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The microstructure and dynamics of a colloidal system interacting via short-ranged interparticle
potential is studied by ultra-small-angle x-ray scattering and x-ray photon correlation spectroscopy. A
colloidal gas-liquid type transition is induced when the short-ranged attractive interactions attain
sufficient magnitude. The development of liquidlike structure is preceded by a systematic transition in
the particle dynamics from diffusive to constrained motion and then completely frozen behavior. This
demonstrates the existence of a jamming transition induced by strong short-ranged attractive inter-
actions even at low packing fractions.
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secondary minimum in the interparticle potential [12]. �� 0:08.
Colloidal systems have been used extensively in the
past to mimic phase transitions such as freezing, melting,
and glass transition on a mesoscopic scale [1,2]. When the
particles are interacting via a short-ranged attractive
potential, a gas-liquid-like transition can be realized by
varying the strength and the range of interaction [3].
Recently, such short-ranged attractive colloidal systems
have received renewed attention [4–9].When the strength
of short-ranged attraction or stickiness becomes suffi-
ciently greater than the thermal energy, particle motions
can be jammed even at low volume fractions (�) [5].
Prior to complete freezing of particle dynamics, the
system behaves nonergodic and it is referred to as an
attractive colloidal glass [5]. This is different from the
conventional repulsive colloidal glass where the ergodic-
ity is lost due to blocking of the movements of particles
by the dense surrounding cages formed by their nearest
neighbors [2]. Such systems usually jam under the action
of an externally applied stress [10].

A short-ranged attractive interaction of controlled
magnitude can be realized in several different ways.
The well-known example is sterically stabilized colloidal
particles in a marginal solvent [3]. Here, the hard-sphere-
like particles transform to sticky hard spheres at lower
temperatures. A similar situation arises when a nonad-
sorbing polymer is added to an otherwise repulsive col-
loidal system [1]. In this case, the polymer induced
osmotic depletion effect leads to an effective attraction
between particles. There is an even more convenient way
to induce a short-ranged attractive potential and thereby
obtain a colloidal gas-liquid transition [11]. Certain
charge stabilized colloidal systems when suspended in a
binary mixture solvent near its liquid-liquid coexistence
boundary, a temperature dependent absorption process
can lead to a fully reversible colloidal aggregation [11].
Below the aggregation temperature ( TA), the colloids are
stabilized by repulsive electrostatic interactions. Above
TA, the adsorbed wetting layer weakens the electrostatic
double layer stabilizing the suspension and result in a
0031-9007=03=90(18)=188301(4)$20.00 
The transition is fully reversible and the control parame-
ter is the temperature difference jTA � Tj.

The interparticle potential in short-ranged attractive
colloidal systems can be approximately described by
hard-sphere repulsion with an attractive square well [5].
The phase diagram of these systems has been extensively
studied using Ornstein-Zernike integral equation in the
Percus-Yevick approximation [3], and revealed the exis-
tence of binodal and spinodal regions. More recent mode-
coupling analysis of such systems showed several new
features which include two kinetic transitions [5]. As
in the case of repulsive systems, there is a critical line
of glass transition in the high � range [4,5]. A more
striking feature is a second glass transition at lower �
ranges caused by strong attractive interaction [5]. The
attractive and repulsive glass transition lines meet to
form a reentrant region of glass-liquid-glass phases [5,9].

This Letter presents a study of microstructure and
dynamics near an attractive colloidal glass transition
using ultra-small-angle x-ray scattering (USAXS) and
x-ray photon correlation spectroscopy (XPCS). The tran-
sition is induced by a temperature dependent adsorption
process in a charge stabilized colloidal system. The results
demonstrate that the dynamics is completely frozen as the
liquidlike static structure is developed.

