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L'article examine les conditions qui permettent de satisfaire simultanément les versions ex
ante et ex post du principe de Pareto, lorsqu'on cesse d'imposer I'hypothése de I'utilité espérée
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Utility Hypothesis®

Charles Blackorby,David Donaldson, and Philippe Mongin?
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Abstract

The paper investigates the consistency between the exr ante and
ex post methods of social evaluation in a model of decision under
uncertainty with very weak rationality assumptions. Neither the in-
dividuals nor the social observer are required to satisfy the expected
utility hypothesis. In the case where individuals have the same sub-
jective probabilities, Theorem 1 characterizes the nonlinear form of
both individual and social utility. This result is best seen as a gener-
alization of Harsanyi’s theorem, the utilitarian conclusion of which is
eschewed. In the case where subjective probabilities differ, Theorem 2
establishes an impossibility. This negative result extends earlier ones
which depended on making the expected utility hypothesis. A welfare
economics application of the theorems is offered.

1 Introduction

When a society is faced with the problem of ranking uncertain prospects,
the computation can be made in two different ways depending on what set
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of preferences the Pareto principle is applied to. In the ex ante version,
the principle bears on individual rankings of prospects, while in the ex post
version, it is applied to individual rankings of final consequences. To each
application corresponds a distinct method for constructing a social evalua-
tion of prospects. One method, which is also called ex ante, directly aggre-
gates the utility representations of individual preferences over prospects,
and invokes the ex ante principle to make the aggregator Pareto-inclusive.
In this approach, the individuals, but not necessarily the social aggregate,
are required to obey some theory of decision under uncertainty; in practice,
the latter has always been subjective expected utility theory (SEUT). The
other method is more roundabout. For each state of the world, it aggregates
the utility representations of individual preferences over consequences, in-
voking the ex post principle to make each state-relative aggregator Pareto-
inclusive; then, it combines the resulting vector of utilities with some vector
of probabilities, applying the same decision theory as for the individuals.
Again, subjective expected utility theory (SEUT) has been the only one
considered in practice. This approach is called ex post because the Pareto
principle is applied in the ex post version, but it is no less ex ante than
the other is; i.e., the computation is still made before the uncertainty is
resolved. As regards to rationality considerations, the ex post approach
makes a point of treating the individuals and social entity alike, a crucial
difference with the ex ante approach.

Both at the level of principles and for practical applications, the question
arises of which of the two versions is the more appropriate. Welfare theory
has provided arguments one way or another rather than a final answer,
and a glance at the literature in macroeconomics and general equilibrium
theory shows that the matter is far from being settled there either. Take for
instance the welfare analysis of money changes in the overlapping genera-
tion, rational expectation model initiated by Lucas (1972) [14]. Should the
changes induced on second period consumption be evaluated in terms of
the agents’ first period expected utility functionals - an ex ante analysis?
Or should they be evaluated in terms of the second period utility values
for consumption in each state, combining these values with the central
bank’s probability values - an ex post analysis? Each line of analysis has
much to say for itself. The former takes seriously the Samuelsonian dictum
that “individual preferences count”. Would they stop being relevant simply
because the microeconomist’s standard objects of preferences, i.e., alloca-
tions of commodity baskets, are replaced by something more complex, i.e.,



uncertain prospects over these objects? In favour of the latter approach,
Hammond (1982) [10] has argued that it imposed expected utility rational-
ity on the social aggregate, which the former does not do. It is also argued
that the ex post method draws a clear separation between probabilistic and
utility considerations, which the ex ante method somehow amalgamates.

An instructive, and indeed classic, way out of the theoretical dilemma,
is to explore the extent to which the two horns really differ, or relatedly,
to investigate the logical consequences of assuming that they coincide. If
it turned out that ex post - ex ante consistency would characterize a non-
empty class of utility functions, it would appear to be normatively justified
to evaluate policy changes in terms of that class, and no other; one would
enjoy the best of two worlds, as it were. Which assumption provides the
better descriptive fit is of course another matter, and it is not discussed
here.

When ez post - ex ante consistency is combined with an expected utility
definition of rationality, highly precise results can be obtained. Some of
these results are positive (in the style of utilitarianism), while others are
negative (in the style of the impossibilities of social choice theory). The
theorems depend in part on the wording of the Pareto principle, i.e., on
whether the weak, or strong, or the Pareto-indifference condition is selected.
The present paper rejuvenates this general line of analysis by enlarging the
framework of rationality. The assumptions we make are compatible not
only with expected utility, but with a number of current generalizations.
Our conclusions are again sometimes positive, sometimes negative, and at
least for the negative part, not significantly weaker than those reached
under expected utility, despite the weaker starting point.

