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Central Limit Theorems for Wavelet Packet
Decompositions of Stationary Random

Processes

Abdourrahmane M. Atto, Dominique Pastor

Abstract

This paper provides central limit theorems for the wavetetiqet decomposition of stationary band-limited random
processes. The asymptotic analysis is performed for theesegs of the wavelet packet coefficients returned at the
nodes of any given path of th&/-band wavelet packet decomposition tree. It is shown thahefinput process
is centred and strictly stationary, these sequences agener distribution to white Gaussian processes when the
resolution level increases, provided that the decompusititers satisfy a suitable property of regularity. For any
given path, the variance of the limit white Gaussian proatis=ctly relates to the value of the input process power
spectral density at a specific frequency. Experimentalli®ave presented to appreciate the convergence rate that ca

be expected in practical cases when Daubechies filters atk us

Index Terms

Wavelet transforms, Band-limited stochastic processpsctgal analysis.

I. INTRODUCTION

Wavelet Packet Transforms allow flexible representatioihfunctions by providing various Hilbertian bases.
Among derivates of the theory, the Discrete Wavelet PackahSform (DWPT) is simple - in the sense that it
can be implemented via a fast algorithm - and has some retarkeoperties such as the sparse representation it

provides for smooth signals [1], [2] or the ‘whitening effeit asymptotically yields for a large class of random

hal-00241849, version 1 - 6 Feb 2008

processes [3], [4]. Thus, such wavelet representationsfageeat interest in signal processing, time-series aisalys

and communication applications.
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Given a natural numbei/ larger than or equal t@, the AM/-Band Discrete Wavelet Packet Transform, hereafter
abbreviated as\/-DWPT, achieves an orthogonal decomposition of a functiepaceU via a double-indexed
sequencg§ W ,, }jen n—o,1,...m5—1 Of nested functional subspaces (see section Il), wNere{1,2, ...} henceforth
stands for the set of natural numbers. Ea8y ,, is the closure of a space spanned by wavelet packet functions
j is called the resolution level and the shift parameteis valued in{0,1,..., M7 — 1}. The standard DWPT
corresponds to the particular case whéfe= 2.

Throughout,X stands for some Hilbertian and real-valued centred randauegs, that is some process such
that X (t) € R whereR is the set of real number§[X (¢)] = 0 and E[X (¢)?] < oo for everyt € R. The set
of integers being denoted W, let ¢;,, = (¢;n[k])kez Stand for the coefficients returned by thé-DWPT of
X at node(j,n). At each resolution level, the discrete random proegssresults from the projection ok on
W, ... If the shift parameten is a constant function of the resolution leyeandj tends to infinity, [3] states the
following two results. First, ifX is Wide-Sense Stationary (WSS) and has power spectraltgdensiereafter called
spectrum, it follows from [3, Corollary 5 of Proposition 1ftjat, whenj tends to infinity, the random variables
¢;nlk], k € Z, tend to decorrelate and that the variance of every randomablac; ., [k] tends toy(0); the discrete
random process; ,, is said to be asymptotically decorrelated with varian¢e) when j tends to infinity. The
second result concerns the case where the random prateéssstrictly stationary. According to [3, Proposition
12], the sequencé:; ) en, associated with such a process, converges, in the foltpidistributional’ sense, to
a discrete white Gaussian process with standard deviatiohwhen j tends tooo: given any natural numbeW
and anyN-uple k1, k2, . .., kn Of integers, the distribution of the random vector,, [k1], ¢j n[k2], - - -, ¢in[kn])
converges, wher tends to infinity, to the centred-variate normal distribution\/(0,~(0)Ix) with covariance
matrix v(0)Iy, wherely is the N x N identity matrix.

The case where the shift parameteis constant withy is restrictive because most of the paths of an DWPT tree
involve nodeqj, n) whose shift parameters= n(j) vary with j. Examples will be given below (see section IlI-A).
For such paths, analysing the statistical behaviour of gugienceg; ,, ;) returned by the DWPT whej tends to
infinity becomes more intricate and the theoretical resufif8] do not apply directly. By using appropriate filters,
the asymptotic decorrelation of the random procgssreturned by the standard DWPT is however established in
[4, section 3] for any shift parametarwhich may possibly depend ghn More specifically, in [4], the DWPT filters
are denoted bya([{] and h[f]. Their Fourier transformﬂ([f] andH{r] are assumed to tend almost everywhere (a.e.)
to the Fourier transforms of the Shannon DWPT filters wherptmameter:, called theorder of the DWPT filters,
increases. Daubechies filters are such filterbeing the number of vanishing moments of the wavelet functio
associated Witmg]; Battle-Lemarié filters are also such filtersbeing the spline order of the scaling function
associated witrhg]. It is then by increasing the order of such filters with resgecthe resolution level that the

asymptotic decorrelation is obtained. The asymptotic e/afithe standard deviation of the sequengg when j
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increases is then given by the value~pft a specific point of0, «]. This point depends on the path followed in
the DWPT tree.

The present paper extends the results given in [3], [4] inctme where thé/-DWPT is achieved by means of
M-DWPT filters 1), m = 0,1,2,...,M — 1 that satisfy the same type of properties as those considergd.
Namely, the Fourier transfomﬁ,[,’;], m=0,1,...,M — 1, of these filters are assumed to tend a.e. to the Fourier
transforms of the Shannal -DWPT filters when the order increases. These extensions are asymptotic properties
of the M-DWPT when the resolution level and the order are large enough. They apply to any arbitrary path
of the M-DWPT of a Hilbertian random process with spectrunry. They hold true when the shift parameter
is any, possibly unbounded, function pf First, if X is WSS, the asymptotic decorrelation of the process is
obtained, as in [4], by increasing the ordepf the filters when the resolution levglis large enough; as in [4],
the asymptotic variance of the sequence tends to the valgeatbfa specific point of0, 7], this point depending
on the path followed in thé//-DWPT decomposition tree. Second Xf is strictly stationary, the process,, is
proved to tend in distribution to a discrete white Gaussiarc@ss whose variance is given according to the result
established in the WSS case. Asymptotic Gaussianity ibkstted by proving that cumulants of order larger than
2 vanish when the resolution levglis large enough and the orderis also large enough with respect to

The organization of the paper is the following. Section Itaks basics about thé/-DWPT, introduces the
ShannonM-DWPT, which will be instrumental for establishing the magsults of the paper. After presenting
some preliminary results concerning th&-DPWT of random processes, section Ill states asymptotipgaties for
the autocorrelation functio®; ,, of the process; . The input process is assumed to be WSS and the asymptotic
properties of section Il are established whH;Lﬂ, m=20,1,...,M — 1, tend a.e. to the Fourier transforms of the
ShannonM -DWPT filters when the order of these filters tends to infinity. By considering this typefitiér again,
the convergence in distribution of the sequerieg, ), cn is studied in section IV, for any arbitrary path of the
M-DWPT, when the input process is strictly stationary. SecW provides experimental tests, and finally, section

VI concludes this work.

Il. THE M-DWPT

Section 1I-A presents some basics concerning MMieDWPT. Further details about this kind of transform can
be found in [5], among others. Section II-B explains how tlahp of theM-DWPT decomposition tree can be
represented by/-ary sequences. This representation will be useful forrildag wavelet packet subbands. Section
[I-C introduces the Shannoh/-DWPT whose properties are crucial for establishing theltesstated in sections

Il and IV.
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A. General formulas

In what follows, j and M are natural numbers antf > 2. An M-DWPT is performed by using/-DWPT
filters with impulse responsds,,, m = 0,1,2,..., M — 1, that satisfy the following properties. First, each filter

h., is an element of?(Z) and its Fourier transform is hereafter defined by

1 .
H,,(w) = Wi Z ho [€] exp (—ibw) . 1)
LEZ
Second, the matrix
Hq(w) Hy(w) Hpp—1(w)
Ho(w + §7) Hy(w+ 1) Hy_q(w+ )
Ho(u+(M—;{1E) Hl(w+£M;—{1)”) HA/[,l(u)JrgM;—{l)ﬂ)

is unitary for every real number. The unitary nature of this matrix implies thatl,,,(w)| < 1 for everym =
0,1,...,M —1 and everyw € R. For further details about the computation/aFDWPT filters, the reader is asked
to refer to [5].

