the 3 circles S i , i ∈ {1, ..., d + 1} are identical, which is impossible.

Suppose secondly that the points y i are on a line that contains x 0 , then by ψ, the points x i are on that same line. Then the three points x 0 , x 1 , x 2 being at the same distance from ω 3 , two of them at least are equal, which is impossible.

Suppose now that the 3 points y i span IR 2 . Then there exists a unique vector (λ 1 , λ 2 , λ 3 ) such that:

3 X i=1 λ i y i = x 0 3 X i=1 λ i = 1.
For i ≥ 1, the center of inversion is on the circle S 1 thus its image is a line that we denote by D i . Moreover, if x i ∈ B i , its image y i is one the side of D i opposite to the center x 0 , therefore λ i < 0. Hence it cannot be the case that x i ∈ B i for all i.

It remains to complete the induction. Suppose the result is true up to d -1 and consider an Euclidean representation of the profile in IR d , with locations x 0 , ..., x d+1 for the alternatives.

If one preference, say R d+1 is directional, then the points x 0 , ..., x d are on a hyperplane. Dropping individual d + 1 and alternative d + 1 yields the same profile at the previous order, by the induction hypothesis, it cannot be represented with d -1 dimensions.

Suppose now that all preferences are spheric. The argument is the same as for d = 2. The d + 1 spheres S i = {y ∈ IR d : °°yω i °°= °°x 0ω i °°} are different one from the other and intersect at x 0 , and for i = 1, ..., d + 1, x i is inside S i . By inversion, points x i are transformed into d+1 points y 1 , ..., y d+1 that cannot be on a single hyperplane otherwise the points x 0 , x 1 , ..., x d+1 would be either on the same hyperplane or on the same sphere, both situations being impossible. Thus y 1 , ..., y d+1 span IR d and the conclusion follows. 

QED

QED 2.2 Systems of locations that represent all preferences

Given a number A of alternatives, we identify the systems of points (x a ) A a=1 which are such that any preference over alternatives 1, ..., A can be represented with these points. 

(a > b) is included in H(c < d) or H(c > d). If, for instance, H(a < b) ⊆ H(c < d)
the system is unable to represent a preference such that aR i b and dR i c. Thus two hyperplanes intersect. Suppose, for a contradiction, that we can only finds k points, with k < A whose median hyperplanes intersect. For instance:

\ 1≤a,b≤k H(a ∼ b) 6 = ∅ but: \ 1≤a,b≤k H(a ∼ b) ⊆ H(1 < k + 1)
this implies that the system is unable to represent preferences such that aI i b for all a, b ≤ k and (k + 1)P i 1.

QED Lemma 8 (i) If (x a ) A a=1 is a system of A points in IR A-1 that allow for the Euclidean representation of all preferences on A alternatives, then the intersection of the median hyperplanes is a singleton.

(ii) If (x a ) A+1 a=1 is a system of A + 1 points in IR d that allow for the Euclidean representation of all preferences on A+1 alternatives then (x a ) A+1 a=1 spans a space of dimension A.

Proof. The lemma will be proved by induction on A.

For A = 2 point (i) is trivially true. For point (ii), consider three different points. If they are on a line then one is between the other two, then no preference can rank this point last.

For A ≥ 2 suppose that both (i) and (ii) are true. To check (i) at the next order, consider A + 1 points © x 1 , ..., x A+1 ª ⊆ IR A that allow for the Euclidean representation of any preference on {1, ..., A + 1}.We know that the intersection of the median hyperplanes is nonempty. If it is not a singleton then it is some linear space of positive dimension. Let E be an affine subspace orthogonal to that intersection, the dimension of E is at most A -1. Let b x 1 , ..., b x A+1 be the projections of x 1 , ..., x A+1 on E. If ω i ∈ IR A is the ideal point for preference R i with respect to © x 1 , ..., x A+1 ª , let b ω i be the projection of ω i on E. Then it is easy to check that:

°°x a -ω i °°≤ °°°x b -ω i °°°⇐⇒ °°b x a -b ω i °°≤ °°°b x b -b ω i °°°s
o that R i is well represented. We thus have found Euclidean representation of preferences over A + 1 alternatives with at most A -2 dimensions. By the induction hypothesis (ii), this is impossible. This establish the induction step for point (i).