To provide more perspective, we need briefly to discuss two earlier sets
of results.! Harsanyi’s (1955) [13] classic aggregation theorem assumes
the ex ante Pareto principle in a context of lotteries and von Neumann-
Morgenstern utility functions (for both the individuals and society). The
conclusion is a weighted form of utilitarianism. To have a bearing on the
previous discussion, Harsanyi’s theorem must be rephrased as a result in
SEUT, with Savagian acts (i.e. state-contingent functions) replacing Neu-
mannian lotteries, and with the special assumption that all individuals
share the same subjective probability measure. (This translation is fully

LOther references are important, but we make no claim to cover the field here. Mongin
and d’Aspremont (1998) [18] provide an overview and complete bibliography.



developped in Blackorby, Donaldson, and Weymark (1999) [2].) Within
this framework, ex post - ex ante consistency is automatically ensured.
Technically, Harsanyi’s initial statement relied on the Pareto-indifference
condition, but later variants have invoked the strong Pareto condition in
order to sign the weights positively in the utilitarian sum.

Our positive result, Theorem 1, is best seen to be a strengthening of
Harsanyi’s, in its SEUT rephrasing and its technical variant based on the
strong Pareto principle. We endow the individuals and the bearer of so-
cial evaluation with one and the same subjective probability, and since our
decision-theoretic assumptions are weak, ex post - ex ante consistency de-
livers a social utility function that is not utilitarian, but only additively
separable in individual utilities. This conclusion sounds like good news for
those welfare economists who would like to evaluate policy changes in terms
of a consistent social aggregate function, but are reluctant to fall back onto
Bentham’s and Jevons’s formula. Also, and more importantly, Theorem
1 characterizes the form of individual and social value functions, and the
latter turn out to come very close to standard expected utility functions.
Here, the added value of the theorem lies in the fact that it deduces from
the antecedent consistency condition what Harsanyi bluntly puts in his
assumptions - and arguably, it justifies the latter by the former.?

There is a definite analogy between this component of Theorem 1 and
the work pursued on dynamic consistency in the single-individual case,
which also accounts for expected utility in terms of antecedent consistency
conditions. However, ex post-ex ante consistency, as defined here, is not
equivalent to any of the conditions in Hammond’s (1988) classic decomposi-
tion of expected utility, and furthermore, we impose it only at the collective
level. As the theorem shows, no more than this collective rationality condi-
tion is needed in order to turn individual rationality into (what comes close
to) expected-utility maximization.

Harsanyi’s characterization of weighted utilitarianism breaks down when
SEUT is given its full force, i.e., when subjective probabilities are allowed
to differ. This is demonstrated by Mongin (1995) [17] in a Savage model of
acts and preferences that accommodates as much variability or uniformity
in utilities and probabilities as one wishes to assume. Weighted utilitarian-

2By the same token, Theorem 1 is stronger than Myerson’s (1981) [19] variant of
Harsanyi’s theorem. The latter imposes ex post-ex ante consistency on the collective pref-
erence, but unlike our theorem, retains the expected utility assumption on the individuals’
side.



ism is seen to correspond to one polar case (identical probabilities), whereas
a dual weighted “probabilitarian” theorem holds for the other polar case
(identical utilities). In the territory between the two poles, impossibility
conclusions crop up. Depending on the technical variant of the Pareto
principle, they range from quasi-Arrovian dictatorships to sheer logical im-
possibilities; even the weak Pareto-indifference condition creates trouble.
The upshot of this analysis is that ex post - ex ante consistency is incom-
patible with diversity of beliefs and evaluations, as long as the rationality
conditions are those of expected utility theory.

Theorem 2 of this paper allows subjective probabilities to differ, and
derives a logical impossibility analogous to Mongin’s result for the strong
Pareto principle (we do not try to cover the other variants of the principe).
Some of our assumptions do not have counterparts among Savage’s, which
makes the comparison with the earlier paper imperfect. However, from a
broader point, Theorem 2 makes it clear that the impossibility of “consis-
tent Bayesian aggregation” is not specific to “Bayesianism”. The practical
implication is that to exempt society from the sure-thing principle does not
provide a way out, contrary to what is often suggested in response to the
logical conflict. What is left from the initial SEUT model being so weak as
to be virtually unassailable, one has to face the blunt choice between the ex
ante and ex post method, and their respective philosophies of the Pareto
principle.

Both Theorems 1 and 2 may be compared with the work most recently
pursued on social preference under risk and uncertainty. A feature of this
work that is present here is to relax the expected utility assumptions, which
for a long time provided the only modelling of risk and uncertainty for the
collective context. However, more often than not, the other writers derive,
and normatively defend, nonseparable preference rules for the social evalu-
ation. Besides, to the best of our knowledge, none of them has yet followed
the strategy adopted here of inferring the form of individual evaluations
from prior, normative assumptions put at the collective level.?

The emphasis of this paper is not on axiomatizations. We deliberately
made utility and probability evaluations, rather than preferences, the prim-
itive terms of the analysis. The utility side is described by numbers rather

3As a brief and incomplete sample of the work pursued along this line, we may cite
Epstein and Segal (1992) [5], Karni and Safra (2002) [12], as well as, for the related topic
of inequality measurement, Ben Porath, Gilboa, and Schmeidler (1997) [1]



than functions, the Paretian constraints being expressed directly in terms
of these derived quantities. In one sense, we are assuming “welfarism”,
though in another sense, we are not, since we take note of probabilities (be-
liefs) besides utilities (welfare).* Such a compressed mode of presentation
makes it possible to reach conclusions quickly. We make the simplifying
assumption that, at least over the range relevant to social decisions, each
individual’s utility values vary independently of the utility values reached
by the others. This situation is automatically realized in the privileged
application of the paper, which stems from standard welfare economics.

