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Central Limit Theorems for Wavelet Packet

Decompositions of Stationary Random

Processes
Abdourrahmane M. Atto, Dominique Pastor

Abstract

This paper provides central limit theorems for the wavelet packet decomposition of stationary band-limited random

processes. The asymptotic analysis is performed for the sequences of the wavelet packet coefficients returned at the

nodes of any given path of theM -band wavelet packet decomposition tree. It is shown that ifthe input process

is centred and strictly stationary, these sequences converge in distribution to white Gaussian processes when the

resolution level increases, provided that the decomposition filters satisfy a suitable property of regularity. For any

given path, the variance of the limit white Gaussian processdirectly relates to the value of the input process power

spectral density at a specific frequency. Experimental results are presented to appreciate the convergence rate that can

be expected in practical cases when Daubechies filters are used.

Index Terms

Wavelet transforms, Band-limited stochastic processes, Spectral analysis.

I. I NTRODUCTION

Wavelet Packet Transforms allow flexible representations of functions by providing various Hilbertian bases.

Among derivates of the theory, the Discrete Wavelet Packet Transform (DWPT) is simple - in the sense that it

can be implemented via a fast algorithm - and has some remarkable properties such as the sparse representation it

provides for smooth signals [1], [2] or the ‘whitening effect’ it asymptotically yields for a large class of random

processes [3], [4]. Thus, such wavelet representations areof great interest in signal processing, time-series analysis

and communication applications.
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Given a natural numberM larger than or equal to2, theM -Band Discrete Wavelet Packet Transform, hereafter

abbreviated asM -DWPT, achieves an orthogonal decomposition of a functional spaceU via a double-indexed

sequence{Wj,n}j∈N,n=0,1,...,Mj−1 of nested functional subspaces (see section II), whereN = {1, 2, . . .} henceforth

stands for the set of natural numbers. EachWj,n is the closure of a space spanned by wavelet packet functions;

j is called the resolution level and the shift parametern is valued in{0, 1, . . . , M j − 1}. The standard DWPT

corresponds to the particular case whereM = 2.

Throughout,X stands for some Hilbertian and real-valued centred random process, that is some process such

that X(t) ∈ R whereR is the set of real numbers,E[X(t)] = 0 and E[X(t)2] < ∞ for every t ∈ R. The set

of integers being denoted byZ, let cj,n = (cj,n[k])k∈Z stand for the coefficients returned by theM -DWPT of

X at node(j, n). At each resolution level, the discrete random processcj,n results from the projection ofX on

Wj,n. If the shift parametern is a constant function of the resolution levelj andj tends to infinity, [3] states the

following two results. First, ifX is Wide-Sense Stationary (WSS) and has power spectral density γ, hereafter called

spectrum, it follows from [3, Corollary 5 of Proposition 11]that, whenj tends to infinity, the random variables

cj,n[k], k ∈ Z, tend to decorrelate and that the variance of every random variablecj,n[k] tends toγ(0); the discrete

random processcj,n is said to be asymptotically decorrelated with varianceγ(0) when j tends to infinity. The

second result concerns the case where the random processX is strictly stationary. According to [3, Proposition

12], the sequence(cj,n)j∈N, associated with such a process, converges, in the following ‘distributional’ sense, to

a discrete white Gaussian process with standard deviationγ(0) when j tends to∞: given any natural numberN

and anyN -uple k1, k2, . . . , kN of integers, the distribution of the random vector(cj,n[k1], cj,n[k2], . . . , cj,n[kN ])

converges, whenj tends to infinity, to the centredN -variate normal distributionN (0, γ(0)IN) with covariance

matrix γ(0)IN , whereIN is theN × N identity matrix.

The case where the shift parametern is constant withj is restrictive because most of the paths of an DWPT tree

involve nodes(j, n) whose shift parametersn = n(j) vary with j. Examples will be given below (see section III-A).

For such paths, analysing the statistical behaviour of the sequencescj,n(j) returned by the DWPT whenj tends to

infinity becomes more intricate and the theoretical resultsof [3] do not apply directly. By using appropriate filters,

the asymptotic decorrelation of the random processcj,n returned by the standard DWPT is however established in

[4, section 3] for any shift parametern which may possibly depend onj. More specifically, in [4], the DWPT filters

are denoted byh[r]
0 andh

[r]
1 . Their Fourier transformsH [r]

0 andH
[r]
1 are assumed to tend almost everywhere (a.e.)

to the Fourier transforms of the Shannon DWPT filters when theparameterr, called theorder of the DWPT filters,

increases. Daubechies filters are such filters,r being the number of vanishing moments of the wavelet function

associated withh[r]
0 ; Battle-Lemarié filters are also such filters,r being the spline order of the scaling function

associated withh[r]
0 . It is then by increasing the order of such filters with respect to the resolution level that the

asymptotic decorrelation is obtained. The asymptotic value of the standard deviation of the sequencecj,n when j
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increases is then given by the value ofγ at a specific point of[0, π]. This point depends on the path followed in

the DWPT tree.

The present paper extends the results given in [3], [4] in thecase where theM -DWPT is achieved by means of

M -DWPT filtersh
[r]
m , m = 0, 1, 2, . . . , M − 1 that satisfy the same type of properties as those consideredin [4].

Namely, the Fourier transformsH [r]
m , m = 0, 1, . . . , M − 1, of these filters are assumed to tend a.e. to the Fourier

transforms of the ShannonM -DWPT filters when the orderr increases. These extensions are asymptotic properties

of the M -DWPT when the resolution levelj and the orderr are large enough. They apply to any arbitrary path

of the M -DWPT of a Hilbertian random processX with spectrumγ. They hold true when the shift parametern

is any, possibly unbounded, function ofj. First, if X is WSS, the asymptotic decorrelation of the processcj,n is

obtained, as in [4], by increasing the orderr of the filters when the resolution levelj is large enough; as in [4],

the asymptotic variance of the sequence tends to the value ofγ at a specific point of[0, π], this point depending

on the path followed in theM -DWPT decomposition tree. Second, ifX is strictly stationary, the processcj,n is

proved to tend in distribution to a discrete white Gaussian process whose variance is given according to the result

established in the WSS case. Asymptotic Gaussianity is established by proving that cumulants of order larger than

2 vanish when the resolution levelj is large enough and the orderr is also large enough with respect toj.