Let ® be a function such thatr,® : k € Z} is an orthonormal system df?(R), wherer,® :t+—— ®(t — k).
Let U be the closure of the space spanned by this orthonormalnsy§iefine the following sequence of elements

of L(R) by setting

Win(t) = VMY hyn[()®(ME — £) 2)
JasyA
and
Wtntm(t) = VM > o [(W,, (Mt — £) (3)
LEL

forneNandm =0,1,2,...,M — 1. Eq. (2) can be re-written as
FWo(w) = Hp(w/M)F®(w/M), 4)

where, givenf € L'(R) U L?(R), Ff henceforth stands for the Fourier transformfoéind is given byFf(w) =
[ f(t)exp(—iwt)dt if f € L*(R). In the same way, it follows from Eq. (3) that

FWitntm(w) = Hp(w/M)FWp(w/M) (5)

forn e Nandm = 0,1,..., M — 1. Note that the functior® in Eqg. (2) is not necessarily the standard scaling
function associated with the low-pass filteg. If ® is this scaling function, we havd’, = ®. In this case, Egs.
(3) and (5) hold true even it = 0.

For any pair(j,n) of natural numbers, we set
Win(t) = MW, (M~71) (6)
and, according to Egs. (1), (5) and (6), we have

FWisimnsm (W) = VM H,, (M) FW; . (w). 7)

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY,ANUARY 2008 5

Formulas (4), (5) and (7) hold true pointwise almost evergne6]. SetW; ,, . = Tar 1 Wj.n, that is
Wjng(t) = Wt — M7k) = M~32W, (M7t — k). (8)

Then, the se{W; . : k € Z} is an orthonormal system df*(R). The closure of the functional space spanned by
{W;nk: k € Z} will hereafter be called thevavelet packet spac®; ,,. Any W ,, x, and thus, any¥; ,, since
W;n = Wijno and anyW,, sinceW,, = Wy ., 0, iS hereafter called wavelet packet function

The M-DWPT decomposition of the function spatkeconsists in the splitting oJ into M orthogonal subspaces:

M—1
U= P Wi, 9)
m=0
and by recursively applying the following splitting
M—-1
Wj,n = @ WjJrl.,IWnera (10)
m=0
for every natural numbef and everyn = 0,1,2,..., M7 — 1. In this decomposition{ W, 11 rmn+m.k : k € Z} is

an orthonormal basis of the vector spa&; 1 rrn+m. The2 and 3-DWPT decomposition trees of figures 1 and

2 are examples of/-DWPTSs.

U
//\
Wi Wi,
/\
Wy Wy, Wy Wy 3

Fig. 1. 2-DWPT decomposition tree diJ down to resolution level = 3.

U
Wi Wi Wi

T e e
Wiy Wao1 Wao Wos Woys Was Wag Wor Wog

Fig. 2. 3-DWPT decomposition tree diJ down to resolution level = 2.

According to Egs. (9) and (10)J can be split into orthogonal sums of wavelet packet spacess,Tgiven an

elementf of U, the coefficients of the projection ¢f on a spacéW;,, define a sequenadg; »[k])rez Where

¢inll] = /R FEOW; (). (11)

The wavelet function spaces considered in the sequel aayalthose involved in the computation of th&-DWPT

through Egs. (9) and (10). Therefore, aW; ,, encountered below is such thate {0, ..., M7 — 1}.
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B. M-ary representations of the paths of thé-DWPT decomposition tree

A given wavelet packet patR is described by a sequence of nested functional subspacesU, {W ;) }jen).

whereW; ,,;y € W,_; »(;—1)- By construction, eacWV ,, ;) is obtained by recursively decomposibigby means

of a particular sequence of filtef4,,,,)¢=12.... ; where eachn, belongs to{0,1,..., M —1}. Therefore, the shift
parameter is _
J
n() =Y meM~t € {0,1,..., M7 -1} (12)
=1

at every resolution level. Thus, path® can be assigned to thd-ary sequencémy),>, of elements of0, 1,..., M —

1}. This sequence characterizes the pack®; ,,(;) } jen, where the shift parameter= n(j) is given at resolution

level j by Eqg. (12). Note also the easy relation
n(j) = Mn(j — 1) + my, (13)

for j € N, with the conventiom(0) = 0.

Conversely, given any arbitrady/-ary sequence = (my)sn Where eachn, is an element of0,1,..., M —1},
the finite subsequenden,).=12,... ; formed by the firstj terms of A, defines a unique non negative integey)
of the form given by Eq. (12) and is thus associated with a umigyavelet packet space located at n¢gle.(5))
of the M-DWPT decomposition tree.

According to the discussion above, evev§-DWPT decomposition path is associated with a unique semuen
A = (mye)een Of elements off0,1,..., M — 1} andvice versa From now on, any gived/-DWPT decomposition
path will be represented by aW-ary sequenca. Since the shift parameterdepends oy and A via Eq. (12), the
notationn = n(j) will hereafter be used to indicate this dependence. Thezem M -ary sequence associated

with an M-DWPT decomposition path specifies a unique sequéNée,, ;) en Of wavelet packets.
Example 1:consider the sequence
A0 = (070705070707"')'

We haven,, (j) = 0 for every natural number. Thus,)\ is associated with the paty,, = (U, {W,¢};en) located
at the far left hand side of the wavelet packet tree. This patinesponds to the standard wavelet approximation

path since the filteh is used at every resolution level. Now, let us consider tlipisace
A= (M -1,0,0,0,0,0,---).

For this sequence, we have,, (j) = (M — 1)M’~!. This sequence is thus associated with the gath =
(U, {W; (ar—1)ms-1 }jen) Obtained by using filteh, ; at the first resolution level and filtér, at every resolution

level j > 2.

We conclude this section with an easy lemma which will proseful in the sequel.
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Lemma 1:Forn = n(j) given by Eq. (12), we have

J

FWy(w) = lH Hmz(#)
/=1

f@(%). (14)

Proof: See appendix A. ]

C. Shannon/-DWPT and the Paley-Wiener spacemoband-limited functions

The Shannod/-DWPT filters are hereafter denotéd, for m = 0,1,..., M —1. These filters are ideal low-pass,
band-pass and high-pass filters. The Fourier transform pfdnis given by

Hy(w) =Y Aa,,(w—270), (15)

LEL

whereA,, = [—(’”*Tl)”, —%] U [%, (mxfl)“}. The scaling functionb> associated with these filters is defined

for everyt € R by ®5(t) = sinc(t) = sin(nt) /7t with ®°(0) = 1. The Fourier transform of this scaling function is
F&° =1_, ), (16)

where I denotes the indicator function of a given g€t 1x (z) = 1 if x € K and I (z) = 0, otherwise.

The closureU® of the space spanned by the orthonormal sysfep®® : k € Z} is then the Paley-Wiener (PW)
space of those elements &f(R) that arer band-limited in the sense that their Fourier transform igpsuted
within [—m, 7). Any element of this space satisfies Shannon’s samplingeheoTherefore, when th&/-DWPT
concerns the PW spadé®, the input data for the decomposition of any elemgmif this functional space are the
samples{f[k]}rez of f.

The PW spacdJ® will play a crucial role in the sequel for the following reasd.et X be any band-limited

WSS random process whose spectrum is supported wiithinr]. Therefore, we have (see [4, Appendix D])
X[k] = / X(t)D(t — k)dt, (17)
R

so that the PW spac®® is the natural representation space of such a processM«IIWPT of X can thus be
initialized with the samples([k], k € Z.