2 Assumptions

2.1 Individuals

Let N = {1,...,n} be the set of individuals and M = {1,...,m} the set
of states of nature. Throughout, we require that individual ¢ evaluate
prospects with a value function v = V¢( p%,u'), where p’ = (p!,....p.,),
u’ = (uf,...,u,,), and p} is the probability value that i assigns to state j, u}
is the utility value that ¢ achieves in state 7. When utility values are listed
by the states, they will be'denotedl u; = ('u}, Lo uj), € M.

In the value function V*, both p* and u* are allowed to vary; however, the
two variables will play a very different role. Concerning the p*, we require
only two things, i.e., that they can take any values in the unit-simplex SM of
RM and that whatever assumption is made on u‘ holds irrespectively of the
value taken by p’. Granted this, the assumptions amount to putting special
constraints on the u’, which are the active variables in the model. By and
large, this model conforms with Savage’s, in which probability measures are
defined on states of nature, but there are technical dissimilarities that we
do not pursue.® The case of identical probability vectors, p' = ... = p" = p,
will be dealt with in section 3, and the other case in section 4.

For each i, we will assume that the values u; belong to a non-degenerate

“Welfarism is the claim that the information relevant to the social evaluation is well-
reflected in the individuals’ utility values, so that the physical differences between objects
of choice become irrelevant.

5Savage’s (1972) [20] construction allows for variability in the probability and utility
values only implicitly, i.e., through the assumption of a rich set of acts and the divisibility
postulate (P6), whereas we allow for it explicitly here. This is the major difference.



interval® that is independent of the state j:

Assumption 1 : For all i € N, j € M, v} € U', a non-degenerate
interval.

Expected utility (EU) as well as several non-expected utility (NEU)
functionals have their range of values equal to an interval. For these theo-
ries, the only problematic part of the assumption is whether the ranges of
values reached in a particular state have a significant intersection with the
ranges in the other states. Both in the EU and NEU case, difficulties may
occur when the utility functions are state-dependent, i.e., have the form
u'(j,.). For instance, if j is the state in which 7 is alive and k the state in
which ¢ is dead, it may be right to assume that u‘(j,.) and u‘(k,.) have no
values in common. However, this example is somewhat extreme. In case of
intuitively less distant states of affairs, it seems acceptable to assume the
intersection property; e.g., take j to be the state in which the weather is hot
and k the state in which it is cool, and suppose the variable z in u‘(j, z)
and u‘(k, z) ranges over allocations of beercans. Note carefully that the
assumption does not require the functions u'(j,.) to be identical or even
to determine the same ordering, and it does not require the ranges of the
u'(j,.) to be identical outside the subset of interest U°.

For any function f, Rge f denotes its range of values, and for any num-
ber z, x denotes the constant vector (z, ..., z). Using this symbolism, we im-
pose two restrictions on the values v¢ taken by the functions V. Informally,
the first restriction states that putting «* as a utility input uniformly across
states gives back u’, whatever the probability vector p?, and the second,
that the same values u' can be used as utility inputs in any state:

Assumption 2.1 : For all i € N, p' € SM, and u' € U', V"(p",ﬁl) = u'.

Assumption 2.2 : For all i € N, Rge V' C U".
Together, the two assumptions set Rge V¢ = U*. Given the utility functions
standardly used in economics, neither assumption is very demanding. As
to 2.1, it is trivially satisfied by EU, and after suitable normalization, by
several NEU functionals. As to 2.2, consider Zp;'.u"(xj), where z; € X is
the social alternative realized in state 7, X is a connected space, and u* is
continuous. Then, the range of 3 pz-ui(xj) is an interval, and by adding the
assumption that u' is increasing (in the sense of respecting the preference

%A non-degenerate interval is not reduced to a point; an interval may be bounded or
unbounded.



ordering assumed on X), we make this range exactly equal to that of u.”
This is a familiar argument in EUT. To extend it to NEU, we need to
postulate the continuity and monotonicity of the V¢ explicitly, which is
done in the next assumption. Notice that state-dependence does not create
an additional problem here. It does not matter whether the uz come from
a representation u'(x;) or u'(j, z;), provided these values come from U".

We make another assumption that EU and other representations triv-
ially satisfy.

Assumption 3 : For all i € N and p' € S, Vi(p',.) is continuous and
mcreasing.

2.2 The social aggregate

To state our second group of assumptions, we introduce the function

which indicates how the social evaluation varies with the set of individual
data. To make sense of this description, we assume that the order of vari-
ables in ¢ does not matter when the indexes are kept unchanged. Here
comes a more substantial assumption.

Assumption 4. The domain of ¢ is the product set:

D=(SMx .. xSMyx U x..xUYx.x U x..xU").

n times m times m times

This assumption says that probability and utility values can vary fully
and independently of each other. The Cartesian product domain for the util-
ities has the obvious defect of ignoring the psychological interdependencies
that may prevail between the individuals. It excludes, say, that Daesde-
mona will reach her bliss point only when Othello reaches his, and Iago
enjoys himself most when Othello is at his worst. However, our intended
applications are more down-to-earth. The following example is canonical
for the whole paper.