The organization of the paper is the following. Section II recalls basics about theM -DWPT, introduces the

ShannonM -DWPT, which will be instrumental for establishing the mainresults of the paper. After presenting

some preliminary results concerning theM -DPWT of random processes, section III states asymptotic properties for

the autocorrelation functionRj,n of the processcj,n. The input process is assumed to be WSS and the asymptotic

properties of section III are established whenH
[r]
m , m = 0, 1, . . . , M − 1, tend a.e. to the Fourier transforms of the

ShannonM -DWPT filters when the orderr of these filters tends to infinity. By considering this type offilter again,

the convergence in distribution of the sequence(cj,n)j∈N is studied in section IV, for any arbitrary path of the

M -DWPT, when the input process is strictly stationary. Section V provides experimental tests, and finally, section

VI concludes this work.

II. T HE M -DWPT

Section II-A presents some basics concerning theM -DWPT. Further details about this kind of transform can

be found in [5], among others. Section II-B explains how the paths of theM -DWPT decomposition tree can be

represented byM -ary sequences. This representation will be useful for describing wavelet packet subbands. Section

II-C introduces the ShannonM -DWPT whose properties are crucial for establishing the results stated in sections

III and IV.
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A. General formulas

In what follows, j and M are natural numbers andM > 2. An M -DWPT is performed by usingM -DWPT

filters with impulse responseshm, m = 0, 1, 2, . . . , M − 1, that satisfy the following properties. First, each filter

hm is an element ofℓ2(Z) and its Fourier transform is hereafter defined by

Hm(ω) =
1√
M

∑

ℓ∈Z

hm[ℓ] exp (−iℓω) . (1)

Second, the matrix
















H0(ω) H1(ω) · · · HM−1(ω)

H0(ω + π
M

) H1(ω + π
M

) · · · HM−1(ω + π
M

)

· · ·

· · ·

· · ·

H0(ω +
(M−1)π

M
) H1(ω +

(M−1)π
M

) · · · HM−1(ω +
(M−1)π

M
)

















,

is unitary for every real numberω. The unitary nature of this matrix implies that|Hm(ω)| 6 1 for every m =

0, 1, . . . , M −1 and everyω ∈ R. For further details about the computation ofM -DWPT filters, the reader is asked

to refer to [5].

Let Φ be a function such that{τkΦ : k ∈ Z} is an orthonormal system ofL2(R), whereτkΦ : t 7−→ Φ(t− k).

Let U be the closure of the space spanned by this orthonormal system. Define the following sequence of elements

of L2(R) by setting

Wm(t) =
√

M
∑

ℓ∈Z

hm[ℓ]Φ(Mt − ℓ) (2)

and

WMn+m(t) =
√

M
∑

ℓ∈Z

hm[ℓ]Wn(Mt − ℓ) (3)

for n ∈ N andm = 0, 1, 2, . . . , M − 1. Eq. (2) can be re-written as

FWm(ω) = Hm(ω/M)FΦ(ω/M), (4)

where, givenf ∈ L1(R) ∪ L2(R), Ff henceforth stands for the Fourier transform off and is given byFf(ω) =
∫
f(t) exp(−iωt)dt if f ∈ L1(R). In the same way, it follows from Eq. (3) that

FWMn+m(ω) = Hm(ω/M)FWn(ω/M) (5)

for n ∈ N and m = 0, 1, . . . , M − 1. Note that the functionΦ in Eq. (2) is not necessarily the standard scaling

function associated with the low-pass filterh0. If Φ is this scaling function, we haveW0 = Φ. In this case, Eqs.

(3) and (5) hold true even ifn = 0.

For any pair(j, n) of natural numbers, we set

Wj,n(t) = M−j/2Wn(M−jt) (6)

and, according to Eqs. (1), (5) and (6), we have

FWj+1,Mn+m(ω) =
√

MHm(M jω)FWj,n(ω). (7)
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Formulas (4), (5) and (7) hold true pointwise almost everywhere [6]. SetWj,n,k = τMjkWj,n, that is

Wj,n,k(t) = Wj,n(t − M jk) = M−j/2Wn(M−jt − k). (8)

Then, the set{Wj,n,k : k ∈ Z} is an orthonormal system ofL2(R). The closure of the functional space spanned by

{Wj,n,k : k ∈ Z} will hereafter be called thewavelet packet spaceWj,n. Any Wj,n,k, and thus, anyWj,n since

Wj,n = Wj,n,0 and anyWn sinceWn = W0,n,0, is hereafter called awavelet packet function.

TheM -DWPT decomposition of the function spaceU consists in the splitting ofU into M orthogonal subspaces:

U =

M−1⊕

m=0

W1,m, (9)

and by recursively applying the following splitting

Wj,n =

M−1⊕

m=0

Wj+1,Mn+m, (10)

for every natural numberj and everyn = 0, 1, 2, . . . , M j − 1. In this decomposition,{Wj+1,Mn+m,k : k ∈ Z} is

an orthonormal basis of the vector spaceWj+1,Mn+m. The 2 and3-DWPT decomposition trees of figures 1 and

2 are examples ofM -DWPTs.

Uhhhhhh
((((((

W1,0```   
W2,0
aa!!

W3,0 W3,1

W2,1
aa!!

W3,2 W3,3

W1,1```   
W2,2
aa!!

W3,4 W3,5

W2,3
aa!!