Now, let us consider the Shannai-DWPT of the PW spac®®°. The wavelet packet functioﬁsfﬁn of this M-
DWPT can be computed by means of Egs. (2), (3) and (6) by gettie= ®°> andh,,, = k>, m=0,1,..., M —1.
The Fourier transforms of these wavelet packet functioesgaren by the following lemma. This lemma extends

[7, Proposition 8.2, p. 328] since the latter is obtained pglgng the former withM = 2.

Proposition 1: For every non-negative integgrand everyn € {0, ..., M7 — 1},

FW2, = M1,

7,G(n)?

(18)
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where, for any non-negative integky

[ k+D)7m  krm kr (k4 D)m
Sl R V7] Il PV A VE R (19
and G is the map defined by recursively setting, for=0,1,..., M —1 and¢=0,1,2,...
MG)+m if G(¢)is eve
G(ME+m) = ® (£)is even (20)
MG{)—m+ M -1 if G(¢)is odd
with G(0) = 0.
Proof: See appendix B. In this appendix and throughout the resteoptper, we set
kr (k4 Dm
+ _
Bk = [ﬁ T] @)
for any pair(j, k) of non-negative integers. [ ]

The support of]-"Wﬁn is Aj,, Wherep = G(n). The restriction ofG to the set{0,1,...,M’ — 1} is a
permutation of this set. This permutation induces a frequea-ordering of the Shannon wavelet pacl(éwﬁn,
n =0,1,...,M7 — 1. The frequency ordering yielded by this permutation is gifer the Shannor2-DWPT

I . ) " n
(the standard DWPT) angtDWPT in figures 3 and 4 respectively. In these figures, thetigespart A7 of the

frequency support of the functiaﬁWﬁn is given for each resolution levgl under consideration and each shift

parametemn = 0,1,..., M7 — 1.
US
bl

Wi A4

[0, 7] (5. 7]
wg,f} wg 1 W%,S Wg 2
[0, 7] (%, 3] (3%, 7] (5, 3]

Wg,o Wg,l ;Ngs Wséz W§,7 W§,6 W§,4 W§,5

s T

Fig. 3. Re-ordering of the Shann@DWPT decomposition tree. The positive part of the suppbt:FWJSn is indicated beIoWW? "

us
[_W’T‘—]
/\
Wio W3, W3,
[0, 5] 5. %] (&, 7]
W;o w%,l Wg,z Wg,s Wg,zx Wg,s Wg,s Wg,? w%,s
03] (5.5 33 15,50 (5 50 5.9 1570 (%) 1%

Fig. 4. Re-ordering of the Shann@aDWPT decomposition tree. The positive part of the suppbt:FWJSn is indicated beIoWW? n
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IIl. ASYMPTOTIC ANALYSIS FOR THE AUTOCORRELATION FUNCTIONS OF TE M -DWPT OF SECONBORDER

WSSRANDOM PROCESSES

Let X denote a centred second-order real random process assont@ddontinuous in quadratic mean. The

autocorrelation function o', denoted byR, is defined by

The projection ofX on W ,, yields a sequence of random variables, the wavelet padedficientf X:
cinlk] = / XYW, nr(t)dt, keLZ, (22)
R

provided that the integral
] B OWs s Wins (51t 23)
R2

exists, which will be assumed in the rest of the paper singanconly used wavelet functions are compactly
supported or have sufficiently fast decay [8]. The sequeiendyy Eq. (22) defines the discrete random process
¢in = (¢jnlk])kez Of the wavelet packetoefficientsof X at any resolution levej and for any shift parameter

ne{0,1,..., M7 —1}.

A. Preliminary results

Let R, ,, stand for the autocorrelation function of the random preegs. We have
Rjnlk, 0] = B [cjn[k]cjnll]
= // R(t, s)W; ks (6)W; n.e(s)dtds. (24)
R2

If X is WSS, we writeR(t, s) = R(t — s) with some usual and slight abuse of language. From Eq. (2&)en

follows that
Rjnlk, (] =// R()Wjnk(t + 8)Wjpe(s)dtds. (25)
R2

In the sequel, the spectrumof X, that is, the Fourier transform a®, is assumed to exist. By using Fubini’s
theorem and Parseval’'s equality, we can proceed as in [4ergip C] to derive from Egs. (8) and (25) that the
autocorrelation function of; , can be written:

Rinliot] = 5= [ 1G5 FWa @) exp (il = 0o) o (26)

Thus, ¢, is WSS. For anyk, ¢ € Z, and with the same abuse of language as above, the ¥lué:, (] of the

autocorrelation function of the discrete random proeggsis R; [k — ¢] with

R;n[k] ! / 7(%)|}"Wn(w)|2exp(ikw)dw. (27)

:%R
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Let us assume that € L°°(R) and is continuous ab. These two assumptions have two easy consequences.
First, the integrand on the right hand side (rhs) of Eq. (87hiegrable since its absolute value is upper-bounded by
[7]loc | FWo (-)|?, whose integral equal$y||; second, the limit ofy(5%) is 7(0) when tends toco. Therefore,
for every given natural numbert, it follows from Lebesgue’s dominated convergence theoapplied to Eq. (27)

that

lim R, [k] = L / Y(0)| FW,,(w)|* exp (ikw) dw
j—too 2m Jr

= 7(0)4[k], (28)

whered[] is the standard Kronecker symbol defined for every intdgerZ by

5[k] = 1 if m=0,
0 if m=#0.
The result thus obtained is given in [3, Corollary 5].

Now, let P = (U, {W, ,,, (j};en) be some path of thé/-DWPT decomposition tree where= (m¢)sen is a
sequence of elements ¢6, 1,..., M — 1}. At each resolution leve], and as highlighted by the notation used to
designate pattP, the shift parameter is the functionn = n,(j) of j. We then have two cases. First,if, is a
constant function of, it derives from Eq. (13) thak = ) is the null sequence, already considered in example 1.
In this case, the shift parametey (;) is 0 at each resolution levegl and theM-DWPT of X through pathP = P,
consists of an infinite sequence of low-pass filters. The welzdion is then guaranteed by Eq. (28) (see also [3,
Corollary 5]). The second case is that of a functiop which is not constant withy. For instance, consider the
sequence\; given in example 1, or the sequende= (1,1,...) for which n)(j) = M7 — 1 so that the nodes
(4, M7 — 1) are those of the path located at the extreme rhs of M®WPT decomposition tree (see figures 1
and 2). In such cases wherg, is not a constant function of, the asymptotic decorrelation of the/-DWPT
coefficients at nod¢j, nx(j)) whenj tends tooc is no longer a mere consequence of Egs. (27) and (28).

In order to derive the behaviour of the autocorrelation fioms at nodesj, n,(j)) of a given path whem)
is not a constant function of, it is convenient to write the expression given by Eq. (27%)tfte autocorrelation

function in the form
1 .
R; . [k] = o / 'y(w)|.7:Wj7n(w)|2 exp (iMjkw) dw. (29)
T JR
This equality derives from Eq. (27) after a straightforwalénge of variable and by taking into account that
FWjn(w) = MI2FW,(Miw), (30)

which follows from Eq. (6). The purpose of the next sectiorthien to analyse the behaviour &; ,, when the
M-DWPT filters are the Shannon filters or approximate, in aaiersense, these Shannon filters. From now on,

the decomposition space is the PW sp&tefor its suitability regarding practical applications (ssection 11-C).
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B. Asymptotic decorrelation achieved By-DWPT

We start by considering the case where flieDWPT is performed via the Shanndd-DWPT filters presented
in section II-C. The result obtained in this case is lemma RisTemma is then useful to establish the main
result of this section, namely theorem 1. This theorem appido M/-DWPT filters that approximate, in a sense
specified below, the Shanndd -DWPT filters. Lemma 2 as well as theorem 1 concern the caseevthe process
to decompose is band-limited and WSS. Therefore, the deasitiqn space considered in both statements is the
PW spaceU® since it is the natural representation space for banddunit/SS processes (see Eq. (17)).