"“Increasing” in this paper, means what others call “strictly increasing”: otherwise, we
say “weakly increasing”. For multivariate functions, “increasing” will mean “increasing in
each argument separately”.



Ezxample 1. Take r to represent the number of commodities in the economy
and the elements of X = R™" to represent all possible allocations of bas-
kets of commodities between the n individuals. Suppose that ¢ evaluates
the prospect that for j € M, z; € X will occur by employing the state-
independent EU functional 3 piu’(z;). If v*(.) depends only on 4’s basket
of commodities, is continuous and increasing, take D to be the set of all
utility allocations across states and individuals. The restrictions made on
the u‘(.) are those of standard welfare economics a la Bergson-Samuelson.
They are taken up in Hammond’s (1981) [9] early discussion of the ex post
- ex ante problem. They can be weakened by considering state-dependent
functions u'(j, z;) that satisfy Assumptions 1 and 2.1.

Without loss of generality, the ¢ function can be written as a value func-
tion V? similar to the value functions V* of the individuals (and henceforth,
we will refer to the social entity as if it were an added individual, “the social
observer”). That is to say, there exist a function V°, a probability vector
function p°, and a utility vector u°, such that for all ¢, and p* and u‘ in the
domain,

(p(p17 "'7pn7u17 "'7un) = Vo(po(pl’ "'7pn7 u17 "'7un)7u0(p17 "'7pn7 u17 "'7un))'

This formal rephrasing is permissible because it makes the social probability
and social utility vectors depend on the whole collection of individual data.
Now, the remaining constraints can be stated in terms of p°, u®, and V°.

We have no plausible constraint to put on the social probability vec-
tor function pY, except that it should not depend on the utilities. For the
purpose of the results to come, there is no loss in taking it to be constant.
Concerning the social utility vector function u®, we adopt the ex post ap-
proach to social preference by making the observer’s utility in state j an
increasing function of individual utilities in that state. We strengthen the
constraint by stipulating that the uz be related to u? by a state-independent
function U°. This restriction is usually taken for granted in the ex post ap-
proach.

Assumption 5. There is a fized probability vector p°, and there are in-
creasing functions Uand V°(p°,.) s.t. for all (p',...,p" ul,...,u") € D,

Qp(plv “.,pn,ul, “.,un) = VO(pO’ Uo(u1)7 very Uo(um))

Concerning V°, we adopt the ex ante approach to social preference.
If the decision-theoretic construction were made explicit, the following as-

9



sumption would amount to applying the Strong Pareto Principle to indi-
vidual preferences over prospects.
Assumption 6 . There is an increasing function W s.t.

fO7n all (plv “.’pn,ul’ “.,un) S D7

(p(p17 "'7pn7 u17 "'7un) = W(Vl(p17u1)7 ___,Vn(pn, un))'

In our reduced form model, the increasing property of W and U° echoes
the strong Pareto condition, and the very existence of these functions, the
Pareto-indifference condition. So we have taken aboard the strong Pareto
principle, in both the ex ante and ex post way. Combining the last two
assumptions, we get the consistency condition that the ex ante and ex post
modes of social aggregation agree with each other.

We finally need a technical analogue of Assumption 3:

Assumption 7: VO, U° and W are continuous functions.

Note that the same decision-theoretic constraints have been imposed on
the social observer and the individuals, which is in keeping with the ex post
approach. To make this analogy clearer, we have refrained from cancelling
the slight redundancies between the conditions.

3 Identical Subjective Probabilities: A Char
acterization Theorem.

This section characterizes the observer’s and individuals’ preferences, given
Assumptions 1 to 7 and the special condition that all probability vectors,
including the observer’s, are equal to some common p, which can take any
values. Packing Assumptions 4-6 into a single one, we get the condition
that for all s € N, j € M, u} €U, and p € S,

() VO (p, U (w), ..., U%(un)) = ¢(p, ..., p, 0, ..., u")

=W({'(p,u'),..,V"(p,u")),

We will refer to condition (%) as to ex post - ex ante consistency.

Theorem 1 Suppose that Assumptions 1-4 hold. Then, Assumptions 5-7
hold if and only if there are continuous and increasing transformations ¢°,

10



gt ..., g%, w® and v°, and continuous and positive functions ai(p), ..., Gm(P),
such that for all (p,...,p", ul,...,u") in D,

Ul ) = (S g, 5 € M, (1)
Vip,u’) = (g")*l(z a;(p)g' (u})), 1 € N, (2)

and: o '
W(Vi(p,u'),..,.V"(p,u")) = wo(z g'(V'(p,u")), (3)
Vop,U(w),...,U%up)) = 0" o (90)71(2 a;(p)g° (). (4)

The proof of the theorem is technical; we state it in the Appendix.

Generally, a multivariate function f = f(z1,...,z¢) is said to be addi-
tively separable if there exist functions fi, ..., fo and an increasing function
g such that

far, o zq) = g(fi(@) + ..+ folzq)).)