To check (ii) at the next order, consider a system (x a ) A+2 a=1 of A+2 points in IR d that allows for the Euclidean representation of any preference on A+2 alternatives and suppose, for a contradiction, that these points do not span a space of dimension A + 1, which means that they are included in a linear space of dimension A.

Each subset © x 1 , ..., x A+2 ª \ {x a } of A + 1 of these points allows for the euclidean representation of any preference on {1, ..., A + 2} \ {a} and thus, by point (i), there exist a unique point, call it z A+2 , equidistant from x 1 ,..., x A+1 . This point is such that an individual i is indifferent between alternatives 1, ..., A+1 if and only if ω i = z A+2 . If z A+2 ∈ H(1 < A+2), we find that an individual cannot have the preference 1I i 2...I i (A + 1)P i (A + 2), and z A+2 ∈ H(1 ∼ A + 2) or z A+2 ∈ H(A + 2 < 1) would entail similar preference restrictions, in contradiction with the hypothesis. It thus must be the case that (x a ) A+2 a=1 spans a space of dimension A + 1.

QED Theorem 9 A system of A points (x a ) A a=1 in IR d allows for the Euclidean representation of all preferences over A alternatives if and only if d ≥ A -1 and (x a ) A a=1 spans a space of dimension A -1.

Proof. The "only if part" is point (ii) of the previous lemma. The converse will be proven by induction. For A = 2, it is easy. Take A > 2 and suppose that (x a ) A a=1 spans a space of dimension A-1, denote it [x 1 , ..., x A ]. Consider a preference relation R i .

If there exists an alternative (say alternative A) which is strictly preferred to all the other alternatives. The points (x a ) A-1 a=1 span a space [x 1 , ..., x A-1 ] of dimension A -2 therefore, by the induction hypothesis, there exists a point ω ∈ [x 1 , ..., x A-1 ] such that ω with respect to x 1 , ..., x A-1 represents the restriction of R i to {1, ..., A -1}. Let n, with knk = 1 be a vector in [x 1 , ..., x A ], orthogonal to [x 1 , ..., x A-1 ], we can choose n such that (x Aω) • n > 0. Notice that for any λ, ω + λn represents the restriction of R i as well. Moreover, for any x a ∈ [x 1 , ..., x A-1 ]:

kω + λn -x a k 2 = λ 2 + kω -x a k 2 Write x A -ω = x A -y A +y A -ω with y A the projection of x A on [x 1 , ..., x A-1 ], then: °°ω + λn -x A °°2 = ¡ λ -°°x A -y A °°¢ 2 + °°ω -y A °°2 .
It follows that, for λ large enough, ω + λn is closer to x A than to x a . Thus, for λ large enough,

ω i = ω + λn represents R i .
The reasoning is similar if there are several alternatives which are strictly preferred to the others and among which the individual is indifferent, say

x k+1 ∼ i x k+2 ∼ i ... ∼ i x A . Take e ω ∈ [x 1 , ..., x k
] that represents the restriction of R i to {1, ..., k}. Any ω = e ω +y such that y is orthogonal to [x 1 , ..., x k ] represents this restriction as well. Let E be the set of such ω, E is a linear space of dimension (A -1) -(k -1) = Ak. Let b ω be the center of the sphere in [x k+1 , ..., x A ] that contains points x k+1 , ..., x A , b ω represents the restriction of R i to {k + 1, ..., A}, and any ω = b ω + z such that z is orthogonal to [x k+1 , ..., x A ] represents this restriction as well. Let F be the set of such ω, F is a linear space of dimension (A-1)-(A-k -1) = k. Since the whole space has dimension A -1, E ∩ F contains a line L, which means that there exists a point t and a vector n with knk = 1 which satisfies the following property: For all λ, the points in L, which we can denote ω(λ) = t + λn, are such that ω(λ) -e ω is orthogonal to [x 1 , ..., x k ] and ω λ -b ω is orthogonal to [x k+1 , ..., x A ]. Any such ω(λ) represents both restrictions.