With the same notations as above, et (m¢).cny be anM-ary sequence of elements @f, 1, ..., M —1}. Con-
sider the Shannoi/-DWPT, that is, the\/-DWPT associated with the Shanndh-DWPT filters(hfn)mzo, o M—1-
Let Py = (US, {Wim(j)}jeN) be the path associated within the Shannom/-DWPT decomposition tree. It

(), Wherepy(j) = G(na(j)). Forj € N, the sets

follows from proposition 1 that the support me(j) is Aj

Aipi(i) are nested intervals whose diameters tend. tdherefore, their intersection contains only one paift).

It then follows from (19) that

o) = lim R2UT (31)

Let X be some centred second-order WSS random process, corgimuquadratic mean, with spectrum The

autocorrelation functiomjs-_’n resulting from the projection oK on stn derives from Eq. (29) and is given by

1 .

an[k] =5 / 'y(w)|.7:Wan(w)|QeXp (iM7 kw) dw. (32)
3 7 Ja 3

From Egs. (18) and (32) and taking into account thas even, as the Fourier transform of the even functitn

it follows that

M7 .
RS [k = — / v(w) cos (M7 kw)dw. (33)
’ T JAT,

where A;.fp is given by Eq. (21) angp = G(n). When X satisfies some additional assumptions, the following
lemma 2 states that the ShanndhDWPT of X yields coefficients that tend to be decorrelated wheaands to
infinity. One of these additional assumptions is thatis band-limited in the sense that its spectrum is supported

within [—7, 7]. WhenM = 2, lemma 2 is equivalent to [4, Proposition 1].

Lemma 2:Let X be a centred second-order WSS random process, continuquadnatic mean. Assume that the
spectruny of X is an element of.*°(R) and is supported withif—7, 7]. Let A\ = (m).en be anM-ary sequence
of elements of{0,1,..., M — 1} and Py = (U3, {st._m(j)}jeN) be the Shannod/-DWPT decomposition path

associated with\.

If the spectrumy of X is continuous at poin&()), then

lim RS, [k = 7(a(\)3[H (34)

j——too Y
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uniformly in k € Z, WhereR§ i (5) is the autocorrelation function of the coefficients resgjtfrom the projection

S
of X on W2 -

Proof: See appendix C. ]

The foregoing lemma is mainly of theoretical interest sittee Shannon/-DWPT filters have infinite supports
and are not really suitable for practical purpose. In ordeslitain a result of the same type for filters of practical
interest, theM/-DWPT is now assumed to be performed by using decomposillimnsfhﬁ], m=20,1,...,M —1,

that depend on a non-negative integer or real valsech that

lim A = HS

Jim > (a.e), (35)
where H" is the Fourier transform ob!” and H> is given by Eg. (15). As mentioned in the introduction,
r is called the order of thé/-DWPT filters. Whenr tends tooo, the M-DWPT filters with impulse responses
{hﬁ,ﬁ]}mzo,l,,,,,M_l converge in the sense specified by Eq. (35) to the SharhdWPT filters{h>, }rn—0.1....a—1-
On the other hand, Eq. (35) can be regarded as a property ofaréyg for the following reasons. According to
[9], [10], [11], the Daubechies filters satisfy Eq. (35) fdf = 2 whenr is the number of vanishing moments of
the Daubechies wavelet function; according to [12], Bdtiéenarié filters also satisfy Eq. (35) fad = 2 whenr

is the spline order of the Battle-Lemarié scaling functidhe existence of such families fad > 2 remains an

open issue to address in forthcoming work. However, it seerasonable to expect that genefdtDWPT filters

of the Daubechies or Battle-Lemarié type converge to Sbadiifiers in the sense given above.

Theorem 1:Let X be a centred second-order WSS random process, continuousdratic mean. Assume that
the spectrumy of X is an element oL >°(R) and is supported withifi—7, 7]. Assume that thé/-DWPT of the
PW spaceU® is achieved by using decomposition filters), m = 0,1,...,M — 1, satisfying Eq. (35).

For every natural numbeji and everyn = 0,1,..., M7 — 1, let Rﬁl stand for the autocorrelation function of

the wavelet packet coefficients &f with respect to the packétvg.fll.

(i) We have
lim R

r—-+00 Jn

[K] = RS . [k], (36)
uniformly in k& € Z andn, whereRJS»,n is given by Eq. (33).

(i) Let Py = (US,{WETLA(J,)}J-GN) be some path of this/-DWPT where\ is a sequence of elements of
{0,1,..., M — 1}. If v is continuous ati(\), then

lim ( lim R

j—+oo \ r—+oo J:mx(g)

[k]) — A (a(N)3lH, 37)

uniformly in k € Z, with a(\) given by Eq. (31).
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Remark 1:Since theM-DWPT concerns the PW spadé, we have

J
FWS(w l]:[ ml U] FO¥(15), (38)

and )
FWI(w) = L_Hl HI( Mjil— - )] F@s(%), (39)

wheren is given by Eq. (12). These equations straightforwardlyvéeirom Eq. (14) of lemma 1. From Egs. (30),
(35), (38) and (39), we obtain, for every given natural numhedhat

lim FW/) =FWS, (ae), (40)

r——4o00
uniformly in n. The three equalities above will prove useful in the sequel.

T‘

Proof: (of theorem 1)The autocorrelation functloR ., is given by Eqg. (29) and is equal to

1 )
Rk = o= / W) FWI (W) exp (1M kw) dw. (41)
j, = ) ,
In addition, we have
!RW [K] — RS ,[k] |
<5 [ | IFW IR - 1FWE ) o, @2)

WhereRjn is given by Eq. (33). From Egs. (30), (38) and (39), and byngkinto acount thatHLZ]e (w)| and

|Hy,,(w)| are less than or equal tg we obtain
[1FW L@ = 1FWE, )] < 207 [FoS(w) . (43)

Statement (i) derives from Egs. (40), (42), (43) and Lebesgdominated convergence theorem. Statement (ii) is

a consequence of statement (i) and lemma 2. ]

Remark 2: Consider the case whef@, = P, where g is the null sequence (see example 1). According to Eq.
(28), the asymptotic decorrelation is obtained by simpbréasing the resolution levegl However, Eq. (37) above
suggests that the order of thié-DWPT filters can play some role on the speed of the decoivel@rocess. This
seems to be actually the case. In [4], experimental resaltsed out for the standard DWPTV = 2) illustrate
that the decorrelation process obtained by successivepéss-filtering is accelerated by increasing the order of the

filters with respect to the resolution level.

Remark 3:Theorem 1 extends Eq. (28) and [3, Corollary 5] for paths lwving low-, band- and high-pass
decomposition filters. Such paths are associated with mdirsequences. In this case, theorem 1 shows that, when
both j andr increase, the coefficients of the-DWPT tend to decorrelate and that the variance of the discre

random process returned at no@en(j)) of a given pathP, tends toy(a(\)) whenj tends to infinity. This
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asymptotic value for the variance depends:0h) and, thus, may differ frony(0) whenever(\) # 0. For instance,
for the autoregressive random process used in the expdahmesults of section V, table Il below presents the

value~y(a(X)) for different sequences, and thus, different paths of the standard DWPT decompositee.

IV. CENTRAL LIMIT THEOREMS
In this section, we consider a centred real random proges#isat has finite cumulants and polyspectra. Denote
by
cum(t, 51,82, 7SN)

=cum{X(t), X (s1), X(s2), -, X(sn5)}, (44)

the cumulant of ordeV + 1 of X. The above cumulant is hereafter assumed to belong?t®" 1) and to be
finite for any natural numbelN (see [13, Proposition 1] for a discussion about the exigtefthis cumulant). The

cumulant of ordetV + 1 of the random process; ,, has the integral form given by (see [13, Proposition 1]):
Cumjvn[k’ZhéQa U 7€N]
= cum{¢;nlklejnllilejnlbe] - - cjn[fn]}
= / dtdsidss - - - dsycum(t, s1, 82, -+, SN)Wjn k(t)
RN+1
Win,es ()W (82) - Wi en (SN). (45)

By settings, =t +t; fori = 1,2,--- N in Eq. (45) and by assuming tha&f is strictly stationary so that

cum(t,t+t1,t—|—t2,-- . ,t+tN) = cum(tl,tg,- e ,tN), then

Cumjan[k7éla£21 T aZN]

:/ dtdtldtg~-~dthum(t1,t2,-~- atN)Wj,n,k(t)
RN+1

Wit (EH ) Wi e, (E4E2) - Wi o (E4EN). (46)
In what follows, X is assumed to have a polyspectram (wy,ws, -+ ,wy) for every natural numbeN and
every (wy,ws, - ,wy) € RY. The polyspectrum is the Fourier transform of the cumutamb(¢,, o, - - - ,tx).