Conclusions (1) and (2) state that social utility is additively separable in
the individual utilities. This functional form is a generalization of, and ar-
guably an improvement on, Harsanyi’s (1955) weighted utilitarian sum. Our
formula still permits compensating i’s decrease of utility with j’s increase
without changing the other individuals’ utilities, but it eschews the dubious
linearity in the marginal compensation that is postulated by utilitarians.
The decision-theoretic conclusions (3) and (4) say that the value func-
tions must be additively separable across states, with each term being a
product of a probability-relative weight with a utility-relative factor. They
also say that the probability-relative weights a;(p) must be the same for
all 7. The exact connection between EU and the present functional form
is mathematically unclear. It is known that in the presence of First Order
Stochastic Dominance, the form 3, f(p;, u;(xj)) collapses into EU (see
Machina, 1981, section 4.c.1). First Order Stochastic Dominance would
be a natural assumption to add, and it will indeed be added below, but
even so, it must be pointed out that p, not just p;, enters the weight of
u;(xj) Practically, if not mathematically, (3) and (4) do not go beyond EU.
This conclusion follows from considering the NEU functions commonly used

11



today. In Machina’s (1991) synthetic list, there appear to be only two can-
didates. On further inspection, one of them does not satisty (3) and (4),
while the other one does; regrettably, it is the less representative of the two
which satisfies the conditions.®

Example 2. Take the rank-dependent wtility (RDU) formula:

(1= Fipy, + ot p,,)] - () (5)
+ £, + 2, = oy + =1, - (W (z))
Fot f(Pm) - U ().

Here the consequences z; have been reordered in an increasing order of
preference, x;, <; ... <; ;,, (for simplicity, we state the formula in the no-
indifference case), and the probability-distorsion function f*:[0,1] — [0, 1]
is increasing, continuous, and normalized by f{(0) = 0, fi(1) = 1. With this
standard normalization, Assumption 2.1 is met. When u(.) is continuous
and increasing, Assumptions 1-3 hold. However, RDU is not an example of
(3) or (4), because the weight it assigns to uz depends on the rank-order of
uj vis-a-vis the other components uy. That is to say, in the case of RDU,
the weights obey the form a;(p,u’), not a;(p) as required. Most of the
available NEU representations, including the differentiable forms that treat
the EU formula as a local linear approximation, are of the type a;(p,u'),
hence not compatible with the conclusions.

Ezxample 3. The following functions have also been proposed:

Z g' (pj)u(z;) (6)
and
S W) i, ()

jeM Zk: hl(pk?) ¢

with g,h > 0. Given the previous assumptions on uz-(xj), the former ex-
ample (prospect theory) satisfies Assumptions 1-3, once the normalization
Siem 9'(pj) = 1 is made, and so does the latter, which already includes

8Tt is a matter of dispute who “invented” examples 2 and 3, so we prefer not to make
any attribution. Machina’s (1991) states the relevant bibliographical references.
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the normalization. As the utilities play no role in determining the weights,
these two representations straightforwardly agree with the functional form
in (3) and (4). However, the departure they allow from expected utility is
minimal. The weights only have the effect of changing the initial probabil-
ity vector p into some p’, and by slightly strenghtening the assumptions, it
would be possible to conclude that p = p’. Example 3 does not amount to
a true generalization of EU theory.’

Given the insights provided by these two examples, there appears to be
little use for formulas (3) and (4) beyond standard expected utility theory.
Practically, the initial flexibility permitted by the weak rationality assump-
tions disappears from the conclusions. Theorem 1 is no less significant for
that. It is striking that the EU-like conditions are now found in the conclu-
sions, whereas Harsanyi put them in the assumptions; apparently, he did
not realize the logical power of his own framework. In sum, Harsanyi was
wrong both to conclude utilitarianism (instead of the weaker additive sep-
arability) and to assume expected utility (instead of just ex post - ex ante
consistency). However, this is just our interpretation, and others might see
Theorem 1 not as an improvement on Harsanyi’s positive result, but rather
as an impossibility theorem of a novel sort. As Gorman (1987) [8] wrote,
“That a set of axioms implies additivity is as likely to be evidence against
them as for it”. If separability across separability in the states is regarded
as normatively undesirable by some, our result will provide them with a
reductio of ex post - ex ante consistency.

4 Different Sub jective Probabilities: An Im-
possibility Theorem

By giving up the assumption that the individuals’ and social observer’s
probabilities are identical, we derive a logical inconsistency. Contrary to
the positive theorem of last section, this impossibility theorem requires

9We show that p = p’ by adding the following local variant of Assumption 2.2: for any
two states ji and ja, if u} = wf,, then Vi(p’, u’) = Vi(q’, u’) for all probability vectors
p’,q’ satisfying p’ +pl, = %, +4q7,, and pj, = g}, k # j1, ja- A straightforward functional
equation argument then leads to the conclusion.
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variability only in the utility values, so we will from now on regard the
probability vectors p!, ..., p” as being fixed. We need a decision-theoretic
assumption not yet introduced, i.e., that if state k has a higher probability
than state [, then ¢ prefers to have the higher utility amount put on k than
[. For transparent reasons, we call this requirement the betting property for
i. In a context where the probability vectors p’ are allowed to vary, it would
follow from preference for first-order stochastic dominance. Both EU and
established NEU theories, such as RDU, trivially satisfy it.