W3,6 W3,7

Fig. 1. 2-DWPT decomposition tree ofU down to resolution levelj = 3.

Uhhhhhhhhh
(((((((((

W1,0```   
W2,0 W2,1 W2,2

W1,1```   
W2,3 W2,4 W2,5

W1,2```   
W2,6 W2,7 W2,8

Fig. 2. 3-DWPT decomposition tree ofU down to resolution levelj = 2.

According to Eqs. (9) and (10),U can be split into orthogonal sums of wavelet packet spaces. Thus, given an

elementf of U, the coefficients of the projection off on a spaceWj,n define a sequence(cj,n[k])k∈Z where

cj,n[k] =

∫

R

f(t)Wj,n,k(t)dt. (11)

The wavelet function spaces considered in the sequel are always those involved in the computation of theM -DWPT

through Eqs. (9) and (10). Therefore, anyWj,n encountered below is such thatn ∈ {0, . . . , M j − 1}.
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B. M -ary representations of the paths of theM -DWPT decomposition tree

A given wavelet packet pathP is described by a sequence of nested functional subspaces:P =
(
U, {Wj,n(j)}j∈N

)
,

whereWj,n(j) ⊂ Wj−1,n(j−1). By construction, eachWj,n(j) is obtained by recursively decomposingU by means

of a particular sequence of filters(hmℓ
)ℓ=1,2,··· ,j where eachmℓ belongs to{0, 1, . . . , M − 1}. Therefore, the shift

parameter is

n(j) =

j
∑

ℓ=1

mℓM
j−ℓ ∈ {0, 1, . . . , M j − 1} (12)

at every resolution levelj. Thus, pathP can be assigned to theM -ary sequence(mℓ)ℓ>1 of elements of{0, 1, . . . , M−
1}. This sequence characterizes the packets{Wj,n(j)}j∈N, where the shift parametern = n(j) is given at resolution

level j by Eq. (12). Note also the easy relation

n(j) = Mn(j − 1) + mj , (13)

for j ∈ N, with the conventionn(0) = 0.

Conversely, given any arbitraryM -ary sequenceλ = (mℓ)ℓ∈N where eachmℓ is an element of{0, 1, . . . , M−1},

the finite subsequence(mℓ)ℓ=1,2,··· ,j formed by the firstj terms ofλ, defines a unique non negative integern(j)

of the form given by Eq. (12) and is thus associated with a unique wavelet packet space located at node(j, n(j))

of the M -DWPT decomposition tree.

According to the discussion above, everyM -DWPT decomposition path is associated with a unique sequence

λ = (mℓ)ℓ∈N of elements of{0, 1, . . . , M − 1} andvice versa. From now on, any givenM -DWPT decomposition

path will be represented by anM -ary sequenceλ. Since the shift parametern depends onj andλ via Eq. (12), the

notationn = nλ(j) will hereafter be used to indicate this dependence. Therefore, anM -ary sequenceλ associated

with an M -DWPT decomposition path specifies a unique sequence(Wj,nλ(j))j∈N of wavelet packets.

Example 1:consider the sequence

λ0 = (0, 0, 0, 0, 0, 0, · · · ).

We havenλ0(j) = 0 for every natural numberj. Thus,λ0 is associated with the pathPλ0 = (U, {Wj,0}j∈N) located

at the far left hand side of the wavelet packet tree. This pathcorresponds to the standard wavelet approximation

path since the filterh0 is used at every resolution level. Now, let us consider the sequence

λ1 = (M − 1, 0, 0, 0, 0, 0, · · · ).

For this sequence, we havenλ1(j) = (M − 1)M j−1. This sequence is thus associated with the pathPλ1 =

(U, {Wj,(M−1)Mj−1}j∈N) obtained by using filterhM−1 at the first resolution level and filterh0 at every resolution

level j > 2.

We conclude this section with an easy lemma which will prove useful in the sequel.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 2008 7

Lemma 1:For n = n(j) given by Eq. (12), we have

FWn(ω) =

[
j
∏

ℓ=1

Hmℓ
(

ω

M j+1−ℓ
)

]

FΦ(
ω

M j
). (14)

Proof: See appendix A.

C. ShannonM -DWPT and the Paley-Wiener space ofπ band-limited functions

The ShannonM -DWPT filters are hereafter denotedhS
m for m = 0, 1, . . . , M−1. These filters are ideal low-pass,

band-pass and high-pass filters. The Fourier transform of any hS
m is given by

HS

m(ω) =
∑

ℓ∈Z

1l∆m
(ω − 2πℓ), (15)

where∆m =
[

− (m+1)π
M ,−mπ

M

]

∪
[

mπ
M , (m+1)π

M

]

. The scaling functionΦS associated with these filters is defined

for everyt ∈ R by ΦS(t) = sinc(t) = sin(πt)/πt with ΦS(0) = 1. The Fourier transform of this scaling function is

FΦS = 1l[−π,π], (16)

where 1lK denotes the indicator function of a given setK: 1lK(x) = 1 if x ∈ K and 1lK(x) = 0, otherwise.

The closureUS of the space spanned by the orthonormal system{τkΦS : k ∈ Z} is then the Paley-Wiener (PW)

space of those elements ofL2(R) that areπ band-limited in the sense that their Fourier transform is supported

within [−π, π]. Any element of this space satisfies Shannon’s sampling theorem. Therefore, when theM -DWPT

concerns the PW spaceUS, the input data for the decomposition of any elementf of this functional space are the

samples{f [k]}k∈Z of f .

The PW spaceUS will play a crucial role in the sequel for the following reason. Let X be any band-limited

WSS random process whose spectrum is supported within[−π, π]. Therefore, we have (see [4, Appendix D])

X [k] =

∫

R

X(t)ΦS(t − k)dt, (17)

so that the PW spaceUS is the natural representation space of such a process. AnyM -DWPT of X can thus be

initialized with the samplesX [k], k ∈ Z.