When N = 1, v, is the spectrum o and is simply denoted as in section Ill. From now on, it is assumed that

vy belongs toL>(RY) and that

/ dwidws -+ - dwy
RN

FWlaor — s — - — ) FWa(en) - FWo )

exists and is finite for any natural numhb&t. A standard and sufficient condition for the existence of thiegral

concerns the regularity of the functidnused to generate the wavelet packet functidns This assumption is the
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existence of two positive real numbersand C' such that

C
< —— )
|FP(w)| < 15 wie weR 47)
Now, Eq. (46) can be written (see appendix D)
CUmj_’n[k,él,KQ, e agN]
1
= @y /RN dwidws - - dwnyn (—w1, —wa, -+, —WN)
FWijnk(—w1 —w2 — -+ —wn)

FWj ey (W1)FWiin ey (w2) - FWjin oy (WN)-
(48)

In addition, from the first equality of Eq. (8), we havEW; , x(w) = exp (—iMikw) FW; ,(w). Thus, by
setting?; = k+ k; fori=1,2,--- | N in Eq. (48), we obtain that; ,, is a strictly stationary random process with

CumulantScumj,n[k, k4+ ki, k+ ko - k+ k]v] = cumj,n[kl, ko, --- ,kN] with

cumj ki, ko, -+, kn]

@m)¥ / e

exp (—iMj(klwl + kowg + -+ -+ kNwN))

/YN(_wla —W2, _wN)
FWin(—wi —wz — - —wn)
FWin(@1)FWjn(w2) - FWjn(wn). (49)

The asymptotic Gaussianity of the discrete random proassned at nodé¢j, n) will be analysed through the
behaviour of the cumulardum; ,,[k1, k2, - - - , kn]. In particular, it will be proved that this cumulant tendszero

under additional assumptions on the decomposition filters.
By taking into account Eq. (30), Eq. (49) can also be writt@ith an easy change of variables:

cum; k1, ko, -+, kn]
M—I(N=-1)/2

@)Y
exp (—i(kiwi + kawa + - - - + kywn))

/ dwidws -+ - dwpy
RN

VN(—wlM_j, —wo M _wNM—j)
an(_wl_WQ_—WN)
FWy(w1) FWy(w2) - - FWy (wn). (50)
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Assume thatyy belongs toL>°(R™). If the shift parameter is constant, it follows from Lebesgwominated con-
vergence theorem that, for any natural numder 1, cum;, ,,[k1, ko, - - - , kn] tends to0 uniformly in kq, ko, ..., kn

when j tends toco. This is a consequence of [3, Proposition 11].

If the shift parameter is a non-constant and, thus, non-null function of the rasmiulevel j, the discussion
following Eq. (27) has highlighted that Lebesgue’s domadlatonvergence theorem does not make it possible to
conclude about the decorrelation of the sequence retumebtleb)M/-DWPT at node(j, n). Here, the situation is
similar: if Py = (US,{W, ,,(j)}jen) is some path of thel/-DWPT, the shift parameten,(j) depends ory
and Lebesgue’s dominated convergence theorem does nagt tapplg. (50) to prove the vanishing behaviour of
the cumulant at nodéj, n,(j)). The main result of this section, namely theorem 2, will hegreestablish this
vanishing behaviour by using the same family of filters asvaband the following instrumental lemma 3. This

lemma concerns the Shanndn-DWPT.

Lemma 3:Let X be a centred second-order strictly stationary random gsyamontinuous in quadratic mean.
Assume that the polyspectrumy of X is an element of.>°(RY) for any N > 1 and that the spectrum is
supported withif—m, 7]. For every natural numbe¥ > 1, the cumulant of ordeN + 1, cum? , [k1, k2, - - - , kn],
of the discrete random process returned at ngde) by the Shannod/-DWPT of X tends to zero uniformly in

n, ki, ko, -+, kn, Whenj tends to infinity.

Proof: When the wavelet packet functions are the functiu@%n, it follows from Eqgs. (18) and (49) that the
cumulantcumjn[kl, ka,-- -, ky] of the discrete random process returned at ngde) by the Shannod/-DWPT

of X satisfies the following inequality

|cum?’n[k17 ko, kn]|
MIN+1)/2
< a8 NN PR
NS (27T)N ”’YN”oo /AN dwidws dwn (51)

Jsp

whereAY = Aj, x Aj, x...x Aj, andp = G(n).

N times
According to Eq. (19),]’Aj pdw = 2w /M’. Therefore, we obtain that

jeum? [k, - k]| <l so M I/, (52)
Given any natural numbeWN > 1, the rhs of the latter inequality does not dependmorkt, ..., ky and vanishes
whenj tends toco, which completes the proof. [ ]

Consider the decomposition filters introduced in sectidfBlland therefore, satisfying Eq. (35). Lat be an
M-ary sequence of elements §6,1,..., M — 1}. The following results describe the asymptotic distribotiof
the discrete random procesgé_rlu(j) returned at nod¢j, nx(j)) when the resolution level and the order of the
filters increase.
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Theorem 2:Let X be a centred second-order strictly stationary random gyamntinuous in quadratic mean.
Assume that the polyspectrumy of X is an element of.>°(RY) for every natural numbeN > 1 and that the
spectrumy is supported withif—m, 7.

For every given natural numbgrand everyn € {0,1,..., M7 —1}, let cumgfll stand for the cumulant of order

N + 1 of the wavelet packet coefficients &f with respect to the packéNg.’jl.

(i) We have
TETmcumjfL[kl,kg, co k] = cumS [k ke, k], (53)
uniformly in n, k1, ko, ..., kn.

(i) Let A = (mg)ren be anM-ary sequence of elements £, 1,..., M — 1} andPy = (US>, {Wg.’ju(j)}j@l)

be the sequence of wavelet packets associated with N > 1, we have

lim <TETmcumgfLA(j)[k1,k2,...,kN]> =0, (54)

uniformly in kq, ko, ..., kn.

Proof: We begin with the proof of statement (i). This proof mimicattbf the first statement of theorem 1. By

applying Eq. (49) to the wavelet packet functioﬁﬁﬂ and, then, to the Shannon wavelet packet functhsl,
we obtain the following inequalities

[r]

|Cumj,n[klak27" : 7kN] _Cumin[klakQW' : 7kN]|
1
< Gy [ der oo o)

FWI (e =) FWI (@) -+ FW I o)

J,n

_‘FWjS,n(_wl T WN)FWJ'S,n(wl) e fW]'S,n(WN)’a
1
< s dwi -+ d
rylimlle [ donedow
FWI (o — wn) FW @) - FW (wy)

J,n J,m

—FW(—wi - — wn) FW2, (wi) - - FW2, (wn)|- (55)
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The integrand on the rhs of the second inequality above canlbeoupper-bounded by
‘fW}f,{(—wl - wN)‘ ‘fW}f,{(wl)‘ . ‘fWPZ{(wN)‘
+‘fWJ§n(—w1 - —LA}N)H]:WJ-%H ‘ ‘]—" S| WN)’
< Mj<N+1>/2‘fW7gr1(_Mjwl e ]\/[JWN)‘
FWI )| | FWl )|
+‘.7-'W,f(—MJw1 - MJWN)’
FWE(MIwn)| - | FWS (M)
< 2MJ(N+1)/2(I)S(WI)(I)S(W2) e q)S(WN) (56)

where we use Egs. (30), (38), (39), and take into acount|lﬂgﬂ, (w)| and |H§n/Z (w)| are less than or equal to
1. The upper-bound given by Eq. (56) is independent @ind integrable; its integral equatd/?/(N+1/2(27)N

By taking Eg. (40) into account, we derive from Lebegue’s dwated convergence theorem that the upper bound
in inequality Eqg. (55) tends t6 whenr tends to+oo, which completes the proof of statement (i). Statement (ii)

follows from lemma 3 and statement (i). [ ]

Remark 4:Note the following. The first statement of theorem 1 can begidy applying Eq. (53) withlv = 1.
In fact, when N = 1, the cumulant of orde® is the autocorrelation function; strict stationarity pago role,
wide-sense stationarity is enough and Eg. (36) followsgttéorwardly. Two separate proofs have been presented

for the sake of making the reading easier.