Assumption 8.1. For i € M, suppose that pl, > pi for some k,l €
M. Then, for all utility values uj, uj, u such that uj, > uj and v} = wu,

j# k.l
Vi(pivuv ...,’LLZ, ...,’LL;, ,’LL) > Vi(pivuv ...,’LL;, "'7ui:7 7u)
Assumption 8.2 imposes the same condition on ¢ = 0.

Theorem 2 Suppose that Assumptions 1 and 4 are satisfied with fixed
p07p17 "'7pn' Then?

1. If p' # p" for individuals i,h € N, there is no social value function ¢
that satifies Assumptions 5, 6 and 7, and 8.1.

2. If there ewists i € N such that p* # p° , there is no social value
function @ that satisfies Assumptions 5, 6, 7, 8.1 and 8.2.

Proof of the theorem. (i) Let us assume that two individuals ¢ and h have
distinct probability vectors and derive a contradiction. Without loss of
generality, let i = 1,h = 2, p{ > p}, and p? < pi. Fix any (£,,&,,...,&,) in
the interior of X;eyU;. From Assumption 5, there are n,, 7, > 0 s. t.

U0(£1+7717£27"'7£n) > U0(£17£27"'7£n)7
U0(£17£2+7727"'7£n) > U0(£17£27"'7£n)' (8>

Take ¥ to be the smaller value on the left of (8) and %° to be such that
y > u’ > U%E, €%,...,€"). Then, Assumption 5 implies that there are
€1, €2 > 0 to satisfy the equation:

ﬂo = UO(EI + 617527 s 7£n) = U0(£17£2 T €2, 7571) (9>

14
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Consider first the vector (p!,al,...,p" 0") with

ﬁl = (£1+€17£17"'7£1)

ﬁ2 = (52,£2+€2,---,£2) (1())
and for ¢ # 1,2, '
u' = (&, .., &) (11)
Consider second the vector (p!,ul,...,p", u")
u' = (§1,6 +€,...,81)
u’ = (§o+€2,8,...,8) (12)
and for ¢ # 1,2, '
u' = (&, .., &) (13)

Assumption 8.1 implies that

Vl(p17£1 + 617517 s 751) > Vl(p17£17£17+617 v 751)
and
V2(p27£27£2 + 627527 s 752) > V2(p27£2 + 627527 s 752)7
so that Assumption 6 yields

p(p',u',...,p"u") > epua',... p"a"). (14)
However, Assumption 5 and equation (9) imply that :
', a',...,p",a")
= VO(pO’ U0(£1+617£27 e 7571)7 U0(£17£2+627 e 7571)7 ceey UO(EI)E% e 7£n))
= VO(pO’ U0(£17£2+627 e 7571)7 UO(EI) +€17£27 e 7571)7 ceey UO(EI)E% e 7£n))

= o(p',a',...,p"u"). (15)

a contradiction with (14). This establishes the first part.
(2) Now, suppose that p* # p° for some ¢ € N. Given the first part,

we need only consider the case in which p! = p? = ... = p". Let p| > p}
and p? < pJ and consider (p!,al,...,p" u") and (p',ul,...,p" u") with
! and u' as before and

w=u= (... &) (16)



for 2 < ¢ < n. Assumptions 6 and 8.1 imply that

1 1 n ~n

e(p,a,...,p",ua")

= W(Vl(p17£17+617£17 s 751)7 s 7Vl(p17£z c 751’)7 c )
> W(Vl p17£17£1 +€17£17 s 751)7 s 7Vl(p17£i . "751’)7 c )
= (p(plvﬁlv cee ,pn,ﬁn). (17>

However, Assumptions 5 and 8.2 imply that
p(p',a',...,p"a") =
VO(pO, UO(EI + 617527 ce 7571)7 U0(£17£27 ce 7571)7 UO( 17527 ce 7571)7 o )
< VO(pO, U0(£17£27 ce 7571)7 UO(EI + 617527 ce 7571)7 U0(£17£27 ce 7571)7 o )

= p(p',u',...,p", "), (18)
This contradicts (17), establishing the second part.

Theorem 2 says that under the assumptions, the individuals’ and the
observer’s probabilities must be the same if one is to avoid a contradic-
tion. It is related to a negative result reached by Hammond (1981) in the
context of the welfare economics discussion. Hammond’s argument depends
on making EU assumptions and differentiability assumptions, and we show
here that neither assumption is necessary. Mongin (1995) covers a wider
number of Pareto cases than we do here, but even a comparison restricted
to the strong Pareto principle is difficult to pursue in detail, because the
variability needed for his theorems is always found on the probability side,
not on the utility side as in the present theorem.