Let ω( e λ) = t + e λn be the projection of e ω on L. Because L is orthogonal to [x 1 , ..., x k ] ω( e λ) is also the projection on L of x 1 , ..., x k , and for all λ,

kω(λ) -x a k 2 = ³ λ -e λ ´2 + °°°ω( e λ) -x a °°°2 . Similarly, let ω( b λ) = t + b λn be the projection of b ω on L, for k + 1 ≤ b ≤ A : °°°ω(λ) -x b °°°2 = ³ λ -b λ ´2 + °°°ω( b λ) -x b °°°2 .
It follows that:

kω(λ) -x a k 2 -°°°ω(λ) -x b °°°2 = 2λ ³ b λ -e λ ´+ constant.
If the ω( e λ) = ω( b λ), then both [x 1 , ..., x k ] and [x k+1 , ..., x A ] are included in the same hyperplane orthogonal to L, contradicting the hypothesis that [x 1 , ..., x A ] is the whole space. Thus b λ 6 = λ By taking λ large enough and with the sign of b λ -e λ , the above difference will be positive, so that the ideal point ω(λ) will assure that alternatives b > k are preferred to alternatives a ≤ k.

Finally, if R i is the complete indifference, the center of the sphere that contains all the points x a can serve as the ideal point.

QED 2.3 Strict preferences

The previous proofs relied on indifferences in preferences. If we restrict our attention to strict preferences, things are different. Consider the case d = 1. Proposition 5 implies that there exist a profile of (non strict) preferences with 2 individuals and 3 alternatives, which is not Euclidean in 1 dimension. But, looking at all the possible cases, it is not difficult to check that any profile of strict preferences with 2 individuals and 3 alternatives is Euclidean in 1 dimension.

We know that a profile is Euclidean if d ≥ min{I, A -1}. For instance a profile of strict preferences with I = 4 individuals and A = 4 alternatives can always be represented in d = 3 dimensions, but it is not clear wether 2 dimensions are enough. An example will show that d = 2 is indeed not enough for 4 individuals and 4 alternatives. Notice that this leaves open the question "Is any profile of strict preferences with 3 individuals and 4 alternatives Euclidean of dimension 2?" The question for larger d is also left open.

Note that if a strict preference order of an agent i can be represented as a directional preference in some direction v i , then it also can be represented as a spheric preference in the same direction by choosing the location ω i for the agent i far enough in the direction v i We thus can exclude directional preferences, and only check whether it is possible to represent strict preference profiles by spheric preferences.

Proposition 10 For all strict profiles to be Euclidean it is necessary that d ≥ min{I - Assume to the contrary that such locations can be found. Since preferences are strict, all points x 1 , ..., x d must be all different.

First, note that any d points in (d -2)-dimensional Euclidean space are affinely dependent, i.e. there exist real numbers α 1 , ..., α k such that β . We remember that for each of these alternatives corresponding P β < P γ . Thus the total sum of all their P β (we call it P ββ ) is strictly smaller then total sum of all corresponding to them P γ (we call it P γγ ). But in constructing our sequence y i 1 , y i 2 , y i 3 , ..., y i q-1 , y i q we were moving clockwise along the circle, and since we stopped just before repeating y i 1 we made several (say, Q) whole circles. Our sums P β were calculated by summing up all coefficients β along the way, while our P γ were calculated by summing up coefficients γ along the way (probably skipping some γ-s -ones attached to z-alternatives between some stop and the next after it y-alternative). Hence, Without loss of generality, assume y i 1 = y 1 = x t . Consider the agent t for whom the alternative a t , located at y 1 = x t , is the best one. Assume that this agent t is located at point ω. We know that she prefers an alternative b, located at y, to an alternative c, located at z, if and only if y