Remark 5:1f n = n,(j) is a constant function of, that is, if A is in fact the null sequence, the vanishing
behaviour of the cumulantumg.’jl[kl,kg, .-+ ,kn] when j tends tooo straightforwardly derives from Eq. (50).
However, similarly to remark 2, Eq. (54) suggests that ordenay play a role in the convergence @oof the
cumulant. According to the experimental results of the sexdtion, this convergence seems to accelerate when the

order increases.

Corollary 1: With the same assumptions and notations as those of thedrams 2, assume thatis continuous
at a(A\). Then, whenj and r tend to infinity, the sequencé [L (3))m‘ converges in distribution to a white
Gaussian process with spectrurfz())) in the following sense: For evér:y € RY and everye > 0, there exists
Jo = jo(z,€) > 0 and there existsy = ro(z, jo, €) such that, for every > j, and everyr > ry, the absolute value

of the difference between the valueaabf the probability distribution of the random vector

[r] [r] [r]
(Gmriy R €y [Rels -+ €y gy [FND)

and the value at of the centredV-variate normal distributiotV' (0, y(a()))Ix) with covariance matrixy(a()))Ix

is less thare.
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Proof: The result is a straightforward consequence of statemigmf (heorem 1 and statement (ii) of theorem

2. |

It is now interesting to study to what extent the resultsestatbove are workable in practical cases. This is what

we discuss in the next section on the basis of some experainesiilts.

V. EXPERIMENTAL RESULTS

The experimental results presented in this section cortberatandard DWPT, that is the-DWPT with M = 2,
when Daubechies filters are used to perform the decomposiie consider this standard case for the following
reasons. To begin with, Daubechies filters are known to ageve® the Shannon filters when the numbeof
vanishing moments of the Daubechies mother wavelet inescaghereas the same type of result has not yet been
established foi/-band filters withA/ > 2. Since [4] already presents and comments experimentdtsesgarding
the asymptotic decorrelation of the DWPT coefficients asrés®lution level and the order of the filters increase,
the focus is therefore the asymptotic normality describgthiorem 2. Inequality (52) then suggests that the larger
M is, the faster the convergence to normality. Therefore, lhhgosing M = 2, we not only consider the most
standard wavelet packet decomposition but also the decsitiggothat seems the least favourable with respect to
Eq. (52) used to prove lemma 3, the cornerstone of theorem 2.

With respect to the foregoing, and since theorem 2 is of asgticpnature, the purpose of this section is to
experimentally study how well the tendency to Gaussiamityatisfied when the input process is non-Gaussian and
the DWPT is performed with finite values for the resolutioneleand the order.

As above, X (t) stands for the centred Hilbertian random process to decsendts spectrum, denoteq is
assumed to be an element bf°(R) and to have support if-7, x]. In fact, our experiments concern the case
whereX (¢) is Generalized Gaussian (GG). This means that, for everR, X (¢) follows the Generalized Gaussian
Distribution (GGD) withscale«, shapes and zero mean. For eacte R, the Probability Density Function (PDF)

of X (t) is f. s defined for every real valug by:

fop(x) exp (—(|zl/a)?), (57)

__ B
20T (1/5)

whereT is the standard Gamma function. The value of the GGD standievition is
o = ay/T(3/A)/T(1/B).
For our experimentations, we choose
a=/I(1/3)/T3/6), (58)

so thato = 1. Note that when the shape paramefeequals2, the GGD given by Eq. (57) is Gaussian. Whén
decreases (frorg to 0), the probability density function of the GGD is sharperd aharper, at the origin as can

be seen in figure 5. Whefi = 1, the GGD is the Laplacian distribution.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY,ANUARY 2008 20

=™

wonon
XN
o

L

Fig. 5. GGD with unit variance and shage= 2,1, 0.5.

In our experiments, we considéd0 independent random copies of the random vector formed bysamples
X(1), X(2), ..., X(N) with N = 22, Each copy is used as an input of the DWPT. We then considefotire
wavelet packet paths associated with the sequenges (dlg — ¢])een, for ¢ = 0,1,2 and 3 [4, Example 1].
For these sequences, and taking into account Eq. (12), werhay¢) = 0 for every natural numbef, and for

¢=1,2,3:
0 for (=1,2,---,¢—1,
n)\q(é) =
2=4 for (=gq,q+1,---.
It follows thatpy, (£) = G(n,(£)) = 0 and that

0 for (=1,2,---,q—1,
P, (0) =
2f—a+l 1 for £=gq,q+1, -,
for ¢ = 1,2, 3. According to Eqg. (31)a(\g) = 0 anda()\,) = n/277! for ¢ = 1,2 and3.
For every path\ among those introduced above, the Kolmogorov-Smirnov #€S{) with significant leve5% is
[k]/+/v(a(X)))k, returned by the DWPT for a given copy, satisfy the

null hypothesis (that is, follow the normal distributidvi(0, 1)), or not (alternative hypothesis).

used to decide whether the samp(egLA(j)
First, we discuss the case where the samflés), X (2), ..., X (V) of the random procesk (¢) are uncorrelated.
In this case, since the GGD is such that- 1, we havey(a(\)) = 1 for any of the four path§P,),=o0,1,2,3 under
consideration. Experimentations show that by increadiregrésolution level up to 6, and by using Daubechies
filters of order7, the convergence to the normal distribution is significamt®.5 < 5 < 2. Table | presents the
results obtained foff = 1.5,1,0.5.
Now, we address the case where the samplés), X (2), ..., X(N) of the GG process((t) are correlated.

These samples are synthesized by filtering a discrete segéindependent and identically GG distributed random
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variables through an auto-regressive (AR) filter of ortlehe Z-transform of this filter is1 /(1 — uz~!) where

0 <u<1.If aandpg are the parameters of the GG random variables used to syzehbe samples oK (¢), we

henceforth say that the output discrete procEss) is an AR(1)-GG process with parameterss and .
Experimental tests are carried out with= 0.5, 0.75, 0.9, 0.95. The spectrum of the GG-AR(1) processes

corresponding to these valuesiofre given in figure 6. Table Il gives the valug&:()\)) for the four test sequences.

\C)

09fi| \

o8 |\ T H=0S0
I\ —— =075
orp |\ —— =090

| \ 1=095
0.6
05f | \

| \\\
04| \

03 |
02t |

01f |\ I

Fig. 6. Coloured GG Spectrum for some valuesuof

The experimental results obtained with the AR(1)-GG pre@es presented in table Ill. By increasing the resolution
level, fromj = 3 to j = 6 when the order of the filters is constant and equais 1, the number of times the
KS test accepts the Gaussian distributigif0, 1) for the sequence of random variabl(e%jflu(j) [k]/ /v (a(N))k
increases for most of the DWPT paths. When the resolutionxésifio j = 6, it suffices to increase the orderto
also increase the acceptance rate of the Gaussian ditriblftthe input coloured AR(1)-GG proces§(t) is such
that0.5 < 8 < 2 and0 < p < 0.9, normality can reasonably be considered to be attained wWieeresolution level
j is 6 and the order of the Daubechies filtersris= 7. The less satisfactory results occur for large valueg off
small values of3. However, wher is large, the spectrum of the process tends to become ‘siricagcause it is
rather sharp around the null frequency (see figure ufer 0.95); on the other hand, whefi becomes small, the
GGD becomes ‘singular’ in the sense that its PDF is still geagat the origin (see figure 5 fgr = 0.5). However,
even for large values of and small values of, increasing both the order of the filters and the resolutewell
leads to better results, as can be seen in table IV.