Disregarding axiomatic dissimilarities, a interesting feature emerges from
the proof of Theorem 2 when it is compared with related arguments.!® The
argument relied not only on applying the ex ante and ex post versions of
the Pareto principle in succession, but also, and less obviously, in applying
the ex ante principle in two different ways. In the second part of the proof,
it was applied to the intuitively natural context in which unanimity in com-
paring prospects is rooted in a prior probabilistic agreement between the
individuals. In the first part, however, it was applied to the less natural
context in which two individuals disagreed in both their probability and

YExample 3 in Mongin (1995) highlights this feature. It is more subdued in other
proofs.
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utility rankings and their two disagreements cancelled out. Since the intu-
itively undesirable (and perhaps unacceptable) application is also needed
for the argument, a suggestion presents itself to get away from the unpleas-
ant conclusion - i.e., to make unanimous comparisons of prospects binding
only in those situations in which individuals happen to agree in their judg-
ments of the relevant probabilities. One may submit that only with such
a restriction can the ex ante principle be reconciled with the ex post one,
when subjective probability assignments do not coincide.!!

5 Appendix

To make the paper self-contained, we summarize here the definitions and
several facts that are needed for the proof of Theorem 1. The main tool
in Gorman’s (1968) [7] separability theorem, which we restate below in an
adapted version.

We say that two real-valued functions defined on the same domain, f
and f*, are ordinally equivalent, if there exists an increasing transformation
1 such that f* = 1 o f. Notice that if the domain of f is a connected set
and f is increasing and continuous, ¥ is continuous iff f* is; it follows in
particular that under the assumptions made on f, f ! is also continuous.

Suppose that X, are non-degenerate intervals in R, h = 1,...,[, and
[ Xpn=1,..Xn — R, f = f(z1,...,21). The order of the components X}
does not matter, so we will keep the same symbol f even if the order is
changed. For any subset of components I C {1,...,l} = H, define z; to
be the restriction of (z1, ..., z;) to the components in I, and z_; to be the
retriction to the remaining components. Define the subset I to be strictly
separable in f if the ordering of the x; defined by f(.,z"7) is independent
of the chosen z~7, or equivalently, if there exist functions g and h such that
for all (z1,..., z1),

f(xlv e xl) = g(h(xl)v x*I)v

g being increasing in its first argument. Define I to be strictly essential
if the ordering on the z; defined by f(.,z”7) is never trivial whatever the
chosen £77, i.e., if for every 277, there are ] and z7* such that

flay,z77) > f(=7", 277).

UThis solution has recently been pursued by Gilboa, Samet, and Schmeidler (2001).
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Here is a known fact about separability. When f is continuous on
Xh=1,..1Xn, then g and h in the the defining equation of separability can
also be chosen to be continuous.'?

The following version of Gorman’s theorem is weaker than the original
but sufficient for the purpose.’

Theorem 3 (Gorman). Suppose that f is continuous on Xp—1,. 1 Xn, with
[ > 4 and each X, being strictly essential. Suppose that I", I* C H are two
subsets of components that are strictly separable in f and have the following
( “overlapping”) properties:

'O, I'\I, I°\I" +0.

Then, there exist continuous and increasing functions g, f', f2, f° such
that

[y, ..,z) = g(fl(xIT\IS) + fQ(IJCImIS) + fS(xIS\IT)v xH\(ITUIS))-

Proof of Theorem 1. STEP 1. For given p, ¢ is a function of the mn
variables ué, which we may rewrite as ¢(.,p). It is a continuous function
because of, say, Assumptions 5 and 7. Arranging the variables into a matrix

.1i=1,...,n

[uj]jzl,...,m
we see that Assumption 5 implies that each row j is separable, and Assump-
tion 6 that each column ¢ is separable, in ¢(.,p). These are overlapping
sets. Assumptions 1 and 4 provide a suitable domain for Gorman’s theorem,
and the strict essentiality condition is met because p(.,p) is increasing in

each uz (from, say, Assumptions 5 and 7). We conclude that ¢(.,p) can be
written as an additively separable function, and in particular that:

Vo(p,u) = V (iio;i(p,u;),p) , (19)

i=1 j=1

12Gee, e.g., Blackorby, Primont and Russell (1978, Theorem 3.3 a) [3].

13Gorman (1968, Theorem 1) weakens the stringent assumption made here that the
components are all strictly essential. For a reexposition, see Blackorby, Primont and
Russell (1978, Theorem 4.7), and for a developped technical treatment, see von Stengel
(1993, Theorem 21, p. 367) [21], who repairs the shortcomings of Gorman’s initial proof.
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0
k)
for some V' that is continuous and increasing in its first argument, and

some set of 03, 1 € N, j € M, that are continuous and increasing in their
second argument.

Equation (19) implies that for any j € M, >, 0" (P, uj) is ordinally
equivalent to u = U i+ uy) and, accordingly, that there exists Fj
such that

A (za;<p,u;>,p) ), 20)
=1

F; being increasing in its first argument. Also, given the continuity of U° and

Yo 0' (p, .),and their connected domain, Fj is continuous. In this equation

p may be set equal to some arbitrary probablhty vector p*. Defining 05(-) =
(p ,-) and Fj(-) = F;(-,p*), we have from (20) that:

Fy <Z<f§<u3>> =U"(uj, ..., uj), J €M, (21)
=1

7

and hence
B (Saeaie) =5 (Sow). e x 22)
i—1 i=1

Introducing the variables 2} = &/ (u}) and the new functions:
~d iy _ i b iy i
Uj(pazj) = O_j(pvo_j (Z])) = Uj(pvuj)v
we get
-1 =
and finally,

ZU P, %) (Zzﬁp>, jeEM (23)

for some function Gj that is continuous and increasing in its first argument.
These are Cauchy equations in z}, t € N. The 6;(-) are continuous and
increasing, which implies that the z; vary over non-degenerate intervals,
Following the classic functional equation theorem, the solution for (23) is,
for all j € M :

53(p. ) = a;(p)z; + bj(p).