Now, let us consider the ShannonM -DWPT of the PW spaceUS. The wavelet packet functionsW S
j,n of this M -

DWPT can be computed by means of Eqs. (2), (3) and (6) by setting Φ = ΦS andhm = hS
m, m = 0, 1, . . . , M −1.

The Fourier transforms of these wavelet packet functions are given by the following lemma. This lemma extends

[7, Proposition 8.2, p. 328] since the latter is obtained by applying the former withM = 2.

Proposition 1: For every non-negative integerj and everyn ∈ {0, . . . , M j − 1},

FW S

j,n = M j/21l∆j,G(n)
, (18)
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where, for any non-negative integerk,

∆j,k =

[

− (k + 1)π

M j
,− kπ

M j

]

∪
[

kπ

M j
,
(k + 1)π

M j

]

(19)

andG is the map defined by recursively setting, form = 0, 1, . . . , M − 1 andℓ = 0, 1, 2, . . .

G(Mℓ + m) =







MG(ℓ) + m if G(ℓ) is even,

MG(ℓ) − m + M − 1 if G(ℓ) is odd,
(20)

with G(0) = 0.

Proof: See appendix B. In this appendix and throughout the rest of the paper, we set

∆+
j,k =

[
kπ

M j
,
(k + 1)π

M j

]

(21)

for any pair(j, k) of non-negative integers.

The support ofFW S
j,n is ∆j,p, where p = G(n). The restriction ofG to the set{0, 1, . . . , M j − 1} is a

permutation of this set. This permutation induces a frequency re-ordering of the Shannon wavelet packetsFW S
j,n,

n = 0, 1, . . . , M j − 1. The frequency ordering yielded by this permutation is given for the Shannon2-DWPT

(the standard DWPT) and3-DWPT in figures 3 and 4 respectively. In these figures, the positive part ∆+
j,p of the

frequency support of the functionFW S
j,n is given for each resolution levelj under consideration and each shift

parametern = 0, 1, . . . , M j − 1.