P ββ = Q n P i=1 β i = Q m P j=1 γ j ≥ Q P γγ ,
• y -2ω • y < z • z -2ω • z.
Given our profile, we know that preferences of this agent t decrease when we go along our circle clockwise (starting from y 1 = x t ), and on the way the sum of weights β at y-alternatives is always at least as big as the sum of weights γ at z-alternatives, all weights β, γ being nonnegative. Thus, we obtain that

n X i=1 β i ¡ y i • y i -2ω • y i ¢ < m X j=1 γ j ¡ z j • z j -2ω • z j ¢ or, given that n P i=1 β i y i = m P j=1 γ j z j , that n P i=1 β i y i • y i < m P j=1 γ j z j • z j .
Now, if we repeat the same circle argument from the beginning, but for z-alternatives, we obtain that

n P i=1 β i y i • y i > m P j=1 γ j z j • z j , the desired contradiction.
Proposition 10 tells us that for any strict profile to be representable in d dimensions it has to be true that d ≥ min{I -1, A -1}, while Propositions 4 and 3 tell that it is enough to have d ≥ min{I, A -1}. Thus, we know the minimal necessary number of dimensions needed to represent all strict profiles, for all cases with min{I -1, A -1} = min{I, A -1}.

Assume that min{I -1, A-1} 6 = min{I, A-1}. Then min{I -1, A-1} = I -1 = min{I, A -1} -1 < A -1, so this is the case of I agents and A ≥ I + 1 alternatives. For this case, our results give that the smallest necessary number of dimensions d is such that I -1 ≤ d ≤ I.

The next proposition tells us that, for any I, for A large enough it is necessary to use I dimensions.

Proposition 11 1) There exists a strict profile with I agents and A = 2 I alternatives, such that it cannot be represented with I -1 dimensions.

2) All strict profiles with I agents and A = I + 1 alternatives can be represented with I -1 dimensions.

Proof. 1) Consider a following strict profile with I agents and A = 2 I alternatives a S , S ⊂ {1, ..., I}. Let, for any agent i ∈ I, all a S such that i ∈ S be above a ∅ , while all a S such that i / ∈ S be below a ∅ . For such a profile, for any subset S ⊂ {1, ..., I}, S 6 = ∅, there is exactly one alternative a S 6 = a ∅ , such that all agents from S prefer a S to a ∅ , while all agents from {1, ..., I}\S prefer a ∅ to a S .

We check that any such profile cannot be represented as Euclidean in I -1 dimensions.

Assume to the contrary that there is such a representation, and consider the inversion with the center at a = a ∅ and ratio 1. Each sphere with the center at the location of an agent, containing a = a ∅ , transforms in a hyperplane. There are I such hyperplanes, and they divide the (I -1)dimensional Euclidean space in at most 2 I -1 different areas.

Consider now the images under this inversion of the following 2 I points: locations of 2 I -1 alternatives, namely all except the alternative a = a ∅ , and some point b which is further then a = a ∅ from any agent. All these 2 I images must be in different areas, since for any two of our points there is at least one agent for whom one of these points is closer then a = a ∅ , while another one is further then a = a ∅ . This is the desired contradiction.

2) Fix a strict profile with I agents and A = I + 1 alternatives. There is at least one alternative, say a, such that it is not the last in the preferences of any agent. Locate all remaining I alternatives in the vertices of the simplex in IR I-1 , and locate alternative a in the center of this simplex. It is easy to see that any strict preference order which does not have a as its last alternative can be represented by locating an agent with such order at some point in this (I -1)-dimensional space.

  I be the set of preference profiles with I individuals and A alternatives. Let k•k denote the usual 2-norm and x a • v i denote the usual scalar product in IR d . Definition 1 A profile R ∈ R A,I is Euclidean of dimension d if there exist points x a , a = 1, ..., A in IR d such that, for all a and b and for all individuals i, either there exists a point ω i ∈ IR d such that:

Proposition 4 A a=1 y a = 1 o of dimension A - 1 .