14Gee, e.g., Eichorn (1978, Theorem 2.6.3, p.39) [4].
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which implies ' ' o '

o;(p, uj) = a;(p)o;(u;) + b;(p), (24)
with a;(p) positive and continuous since 6; and 5; are increasing and con-
tinuous. Given the M equations just obtained, (19) can be rewritten as

Vo(p,u’ (ZZ (a;(P)oj()) + bj(p)) ,p) . (25)

STEP 2. Returning to the M equations (21), we see that the left-hand
sides must be independent of j, since the right-hand sides are. Selecting the
first equation, defining o¢ = ¢, i € N, F} = ¢°, and recalling the fact that
the functions so defined are increasing and continuous, we have reached the
second conclusion of the theorem:

V(s ) = (5 g' (), G € M.
From the domain Assumptions 1 and 4, we can rewrite (21) as:
F; (Z 0§($i)> =g (Zgi(xi)> , JEM, (26)
i=1 i=1

where zt € U!, i € N, is a state-independent variable. We rewrite (26) as
Pexider equations:

S iy )y =F;log’ (Zy’) , jE M, (27)
3 =1

where ¢ = ' o (¢°) ! and the new variable y* = g'(u') varies over g'(U"),
a non-degenerate interval from the properties of ¢g*. From the functional
equation theorem already used, the solutions to (27) are given by:

oSy =y + d, jEM,
which implies that:
5§(ui) = cjgi(ui) + d;, jEeM, (28)

where ¢; > 0, dj € R. (The sign of ¢; follows from the fact that the & and
g' are increasing; note that ¢; = 1,d! = 0,7 € N.)
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Without loss of generality, ¢; and d;'. can be absorbed into the functions
a; and b; respectively, and equation (25) can be rewritten as

i=1 j=1

Vo(p,u’ (ZZ (ai(p)g' (u}) + b (p)) ,p) . (29)

STEP 3. Combining equations (29) and the consistency condition (x),
we observe that V*(p, u’) is ordinally equivalent to 3~ (aj(p) g’(u;) + b;(p)).

That is to say, for all + € N, there is X} , increasing in its first argument,
such that

Vip,u') =V (Z (a;(p)g' (u}) + bi(p)) ,p) . (30)
j=1
Now, take any vector (p,u’) = (p,u!,...,u’ ) and its corresponding image
by Vi ' ' '
Vi(p,u') ="

From Assumptions 2.1 and 2.2:

Vi(p7u§7"'7 m) V,L(p7 7"'7’U,L')'
Applying (30) to each side of this equation gives:
(Z a;(p ) + bi(p), ) =V (Z a;(p)g'(v') + b;(P),P) . (31
j=1

%1

Since V' is increasing in its first argument, and ¢° is increasing,

() [zj 1a,<p>gi<u;i>]
g > ap) |

Relabelling the coefficients a;(p)/ > i, ak( ) of g'(u ) we conclude that for
all i € N and u'* € X7, U*, and all p €S

Vi(p,u') = (g ) (Z a;(p ) : (32)

which is the first conclusion of the theorem.
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STEP 4. For given p, take any u’ and their images v' = Vi(p, u’), ¢ € N.
Assumptions 2.1 and 2.2 together with the consistency condition (k) imply
that:

W(U17"'7Un) = W(Vl(p7vl7"'7U1)7'"7Vn(p7vn7"'7vn)) (33>
= Vo(vao(vlv'"7Un)7'"7U0(U17"'7Un))'
Comparing (33) with (29), we get:

w« 0 f M "o men
W', . "=V (Z a;(p) [Zg’(v’)l + Zzb}(p),p) L (3
j=1 i—1 j=1i=1
%0
Given that V' is increasing in its first argument and a;(p) > 0, W(v', ..., v")

and 37, ¢'(v") must be ordinally equivalent. That is to say, there exists w®
such that:

W) = (g ). p)

Now, the equation holds for all v* € U* and p €S}. The left-hand side is
independent of p, so the right-hand side must also be, and the equation
can be rewritten:

W(',... 0" = wO(Zgi(vi))-

Given the continuity of W and 3" ¢%, and their connected domain (Assump-
tions 2.1 and 2.2), w® is continuous, so we have just obtained the third
conclusion of the theorem.

This conclusion with (x) implies that:

n

VoD, U (g, oy u))s oo Uy vy uy)) = w’ (3 g (Vi(pyu))

= W' gog (f aj(p)g"(u;-)) )
- WS o) S o)
= W0’ O ul))

Putting v° = w® o u°, a continuous and increasing function, we have just
obtained the fourth desired result.
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