The experimental system consisted of Stöber silica
colloids suspended in a binary mixture of 2,6 lutidine
and heavy water. This system undergoes a reversible
colloidal aggregation at TA in the one-phase region of
the solvent near its bulk coexistence [11]. The details of
this system and discussion about the mechanism of the
aggregation process can be found elsewhere [12]. The
essential features are identical for different colloid vol-
ume fractions (�) and if heavy water is replaced by
normal water except for the exact value of TA. The
mean radius of the particles deduced from the poly-
disperse sphere model [13] was 60.4 nm with a poly-
dispersity of 8.3%. Typical � used was in the range
0.04–0.1 and the results reported here correspond to
2003 The American Physical Society 188301-1
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The USAXS measurements were performed at the
High Brilliance beam line (ID2) at the European
Synchrotron Radiation Facility (ESRF) in Grenoble,
France [14]. The crossed analyzer configuration in the
Bonse-Hart setup permitted to obtain intensity profiles
without slit smearing and the scattered intensity, I�q�,
over 8 orders of magnitude was acquired using a high-
dynamic range avalanche photodiode detector. The XPCS
measurements were made at the Troı̈ka beam line (ID10A)
at the ESRF [15]. The coherent part of the undulator
radiation was selected by a 12 �m pinhole before the
sample. The homodyne intensity autocorrelation func-
tion, g2�t�, is obtained by an ALV-5000 digital correlator.
The incident x-ray wavelength (�o) was 1 and 1:56 �A for
USAXS and XPCS, respectively.

Typical I�q� before and after the aggregation (TA �
26:805 �C) is shown in Fig. 1. Here, the scattering vector,
q � �4=�o� sin��=2�, with � the scattering angle.
Figure 2 depicts the corresponding structure factor,
S�q�, obtained using the measured single particle scat-
tering function, P�q�. The data clearly show the change
from repulsive to attractive behavior near TA. The
short-range character of the interaction is directly evi-
dent and the low q upturn in S�q� typical of attractive
interactions was noticed only above 26:75 �C. Even well
above TA, the height of the first maxima of S�q� remained
below 2.85—the Hansen-Verlet criterion for freezing
[2]. Therefore, this aggregation has the features of a
gas-liquid transition of colloids. The first peak position
of S�q� in Fig. 2(c) corresponds to particles in close
contact (qR� 3:24). In addition, the USAXS data
(Fig. 1) show that the development of liquidlike struc-
ture above TA is associated with a significant additional
scattering in the ultra-small-angle region. This excess
intensity also decreases like q�4 similar to that of P�q�
at large q values.
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FIG. 1. Evolution of USAXS intensity in the vicinity of TA.
The continuous lines are fits using Eq. (3). The different
scattering curves have been displaced for the sake of clarity.
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In order to illustrate the particle dynamics across the
transition, Fig. 3 depicts the behavior of g2�t� in the
vicinity of TA at q � 0:019 nm�1. At this q value, static
I�q� showed only a small variation below and just above
TA. Below TA, g2�t� decayed exponentially with time (t),
g2�t� � 1� g�0� exp��2�t�, where � is the homodyne
decay rate. This is expected for a weakly interacting
system and in this q range, � � DCq

2, with DC the
collective diffusion constant of the Brownian particles
[1,16]. Near TA, the behavior of g2�t� changed to stretched
exponential decay, g2�t� � 1� g�0� exp	��t=���
 with
1=� � 2� when the stretching exponent, � � 1. This
type of relaxation indicates constrained motions of par-
ticles as that near a glass transition [17,18]. Furthermore,
� value continuously decreased and within a narrow
temperature range ( � 0:01 �C), the system transformed
to a completely frozen dynamics corresponding to time
averaged g2�t� � 1 (nonfluctuating speckle) [18].

In order to deduce the parameters of interparticle
pair potential, U�r�, above and below TA, the measured
intensities were modeled in terms of the S�q� of a square-
well system obtained using the Percus-Yevick (PY) clo-
sure relation within the mean-spherical approximation
[19,20]. For square-well attractive system, U�r� has the
following form:
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FIG. 2. Structure factor corresponding to the I�q� data in
Fig. 1 demonstrating the transition from repulsive (a) to attrac-
tive (b), and aggregated state (c) . The slight discrepancy
around q � 0:07 nm�1 arises from the P�q� division.
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FIG. 4. Evolution of static and dynamic parameters as the
system transformed from repulsive to attractive behavior. � is
deduced from g2�t� corresponding to q � 0:018 nm�1. The
vertical line indicates the temperature at which g2�t� changed
from single exponential to stretched exponential behavior. The
fitted error bars are smaller than the size of the symbol.