U
S

[−π, π]hhhhhhh
(((((((

W
S

1,0

[0, π
2 ]
```̀    

W
S

2,0

[0, π
4 ]
aa!!

W
S

3,0

[0, π
8 ]

W
S

3,1

[π
8 , π

4 ]

W
S

2,1

[π
4 , π

2 ]
PP��

W
S

3,3

[3π
8 , π

2 ]

W
S

3,2

[π
4 , 3π

8 ]

W
S

1,1

[π
2 , π]hhhh((((

W
S

2,3

[3π
4 , π]
PP��

W
S

3,7

[7π
8 , π]

W
S

3,6

[ 3π
4 , 7π

8 ]

W
S

2,2

[π
2 , 3π

4 ]
PP��

W
S

3,4

[π
2 , 5π

8 ]

W
S

3,5

[ 5π
8 , 3π

4 ]

Fig. 3. Re-ordering of the Shannon2-DWPT decomposition tree. The positive part of the support of FW S
j,n

is indicated belowWS
j,n

.

U
S

[−π, π]hhhhhhhhhhh
��
(((((((((((

W
S

1,0

[0, π
3 ]hhhh((((

W
S

2,0

[0, π
9 ]

W
S

2,1

[π
9 , 2π

9 ]

W
S

2,2

[2π
9 , π

3 ]

W
S

1,1

[π
3 , 2π

3 ]hhhh((((
W

S

2,5

[ 5π
9 , 2π

3 ]

W
S

2,4

[ 4π
9 , 5π

9 ]

W
S

2,3

[π
3 , 4π

9 ]

W
S

1,2

[ 2π
3 , π]hhhh((((

W
S

2,6

[ 2π
3 , 7π

9 ]

W
S

2,7

[ 7π
9 , 8π

9 ]

W
S

2,8

[ 8π
9 , π]

Fig. 4. Re-ordering of the Shannon3-DWPT decomposition tree. The positive part of the support of FW S
j,n

is indicated belowWS
j,n

.
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III. A SYMPTOTIC ANALYSIS FOR THE AUTOCORRELATION FUNCTIONS OF THE M -DWPT OF SECOND-ORDER

WSSRANDOM PROCESSES

Let X denote a centred second-order real random process assumed to be continuous in quadratic mean. The

autocorrelation function ofX , denoted byR, is defined by

R(t, s) = E[X(t)X(s)].

The projection ofX on Wj,n yields a sequence of random variables, the wavelet packetcoefficientsof X :

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z, (22)

provided that the integral
∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (23)

exists, which will be assumed in the rest of the paper since commonly used wavelet functions are compactly

supported or have sufficiently fast decay [8]. The sequence given by Eq. (22) defines the discrete random process

cj,n = (cj,n[k])k∈Z of the wavelet packetcoefficientsof X at any resolution levelj and for any shift parameter

n ∈ {0, 1, . . . , M j − 1}.

A. Preliminary results

Let Rj,n stand for the autocorrelation function of the random process cj,n. We have

Rj,n[k, ℓ] = E
[
cj,n[k]cj,n[ℓ]

]

=

∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,ℓ(s)dtds. (24)

If X is WSS, we writeR(t, s) = R(t− s) with some usual and slight abuse of language. From Eq. (24), it then

follows that

Rj,n[k, ℓ] =

∫∫

R2

R(t)Wj,n,k(t + s)Wj,n,ℓ(s)dtds. (25)

In the sequel, the spectrumγ of X , that is, the Fourier transform ofR, is assumed to exist. By using Fubini’s

theorem and Parseval’s equality, we can proceed as in [4, Appendix C] to derive from Eqs. (8) and (25) that the

autocorrelation function ofcj,n can be written:

Rj,n[k, ℓ] =
1

2π

∫

R

γ(
ω

M j
)|FWn(ω)|2 exp (i(k − ℓ)ω) dω. (26)

Thus,cj,n is WSS. For anyk, ℓ ∈ Z, and with the same abuse of language as above, the valueRj,n[k, ℓ] of the

autocorrelation function of the discrete random processcj,n is Rj,n[k − ℓ] with

Rj,n[k] =
1

2π

∫

R

γ(
ω

M j
)|FWn(ω)|2 exp (ikω) dω. (27)
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Let us assume thatγ ∈ L∞(R) and is continuous at0. These two assumptions have two easy consequences.

First, the integrand on the right hand side (rhs) of Eq. (27) is integrable since its absolute value is upper-bounded by

‖γ‖∞|FWn(·)|2, whose integral equals‖γ‖∞; second, the limit ofγ( ω
Mj ) is γ(0) whenj tends to∞. Therefore,

for every given natural numbern, it follows from Lebesgue’s dominated convergence theoremapplied to Eq. (27)

that

lim
j→+∞

Rj,n[k] =
1

2π

∫

R

γ(0)|FWn(ω)|2 exp (ikω) dω

= γ(0)δ[k], (28)

whereδ[·] is the standard Kronecker symbol defined for every integerk ∈ Z by

δ[k] =







1 if m = 0,

0 if m 6= 0.

The result thus obtained is given in [3, Corollary 5].

Now, let P =
(
U, {Wj,nλ(j)}j∈N

)
be some path of theM -DWPT decomposition tree whereλ = (mℓ)ℓ∈N is a

sequence of elements of{0, 1, . . . , M − 1}. At each resolution levelj, and as highlighted by the notation used to

designate pathP , the shift parametern is the functionn = nλ(j) of j. We then have two cases. First, ifnλ is a

constant function ofj, it derives from Eq. (13) thatλ = λ0 is the null sequence, already considered in example 1.

In this case, the shift parameternλ(j) is 0 at each resolution levelj and theM -DWPT of X through pathP = P0

consists of an infinite sequence of low-pass filters. The decorrelation is then guaranteed by Eq. (28) (see also [3,

Corollary 5]). The second case is that of a functionnλ which is not constant withj. For instance, consider the

sequenceλ1 given in example 1, or the sequenceλ = (1, 1, . . .) for which nλ(j) = M j − 1 so that the nodes

(j, M j − 1) are those of the path located at the extreme rhs of theM -DWPT decomposition tree (see figures 1

and 2). In such cases wherenλ is not a constant function ofj, the asymptotic decorrelation of theM -DWPT

coefficients at node(j, nλ(j)) whenj tends to∞ is no longer a mere consequence of Eqs. (27) and (28).

In order to derive the behaviour of the autocorrelation functions at nodes(j, nλ(j)) of a given path whennλ

is not a constant function ofj, it is convenient to write the expression given by Eq. (27) for the autocorrelation

function in the form

Rj,n[k] =
1

2π

∫

R

γ(ω)|FWj,n(ω)|2 exp
(
iM jkω

)
dω. (29)

This equality derives from Eq. (27) after a straightforwardchange of variable and by taking into account that

FWj,n(ω) = M j/2FWn(M jω), (30)

which follows from Eq. (6). The purpose of the next section isthen to analyse the behaviour ofRj,n when the