From tables I, Il and IV, we observe a significant acceptarate by increasing first the resolution level from
j =31toj =6 whenr is fixed to1l. In addition, we observe a significant improvement in theeptance rate by
increasing the order of the filters frointo 7, given a fixed resolution level = 6. It follows that increasing both

the resolution level and the order of the filters yields a High test acceptance rate for the normali§(0, 1) of
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TABLE |
KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTION (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL
j = 3,6 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO
EITHER1OR7. THE DWPTINPUT PROCESS ISGG. THE GGD PARAMETERS AREa GIVEN BY EQ. (58)AND 3 = 1.5,1,0.5. THE SAMPLES

OF THE GG PROCESS ARE UNCORRELATED

White GG process

GGD, with3 = 1.5 GGD, withg =1 GGD, with3 = 0.5
j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6
Path r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7
Py 51%  94%  96% 0% 9%  9T% 0%  44%  74%
P, 53%  97%  98% 0%  96%  93% 0% 4% 1%
Pxro 47% 94% 97% 0% 94% 96% 0% 31% 39%
Pxrg 56% 94% 94% 0% 92% 94% 0% 37% 38%
TABLE I

VALUES y(a(\)) FOR THE FOUR TEST SEQUENCES

Path || pw=05 p=075 pu=09 pu=0095
Pxo 1 1 1 1

P, 0.1111 0.0204 0.0028 0.0007
Py 0.2052 0.0412 0.0057 0.0014
Prs 0.4798 0.1332 0.0201 0.0048

the samplesc!”) . /\/A(@(N))x.

As an illustration, figure 7 shows histograms of the DWPT fioiehts obtained at resolution levé] by using
Daubechies filters of ordet. The decomposition concerns the samples of an AR(1)-GGeprowitha, given by
Eq. (58),8 =1 andu = 0.75. These histograms are compared with the PDF of the Gaussiérdistribution.

As already mentioned above (see remark 5), the order of teesfispeeds up the convergence to normality when
the decomposition path i®,, associated with the null sequengg = (0,0, ...), which applies only low-pass
filters to the input process. Indeed, for this path, higheleofilters yield better approximation of the distribution
N(0,~(0)) than lower order ones. This can be noticed by comparing, stluion level; = 6, the acceptance

rates obtained for = 1 to those obtained for = 7 in tables I, lll and IV forP,,.

V1. CONCLUSION

In this paper,M-DWPTs of band-limited stationary random processes haem lmensidered. The asymptotic
analysis of the distribution of the wavelet packet coeffitseis achievedia certain families ofA/-DWPT filters.
The specificity of these filters is that their Fourier tramsfe converge almost everywhere to the Fourier transform

of the Shannon filters. Daubechies and Battle-Lemari&diléee examples of such families of filters whih= 2
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TABLE IlI
KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTION (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL
j = 3,6 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO

EITHER1OR 7. THEDWPTINPUT PROCESS IAR(1)-GGWITH a GIVEN BY EQ. (68),3 = 1.5,1,0.5 AND p = 0.5,0.75,0.9,0.95.

Coloured GG process, with = 1.5

AR-1 filtering: 4 = 0.5 AR-1 filtering: 4 = 0.75 AR-1 filtering: 4 = 0.9 AR-1 filtering: 4 = 0.95
j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6
Path r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7
Pxo 0% 95% 98% 0% 42% 99% 0% 0% 19% 0% 0% 0%
Pxy 0% 91% 98% 0% 52% 96% 0% 0% 94% 0% 0% 96%
Pxgy 0% 95% 88% 0% 3% 86% 0% 0% 91% 0% 0% 90%
Pxs 0% 0% 86% 0% 14% 65% 0% 0% 53% 0% 0% 52%

Coloured GG process, with = 1

AR-1 filtering: 4 = 0.5 AR-1 filtering: 4 = 0.75 AR-1 filtering: 4 = 0.9 AR-1 filtering: 4 = 0.95
j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6
Path r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7
Pxo 0% 84% 94% 0% 31% 96% 0% 0% 21% 0% 0% 0%
Pxy 0% 94% 96% 0% 67% 93% 0% 0% 92% 0% 0% 94%
Pxgy 0% 95% 82% 0% 56% 78% 0% 0% 89% 0% 0% 84%
Pxg 0% 0% 71% 0% 3% 50% 0% 0% 41% 0% 0% 18%

Coloured GG process, with = 0.5

AR-1 filtering: © = 0.5 AR-1 filtering: 4 = 0.75 AR-1 filtering: © = 0.9 AR-1 filtering: 4 = 0.95
j=3 j=6 j=6 j=3 j=6 j=6 j=3 j=6 j=6 j=3 j3=6 j=6
Path r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7 r=1 r=1 r=7
Pxo 0% 5% 67% 0% 0% 75% 0% 0% 3% 0% 0% 0%
Pxy 0% 66% 70% 0% 93% 93% 0% 1% 89% 0% 0% 78%
Pxgy 0% 10% 4% 0% 71% 46% 0% 0% 29% 0% 0% 2%
W 0% 0% 2% 0% 0% % 0% 44% 8% 0% 0% 0%

(standard DWPT). Furthermore, since the Daubechies (Beie-Lemari€) scaling function is proved to converge
to the Shannon scaling function when the number of vanishingents of the Daubechies wavelet function (resp.
spline order of the Battle-Lemarié scaling function) mases [10] (resp. [12]), we may expect that genéfal
DWPT decomposition filters of Daubechies or Battle-Lemadsipes may converge to the Shannon filters. This
remains to be proved. However, if this holds true, it can beeeted that the tendency to normality of the wavelet
packet coefficients will be accelerated since Eq. (52) ssiggbat the largeM is, the faster the cumulants vanish.
Therefore, designing families @ff-DWPT filters that converge to the Shannon filters is of thécakand practical

interest.

Some authors present the wavelet decomposition as anatlterno the Karhunen-Loéve (KL) expansion [14].
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TABLE IV
KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTION (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL
j = 6,7 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO

EITHER7 OR20. THE DWPTINPUT PROCESS IAR(1)-GGWITH o GIVEN BY EQ. (58),3 = 0.5 AND & = 0.95.

Coloured GG process, with = 0.5, u = 0.95

j=6 j=6 i="7
Path r=7 r=20 r=20
Pro 0% 0% 45%
Pxy 78% 86% 91%
Py 2% 30% 7%
Pars 0% 4% 35%

More precisely, [4] highlights the decorrelation that cam dichieved in DWPT paths by considering the same
families of decomposition filters as those used in the pitesenk. The results given above go beyond the simple
decorrelation process of the DWPT by making more preciseagymptotic distribution of the wavelet packet
coefficients. This asymptotic distribution is normal witariance equal to the value taken by the input process
spectrum at some specific frequency. This frequency can bgueted with respect to the nested supports of the
Fourier transforms of the wavelet packets associated \wghchosen path. The results of this paper may thus be

applicable to several signal processing fields, data aisatyscommunication applications.

APPENDIXA

PROOF OF LEMMA 1

According to Egs. (5) and (13), we have

FWagy (@) =FWarn(j—1)+m; (W) (59)
w w
:Hmj(M) an(j—l)(M)'

An easy recurrence leads to

FWaiy (W)

w w
= Hmj (_)Hm

w w
2 i (g M1

) . 'Hmz(Mj,1 )mel(W)7

sincen(1) = my. It then suffices to apply Eq. (4) to conclude.