FIG. 3. Measured homodyne intensity autocorrelation func-
tion in the vicinity of TA ( � 26:80 �C). Fitted lines correspond
to stretched exponential decay with � values indicated in the
legend. Single exponential decay was observed at 25:5 �C while
g2�t� became flat ( � 1) at 26:81 �C.
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U�r� �

(1 0< r< �;
�" �< r < ��;
0 ��< r;

(1)

where � is an effective hard-sphere diameter, and " and
� are depth and range of the square well, respectively.
S�q� is related to U�r� through the direct correlation
function, C�r� [20]. S�q� � 1=	1� �CC�q�
, where C�q�
is the Fourier transformation of C�r� and �C is the colloid
number density related to � ( � �C�

3=6). For spheri-
cal particles, I�q� is related to S�q� and P�q� by the
following simple relation [19],

I�q� � NP�q�S�q�; (2)

where N / �C, and P�q� is obtained from a dilute sample
(�� 0:005) and fitted to a polydisperse sphere scattering
function [13]. Above TA, there is a strong scattering at
small q’s arising from the colloidal aggregates as shown
in Fig. 1. This contribution can be described by the
Debye-Büche function [21] and the resulting expression
for I�q� is given by

I�q� � NP�q�
�
S�q� �

SM
�1� q2�2�2

�
; (3)

where SM / average mass and � / characteristic size of
the clusters. The second term is significant only well
above TA (27:05 �C) where the dynamics showed com-
pletely frozen behavior. As evident in Figs. 1 and 2, the
contribution arising from the two terms in Eq. (3) can be
well separated.

In the fitting procedure for I�q�, the parameters � and
�C, were allowed to vary around their experimental val-
ues, and " and � were free parameters. Removed from TA,
the repulsive interaction is actually of the Yukawa form
[1,2] but in the case of weak interactions, S�q� can be
approximately described by a hard-sphere potential with
an effective � (�143 nm). However, � approached a
188301-3
value close to the particle diameter (�121 nm) near TA.
When the second term in Eq. (3) became significant, SM
and � were deduced independently from the low q region.
The continuous lines in Figs. 1 and 2 show the corre-
sponding fits to Eq. (3). The good agreement between the
data and the fits in Fig. 2 demonstrate that the square-well
model captures the essence of interactions in this system.
The resulting parameters at different temperatures are
depicted in Fig. 4. When the system is aggregated, the
effective � within the clusters became much higher than
in the bulk. This led to an apparent decrease of � and
eventually, the S�q� of interparticle interactions is ade-
quately described by the hard-sphere part together with
the Debye-Büche function. Alternatively, this implies the
scenario where the particles are held together by the
interfacial tension of the embedding fluid droplet [12].
The Porod-type slope observed at very small q’s is con-
sistent with dropletlike colloidal clusters [22] and the
maximum value of � was about 8 �m. In addition, for
�� 0:49, PY closure tends to overpredict the structure
[19] resulting in small deviations in the fit.
188301-3



FIG. 5. Intermediate scattering functions near TA. The con-
tinuous lines correspond to stretched exponential decay with
� � 0:28.
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In order to make a direct comparison of static and
dynamic parameters, the variation of � (ergodic case)
is also plotted in Fig. 4. The decrease of � at a q value
where S�q� remained constant corresponds to the slowing
down of collective diffusion. The observed behavior of
� (� DCq2) near TA is reminiscent of a power law [23]
DC � �TA � T� , with exponent  � 0:3. However, no
universal value for the exponent  was found among
different samples studied. This suggests that TA � T
may not be the appropriate scaling variable. The transi-
tion to stretched exponential behavior occurred when the
attractive depth reached about kBT and the dynamics is
completely frozen for " > 2kBT. The onset of nonergodic
behavior is indicated by the intermediate scattering
function, f�q; t�, which is given by g2�q; t� � 1�
g�0�f�q; t�2 [18]. The behavior of f�q; t� near TA is shown
in Fig. 5. The nonzero value of f�q; t� at long times
indicates nonergodic behavior [4,5]. A systematic study
of f�q; t! 1� is compounded by the incoherent number
fluctuations resulting from the micron sized colloidal
clusters traversing across the 12 �m x-ray beam.

In summary, the static and the dynamic behavior of
colloids in the vicinity of adsorption-induced colloidal
aggregation is consistent with an attractive glass transi-
tion caused by the strong short-ranged attractive interac-
tions. A complete jamming of the particle dynamics is
observed while the static structure showed liquidlike
ordering. These observations are consistent with recent
mode-coupling predictions concerning colloidal particles
interacting via a deep square-well potential [5] and gen-
eralized jamming phase diagram of attractive colloidal
systems [6]. Finally, identical transition in static behavior
and nonfluctuating speckle can be observed in a variety of
other colloidal systems interacting via short-ranged at-
tractive potential.
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