M -DWPT filters are the Shannon filters or approximate, in a certain sense, these Shannon filters. From now on,

the decomposition space is the PW spaceU
S for its suitability regarding practical applications (seesection II-C).
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B. Asymptotic decorrelation achieved byM -DWPT

We start by considering the case where theM -DWPT is performed via the ShannonM -DWPT filters presented

in section II-C. The result obtained in this case is lemma 2. This lemma is then useful to establish the main

result of this section, namely theorem 1. This theorem applies toM -DWPT filters that approximate, in a sense

specified below, the ShannonM -DWPT filters. Lemma 2 as well as theorem 1 concern the case where the process

to decompose is band-limited and WSS. Therefore, the decomposition space considered in both statements is the

PW spaceUS since it is the natural representation space for band-limited WSS processes (see Eq. (17)).

With the same notations as above, letλ = (mℓ)ℓ∈N be anM -ary sequence of elements of{0, 1, . . . , M−1}. Con-

sider the ShannonM -DWPT, that is, theM -DWPT associated with the ShannonM -DWPT filters(hS
m)m=0,1,...,M−1.

Let Pλ = (US, {WS

j,nλ(j)}j∈N) be the path associated withλ in the ShannonM -DWPT decomposition tree. It

follows from proposition 1 that the support ofW S

j,nλ(j) is ∆j,pλ(j), wherepλ(j) = G(nλ(j)). For j ∈ N, the sets

∆j,p+
λ

(j) are nested intervals whose diameters tend to0. Therefore, their intersection contains only one pointa(λ).

It then follows from (19) that

a(λ) = lim
j→+∞

pλ(j)π

M j
. (31)

Let X be some centred second-order WSS random process, continuous in quadratic mean, with spectrumγ. The

autocorrelation functionRS
j,n resulting from the projection ofX on W

S
j,n derives from Eq. (29) and is given by

RS

j,n[k] =
1

2π

∫

R

γ(ω)|FW S

j,n(ω)|2 exp
(
iM jkω

)
dω. (32)

From Eqs. (18) and (32) and taking into account thatγ is even, as the Fourier transform of the even functionR,

it follows that

RS

j,n[k] =
M j

π

∫

∆+
j,p

γ(ω) cos (M jkω)dω. (33)

where∆+
j,p is given by Eq. (21) andp = G(n). When X satisfies some additional assumptions, the following

lemma 2 states that the ShannonM -DWPT of X yields coefficients that tend to be decorrelated whenj tends to

infinity. One of these additional assumptions is thatX is band-limited in the sense that its spectrum is supported

within [−π, π]. WhenM = 2, lemma 2 is equivalent to [4, Proposition 1].

Lemma 2:Let X be a centred second-order WSS random process, continuous inquadratic mean. Assume that the

spectrumγ of X is an element ofL∞(R) and is supported within[−π, π]. Let λ = (mℓ)ℓ∈N be anM -ary sequence

of elements of{0, 1, . . . , M − 1} andPλ = (US, {WS

j,nλ(j)}j∈N) be the ShannonM -DWPT decomposition path

associated withλ.

If the spectrumγ of X is continuous at pointa(λ), then

lim
j→+∞

RS

j,nλ(j)[k] = γ(a(λ))δ[k] (34)
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uniformly in k ∈ Z, whereRS

j,nλ(j) is the autocorrelation function of the coefficients resulting from the projection

of X on W
S

j,nλ(j).

Proof: See appendix C.

The foregoing lemma is mainly of theoretical interest sincethe ShannonM -DWPT filters have infinite supports

and are not really suitable for practical purpose. In order to obtain a result of the same type for filters of practical

interest, theM -DWPT is now assumed to be performed by using decomposition filters h
[r]
m , m = 0, 1, . . . , M − 1,

that depend on a non-negative integer or real valuer such that

lim
r→∞

H [r]
m = HS

m (a.e.), (35)

where H
[r]
m is the Fourier transform ofh[r]

m and HS
m is given by Eq. (15). As mentioned in the introduction,

r is called the order of theM -DWPT filters. Whenr tends to∞, the M -DWPT filters with impulse responses

{h[r]
m }m=0,1,...,M−1 converge in the sense specified by Eq. (35) to the ShannonM -DWPT filters{hS

m}m=0,1,...,M−1.

On the other hand, Eq. (35) can be regarded as a property of regularity for the following reasons. According to

[9], [10], [11], the Daubechies filters satisfy Eq. (35) forM = 2 whenr is the number of vanishing moments of

the Daubechies wavelet function; according to [12], Battle-Lemarié filters also satisfy Eq. (35) forM = 2 whenr

is the spline order of the Battle-Lemarié scaling function. The existence of such families forM > 2 remains an

open issue to address in forthcoming work. However, it seemsreasonable to expect that generalM -DWPT filters

of the Daubechies or Battle-Lemarié type converge to Shannon filters in the sense given above.

Theorem 1:Let X be a centred second-order WSS random process, continuous inquadratic mean. Assume that

the spectrumγ of X is an element ofL∞(R) and is supported within[−π, π]. Assume that theM -DWPT of the

PW spaceUS is achieved by using decomposition filtersh
[r]
m , m = 0, 1, . . . , M − 1, satisfying Eq. (35).

For every natural numberj and everyn = 0, 1, . . . , M j − 1, let R
[r]
j,n stand for the autocorrelation function of

the wavelet packet coefficients ofX with respect to the packetW[r]
j,n.

(i) We have

lim
r→+∞

R
[r]
j,n[k] = RS

j,n[k], (36)

uniformly in k ∈ Z andn, whereRS
j,n is given by Eq. (33).

(ii) Let Pλ = (US, {W[r]
j,nλ(j)}j∈N) be some path of thisM -DWPT whereλ is a sequence of elements of

{0, 1, . . . , M − 1}. If γ is continuous ata(λ), then

lim
j→+∞

(

lim
r→+∞

R
[r]
j,nλ(j)[k]

)

= γ(a(λ))δ[k], (37)