 411 If d ≥ A -1 then d is sufficient for all I. Proof. It is enough to prove this for d = A -1. Consider the A points x a in IR A , defined by the coordinate of x a on axis b ∈ {1, ...A} being x a b = 1 if a = b and x a b = 0 if a 6 = b. Notice that the points x a all belong to the linear space ∆ A = n y ∈ IR A : P Let a and b be two alternatives The median to the segment [x a , x b ] is a hyperplane H(a ∼ b) which divides ∆ A in two half spaces that can be denoted H(a > b) and H(b > a), H(a > b) being the set of points in ∆ A which are closer to a than to b. In an Euclidean representation of her preference, an individual strictly prefers a to b if and only if her ideal point is in H(a > b)

Proposition 5

 5 Dimension d is not sufficient for I = d + 1 individuals and A = d + 2 alternatives. Proof. Consider the following profile, with I = d + 1 individuals and A = d + 2 alternatives (to avoid confusion, denote a 0 , a 1 ..., a i , ...a d+1 the alternatives): The individual i ∈ {1, ..., d + 1} strictly prefers alternative a i to any other and is indifferent between all the others:

Theorem 6

 6 Dimension d is sufficient for I orders on A alternatives if and only if d ≥ min{I, A -1} Proof. Propositions 3 and 4 prove that d is sufficient if d ≥ min{I, A -1}. Conversely, take d < I and d < A -1, then I ≥ d + 1 and A ≥ d + 2 and we know from Proposition 5 that d is not sufficient for I = d + 1 individuals on A = d + 2 alternatives.

Lemma 7

 7 If (x a ) A a=1 is a system of A points in IR A-1 that allows for the Euclidean representation of all preferences then the median hyperplanes H(a ∼ b), for a, b ∈ {1, ..., A} have a non-empty intersection Proof. If two such hyperplanes, say H(a ∼ b) and H(c ∼ d) have empty intersection, it must be the case that one half space H(a < b) or H

  We can rewrite this condition in the following way. Leave the members with α > 0 on the left side of each of the two sums P

  1, A -1}. Proof. Consider the profile with d alternatives a 1 , ..., a d , and d agents 1,...,d with preferences It is enough to check that one cannot find d locations x 1 , ..., x d for the alternatives and d locations ω 1 , ..., ω d for the agents in (d -2)-dimensional Euclidean space, such that ||x j 1ω i || < ||x j 2ω i || if and only if a j 1 P i a j 2 .

	1 :	a 1 P a 2 P a 3 P...P a k-1 P a k
	2 :	a 2 P a 3 P...P a k-1 P a k P a 1
	3 :	a 3 P a 4 P...P a k P a 1 P a 2
	...	
	k :	a k P a 1 P a 2 P...P a k-2 P a k-1

Thanks to Michel Le Breton for indicating this reference to us.

equations, and put the members with α ≤ 0 on the right side. Then rename variables, by calling y 1 , ..., y n locations with α > 0, and z 1 , ..., z m locations with α > 0 (m + n = d); also rename positive α-s into β-s, and nonpositive α-s into (-γ)-s (thus, γ-s are nonnegative). We thus obtain for d points y 1 , ..., y n , z 1 , ..., z m representing our d alternatives:

Next, an individual with Euclidean preferences, located at point ω, prefers b located at y to c located at z, if and only if ||ω -y|| 2 < ||ω -z|| 2 , i.e., if and only if y

Think now about our alternatives as points x 1 , ..., x d , located on the circle (in that precise order clockwise), each also marked as y i or z j , and with an attached weight β i or γ j .

Start from some y i 1 = x t and go clockwise summing up separately all weights β i , and separately all weights γ j , until first sum becomes smaller then the second. I.e., we start from

, and we continue. If next alternative x t+1 is a z-alternative z j 1 , then we continue if

, and stop if

In general, we stop when for the first time we obtain

.., or, if it never happens, we stop when we make the whole circle and return to the alternative y i 1 = x t .

Assume that we were forced to stop before we made the whole circle. Then we attach the sum

. we got so far to the alternative y i 1 , call the first y-alternative, clockwise after we stopped, y i 2 (note that we had to stop at some z-alternative), and repeat the same process, etc.

After no more then n < d steps, we will be starting from some yalternative, from which we already were starting before: assume without loss of generality that when we write down the y-alternatives we were choosing, y i 1 , y i 2 , y i 3 , ..., the first alternative which repeats itself is y i 1 (otherwise just through away first several alternatives), i.e. our sequence is y i 1 , y i 2 , y i 3 , ..., y i q-1 , y iq , y i 1 , ... Consider the first q alternatives in this sequence (i.e. the longest sequence without repetition), y i 1 , y i 2 , y i 3 , ..., y i q-1 , y iq together with attached to them