APPENDIXB

PROOF OF PROPOSITION

The proof is achieved by induction gn By definition of the Shannon wavelet packet functid)ﬁ%n (see section
[I-C), it follows from Eq. (6) thatW(iO = W, = ®°, since the Shannon wavelet packet functions are obtained

according to Eq. (2) withb = ®3. It then follows from Eq. (16) that Eq. (18) holds true fpe= 0.
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According to the definition of the Shannon wavelet packetcfioms, it follows from Egs. (7), (15) and the
definition of A; ,, (see Eq. (19)) that

FWE At (@) = VMHS, (MI0)FW?, (W), (60)

with

27l

H,rSn(MJw) = Z]lAjJrl,m (w — M

LET

=> 1, W), (61)

LEL

),

where, for any non-negative integgrany integer and anym =0,1,..., M — 1,

AjJrl.,m,E =
[(—m — 14+ 2MOm (—m+ QMZ)W]

Mi+1 M

U

[((m+2MO7 (m+1+2M0)w
ML ML

Suppose that Eq. (18) holds true at resolution lgvébr n € {0,1,..., M7 — 1} andp = G(n). We derive from
Egs. (18), (60) and (61) that

]:W.7$+1,Mn+m = M(jH)/Q]l( (62)

Ueez Dit1,me) N Bgp

The following lemma gives the intersection betwe@l,.; Aj1,m.¢) andA; .

Lemma 4:

A1 Mpt if pis even
(U Aj+1,m,€> m Ajp= ’ m o
ez Aji1,MprM—m—1 If pis odd

Proof: (of lemma 4)Given any subsefl of R and any real value, let A = {za : a € A} be thedilate of
AbyzandA+x = {a+z:z € A} be thetranslateof A by z.

The setA; , N (Upez Aj+1,m.¢) IS Symmetrical with respect 0 sinceA; , is itself symmetrical with respect to
the origin and J,c;, Aj1,m.e = — (Upez Aj+1.m,0). Thus, it suffices to determinﬁjfpﬂ (Urez Ajs+1,m,c) where
A;fp = [pr/M7, (p+ )7 /M.

Now, we have

A;:p n <U Aj-l‘l,m,é)

LEL

- # (J,, N (U(Im + 2M£)>> : (63)

LEL
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where J, = [pM, (p+ 1)M] and I,,, = [-m — 1, —m] U [m, m + 1]. To compute(J, N (Ugez(Im + 2M¥))), we
determine the set$, N (1, + 2MY) for any ¢ € Z. Since
Ip N (I, +2ML) = ((J, —2M L) N 1,,) + 2M ¢, (64)

we calculatgJ,—2M¢)NI,, for any? € Z, which is quite easy. In fact, sincg,—2M¢ = [(p—2¢) M, (p+1—-2¢) M],

the reader will straightforwardly verify the following fesc
If ¢ <251 or¢ > 2E2 then(J, — 2M{) N I, = 0,
; -1
If pis odd andl = &=, then

0 if m<M-—1,

(Jp—2M€)ﬂIm_{
{M} if m=M-1,

If pis even and = £, then
(Jp —2Me) N I, = [m,m + 1],
: 1
If pis odd and¢ = 22, then
(Jp —2ML) NIy, =[-m—1,—m],
: 2
If pis even and’ = 212, then

0 if m<M-—1,
{-M} if m=M-1,

(J, — 2MO) N I, =

We derive from these results and Eq. (64) that

(Jp N (Uggz([m + QME)))
[m+pM,m+ 1+ pM] if pis even
[-m—1+pM+M,—m+pM + M] if pis odd
It then suffices to apply Eq. (63) to complete the proof. [ ]
Sincep = G(n), we obtain

FWit Mnm = MUTD/215

i+1,G(Mn+m)

whereG(Mn + m) is given by Eq. (20). Therefore, Eq. (18) holds true at retsmtulevel j + 1 and the proof is

complete.
APPENDIXC
PROOF OF OF LEMMA2
Consider anM-ary sequencé\ = (my)ren Of elements of{0,1,...,M — 1} and let (W?ym(j))jeN be the

sequence of wavelet packets associated withThe sequence of autocorrelation functions resulting fribwe

projection of X on (W?  )jen is (R}

VELLON

(j))jen, whereR?

is given by Eq. (33).
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Now, if v is continuous at()), then for every real number > 0, there exists a real number> 0 such that,
for everyw € [a(A\) — a, a(X) + o], we have|ly(w) — y(a(A))| < n. In addition, since

lim U _ lim 7@)‘(]‘) + 1) =a(N),

j—too M j—+oo M
there exists an integej, = jo(a), such that, for every natural numbgr> j,, the valuesp,(j)x/M’ and
(pr(j) +1)m/M7 are within the intervala()\) — «, a()) 4 «a]. It follows that, for every natural numbegr> j, and

+
everyw € Aj,

[y (w) = y(aN)] <.

Therefore, for any natural numbgr> j,

M @) = e
A

3,px(3)

™

MI
<n— / dw = . (65)
A

3o (3)
On the other hand, it follows from Eq. (33) that for any natumramberj > j, and every integek,
MI

™

/ . (a(d)cos (Mjkw)dw’
AT

3,p ) (9)

% [ ) =) cos (k)
A oA
< ) = (e de. (66)
g A;’ip)\(j)

Hence, we derive from Eqs. (65) and (66) that, for every @htaumber; > jo,

)

M .
RSl = 50 [ 2@l cos ko] <
Ajpal)
uniformly in k € Z. Since
M )
— ~v(a(X)) cos (M7 kw)dw = v(a(N))0[k],

3,p X (9)

we conclude that, for every natural numbeg o,

RS )16 = 7 (aO0)0TH]| <

uniformly in k € Z.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY,ANUARY 2008

APPENDIXD

PROOF OFEQ. (48)

From (46), and by taking into account thaim (¢, t2, - - - , tx) is the inverse Fourier transform ofw, , wa, - - -

we have

Cumjvn[ngl?éQu e 7€N]

1
= — dtW 1 (t dtidts - - - dt
(27T)N/]R ij -,k( )/]RN 1Gt2 N

Win,er (8 +t0)Wime, (E+t2) - Wi ey (E+tN)

/ dwidws - - - dwn exp (—i(tiwy + tows + - - + tywn))
]RN

FYN(_wla —W2, —(.()N)

According to Fubini’'s theorem,

Cumj;n[k7€17£27' o 7£N]
1
= —— [ dtW, ,x(t dwidws - - - d
e i) [ o
”yN(—wl,—wg,--- ,—(.(JN)/ dtldtgdt]\[
RN

exp (—itiwn +tows + - tvww)) Winar (E+ 1)
Wiin, e, (t+t2)--- Wiinxn (t+tn),
and then,

CUmj7n[k7€17€2, o 7€N]

1
=——= [ dtW; ,i(t dwidwy ---d
(Qﬁ)N/R Gk ( )/RN W1aws2 WN
exp (it(w1 + w2 + - +wn)) YN (—wi, —w2, + , —wN)

FWiino (@) FWijin ey (w2) - - FWiin ey (Wn).-
This equation can also be re-written, by using Fubini's teeoagain,

CUmj_’n[k,él,KQ, e agN]
1
= W/}RN dwidws - - - dwnyN (w1, —w2, -+, —WN)
FWjn,or (W) FWjn ey (w2) - FWjnen (WN)
[/ dtW n i (t) exp (it(w1 +we + - - +wn)) |,
R

which leads to Eq. (48) by definition of the Fourier transform

28

7(UN),
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Fig. 7. Histograms of the DWPT coefficients, at resolutionele6, using Daubechies filters of order 7. The decompositooapplied to

samples of an AR(1)-GG process withgiven by Eq. (58)3 = 1 andu = 0.75. The limit distribution A/ (0, v(a(X))) wherea(X\o) = 0 and

DRAFT

a(Ng) = m/297 1 for ¢ = 1,2 and 3 is represented by the (red) continuous line.