uniformly in k ∈ Z, with a(λ) given by Eq. (31).
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Remark 1:Since theM -DWPT concerns the PW spaceUS, we have

FW S

n(ω) =

[
j
∏

ℓ=1

HS

mℓ
(

ω

M j+1−ℓ
)

]

FΦS(
ω

M j
), (38)

and

FW [r]
n (ω) =

[
j
∏

ℓ=1

H [r]
mℓ

(
ω

M j+1−ℓ
)

]

FΦS(
ω

M j
), (39)

wheren is given by Eq. (12). These equations straightforwardly derive from Eq. (14) of lemma 1. From Eqs. (30),

(35), (38) and (39), we obtain, for every given natural number j, that

lim
r→+∞

FW
[r]
j,n = FW S

j,n (a.e.), (40)

uniformly in n. The three equalities above will prove useful in the sequel.

Proof: (of theorem 1). The autocorrelation functionR[r]
j,n is given by Eq. (29) and is equal to

R
[r]
j,n[k] =

1

2π

∫

R

γ(ω)|FW
[r]
j,n(ω)|2 exp

(
iM jkω

)
dω. (41)

In addition, we have

∣
∣R

[r]
j,n[k] − RS

j,n[k]
∣
∣

6
1

2π

∫

R

|γ(ω)|
∣
∣
∣ |FW

[r]
j,n(ω)|2 − |FW S

j,n(ω)|2
∣
∣
∣ dω, (42)

whereRS
j,n is given by Eq. (33). From Eqs. (30), (38) and (39), and by taking into acount that|H [r]

mℓ
(ω)| and

|HS
mℓ

(ω)| are less than or equal to1, we obtain

∣
∣
∣ |FW

[r]
j,n(ω)|2 − |FW S

j,n(ω)|2
∣
∣
∣ 6 2M j

∣
∣FΦS(ω)

∣
∣
2
. (43)

Statement (i) derives from Eqs. (40), (42), (43) and Lebesgue’s dominated convergence theorem. Statement (ii) is

a consequence of statement (i) and lemma 2.

Remark 2:Consider the case wherePλ = P0 whereλ0 is the null sequence (see example 1). According to Eq.

(28), the asymptotic decorrelation is obtained by simply increasing the resolution levelj. However, Eq. (37) above

suggests that the order of theM -DWPT filters can play some role on the speed of the decorrelation process. This

seems to be actually the case. In [4], experimental results carried out for the standard DWPT (M = 2) illustrate

that the decorrelation process obtained by successive low-pass filtering is accelerated by increasing the order of the

filters with respect to the resolution level.

Remark 3:Theorem 1 extends Eq. (28) and [3, Corollary 5] for paths involving low-, band- and high-pass

decomposition filters. Such paths are associated with non-null sequences. In this case, theorem 1 shows that, when

both j and r increase, the coefficients of theM -DWPT tend to decorrelate and that the variance of the discrete

random process returned at node(j, nλ(j)) of a given pathPλ tends toγ(a(λ)) when j tends to infinity. This
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asymptotic value for the variance depends ona(λ) and, thus, may differ fromγ(0) whenevera(λ) 6= 0. For instance,

for the autoregressive random process used in the experimental results of section V, table II below presents the

valueγ(a(λ)) for different sequencesλ, and thus, different paths of the standard DWPT decomposition tree.

IV. CENTRAL LIMIT THEOREMS

In this section, we consider a centred real random processX that has finite cumulants and polyspectra. Denote

by

cum(t, s1, s2, · · · , sN )

= cum{X(t), X(s1), X(s2), · · · , X(sN )}, (44)

the cumulant of orderN + 1 of X . The above cumulant is hereafter assumed to belong toL2(RN+1) and to be

finite for any natural numberN (see [13, Proposition 1] for a discussion about the existence of this cumulant). The

cumulant of orderN + 1 of the random processcj,n has the integral form given by (see [13, Proposition 1]):

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

= cum
{
cj,n[k]cj,n[ℓ1]cj,n[ℓ2] · · · cj,n[ℓN ]

}

=

∫

RN+1

dtds1ds2 · · · dsNcum(t, s1, s2, · · · , sN )Wj,n,k(t)

Wj,n,ℓ1(s1)Wj,n,ℓ2(s2) · · ·Wj,n,ℓN
(sN ). (45)

By setting si = t + ti for i = 1, 2, · · · , N in Eq. (45) and by assuming thatX is strictly stationary so that

cum(t, t + t1, t + t2, · · · , t + tN ) = cum(t1, t2, · · · , tN ), then

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=

∫

RN+1

dtdt1dt2 · · · dtNcum(t1, t2, · · · , tN )Wj,n,k(t)

Wj,n,ℓ1(t+t1)Wj,n,ℓ2(t+t2) · · ·Wj,n,ℓN
(t+tN). (46)

In what follows,X is assumed to have a polyspectrumγN (ω1, ω2, · · · , ωN ) for every natural numberN and

every (ω1, ω2, · · · , ωN ) ∈ R
N . The polyspectrum is the Fourier transform of the cumulantcum(t1, t2, · · · , tN ).

WhenN = 1, γ1 is the spectrum ofX and is simply denotedγ as in section III. From now on, it is assumed that

γN belongs toL∞(RN ) and that
∫

RN

dω1dω2 · · · dωN

FWn(−ω1 − ω2 − · · · − ωN )FWn(ω1) · · · FWn(ωN )

exists and is finite for any natural numberN . A standard and sufficient condition for the existence of this integral

concerns the regularity of the functionΦ used to generate the wavelet packet functionsWn. This assumption is the
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existence of two positive real numbersε andC such that

|FΦ(ω)| 6
C

1 + |ω|1+ε
, ω ∈ R. (47)

Now, Eq. (46) can be written (see appendix D)

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=
1

(2π)N

∫

RN

dω1dω2 · · ·dωNγN (−ω1,−ω2, · · · ,−ωN)

FWj,n,k(−ω1 − ω2 − · · · − ωN)

FWj,n,ℓ1(ω1)FWj,n,ℓ2(ω2) · · · FWj,n,ℓN
(ωN ).

(48)

In addition, from the first equality of Eq. (8), we haveFWj,n,k(ω) = exp
(
−iM jkω

)
FWj,n(ω). Thus, by

settingℓi = k + ki for i = 1, 2, · · · , N in Eq. (48), we obtain thatcj,n is a strictly stationary random process with

cumulantscumj,n[k, k + k1, k + k2, · · · , k + kN ] = cumj,n[k1, k2, · · · , kN ] with

cumj,n[k1, k2, · · · , kN ]

=
1

(2π)N

∫

RN

dω1dω2 · · ·dωN

exp
(
−iM j(k1ω1 + k2ω2 + · · · + kNωN)

)

γN (−ω1,−ω2, · · · ,−ωN)

FWj,n(−ω1 − ω2 − · · · − ωN )

FWj,n(ω1)FWj,n(ω2) · · · FWj,n(ωN ). (49)

The asymptotic Gaussianity of the discrete random process returned at node(j, n) will be analysed through the

behaviour of the cumulantcumj,n[k1, k2, · · · , kN ]. In particular, it will be proved that this cumulant tends tozero

under additional assumptions on the decomposition filters.

By taking into account Eq. (30), Eq. (49) can also be written,with an easy change of variables:

cumj,n[k1, k2, · · · , kN ]

=
M−j(N−1)/2

(2π)N

∫

RN

dω1dω2 · · · dωN

exp (−i(k1ω1 + k2ω2 + · · · + kNωN))

γN (−ω1M
−j,−ω2M

−j, · · · ,−ωNM−j)

FWn(−ω1 − ω2 − · · · − ωN )

FWn(ω1)FWn(ω2) · · · FWn(ωN ). (50)
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Assume thatγN belongs toL∞(RN ). If the shift parameter is constant, it follows from Lebesgue’s dominated con-

vergence theorem that, for any natural numberN > 1, cumj,n[k1, k2, · · · , kN ] tends to0 uniformly in k1, k2, . . . , kN

whenj tends to∞. This is a consequence of [3, Proposition 11].

If the shift parametern is a non-constant and, thus, non-null function of the resolution level j, the discussion

following Eq. (27) has highlighted that Lebesgue’s dominated convergence theorem does not make it possible to

conclude about the decorrelation of the sequence returned by the M -DWPT at node(j, n). Here, the situation is

similar: if Pλ = (US, {Wj,nλ(j)}j∈N) is some path of theM -DWPT, the shift parameternλ(j) depends onj

and Lebesgue’s dominated convergence theorem does not apply to Eq. (50) to prove the vanishing behaviour of

the cumulant at node(j, nλ(j)). The main result of this section, namely theorem 2, will however establish this

vanishing behaviour by using the same family of filters as above and the following instrumental lemma 3. This

lemma concerns the ShannonM -DWPT.

Lemma 3:Let X be a centred second-order strictly stationary random process, continuous in quadratic mean.

Assume that the polyspectrumγN of X is an element ofL∞(RN ) for any N > 1 and that the spectrumγ is

supported within[−π, π]. For every natural numberN > 1, the cumulant of orderN + 1, cum
S
j,n[k1, k2, · · · , kN ],

of the discrete random process returned at node(j, n) by the ShannonM -DWPT of X tends to zero uniformly in

n, k1, k2, · · · , kN , whenj tends to infinity.

Proof: When the wavelet packet functions are the functionsW S
j,n, it follows from Eqs. (18) and (49) that the

cumulantcum
S
j,n[k1, k2, · · · , kN ] of the discrete random process returned at node(j, n) by the ShannonM -DWPT

of X satisfies the following inequality

|cum
S

j,n[k1, k2, · · · , kN ]|

6
M j(N+1)/2

(2π)N
.‖γN‖∞

∫

∆N
j,p

dω1dω2 · · · dωN (51)

where∆N
j,p = ∆j,p × ∆j,p × . . . × ∆j,p

︸ ︷︷ ︸

N times

andp = G(n).

According to Eq. (19),
∫

∆j,p
dω = 2π/M j. Therefore, we obtain that

|cum
S

j,n[k1, k2, · · · , kN ]| 6 ‖γN‖∞M−j(N−1)/2. (52)

Given any natural numberN > 1, the rhs of the latter inequality does not depend onn, k1, . . . , kN and vanishes

whenj tends to∞, which completes the proof.

Consider the decomposition filters introduced in section III-B and therefore, satisfying Eq. (35). Letλ be an

M -ary sequence of elements of{0, 1, . . . , M − 1}. The following results describe the asymptotic distribution of

the discrete random processc
[r]
j,nλ(j) returned at node(j, nλ(j)) when the resolution levelj and the orderr of the

filters increase.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 2008 17

Theorem 2:Let X be a centred second-order strictly stationary random process, continuous in quadratic mean.

Assume that the polyspectrumγN of X is an element ofL∞(RN ) for every natural numberN > 1 and that the

spectrumγ is supported within[−π, π].

For every given natural numberj and everyn ∈ {0, 1, . . . , M j − 1}, let cum
[r]
j,n stand for the cumulant of order

N + 1 of the wavelet packet coefficients ofX with respect to the packetW[r]
j,n.

(i) We have

lim
r→+∞

cum
[r]
j,n[k1, k2, . . . , kN ] = cum

S

j,n[k1, k2, . . . , kN ], (53)

uniformly in n, k1, k2, . . . , kN .

(ii) Let λ = (mk)k∈N be anM -ary sequence of elements of{0, 1, . . . , M − 1} andPλ = (US, {W[r]
j,nλ(j)}j∈>1)

be the sequence of wavelet packets associated withλ. If N > 1, we have

lim
j→+∞

(

lim
r→+∞

cum
[r]
j,nλ(j)[k1, k2, . . . , kN ]

)

= 0, (54)

uniformly in k1, k2, . . . , kN .

Proof: We begin with the proof of statement (i). This proof mimics that of the first statement of theorem 1. By

applying Eq. (49) to the wavelet packet functionsW
[r]
j,n and, then, to the Shannon wavelet packet functionsW S

j,n,

we obtain the following inequalities

|cum
[r]
j,n[k1, k2, · · · , kN ] − cum

S

j,n[k1, k2, · · · , kN ]|

6
1

(2π)N

∫

RN

dω1 · · ·dωN |γN (−ω1, · · · ,−ωN )|
∣
∣
∣FW

[r]
j,n(−ω1 · · · − ωN)FW

[r]
j,n(ω1) · · · FW

[r]
j,n(ωN )

−FW S

j,n(−ω1 · · · − ωN)FW S

j,n(ω1) · · · FW S

j,n(ωN )
∣
∣
∣,

6
1

(2π)N
||γN ||∞

∫

RN

dω1 · · · dωN

∣
∣
∣FW

[r]
j,n(−ω1 · · · − ωN)FW

[r]
j,n(ω1) · · · FW

[r]
j,n(ωN )

−FW S

j,n(−ω1 · · · − ωN)FW S

j,n(ω1) · · · FW S

j,n(ωN )
∣
∣
∣. (55)
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The integrand on the rhs of the second inequality above can now be upper-bounded by

∣
∣
∣FW

[r]
j,n(−ω1 · · · − ωN )

∣
∣
∣

∣
∣
∣FW

[r]
j,n(ω1)

∣
∣
∣ · · ·

∣
∣
∣FW

[r]
j,n(ωN )

∣
∣
∣

+
∣
∣
∣FW S

j,n(−ω1 · · · − ωN)
∣
∣
∣

∣
∣
∣FW S

j,n(ω1)
∣
∣
∣ · · ·

∣
∣
∣FW S

j,n(ωN )
∣
∣
∣

6 M j(N+1)/2
∣
∣
∣FW [r]

n (−M jω1 · · · − M jωN )
∣
∣
∣

∣
∣
∣FW [r]

n (M jω1)
∣
∣
∣ · · ·

∣
∣
∣FW [r]

n (M jωN )
∣
∣
∣

+
∣
∣
∣FW S

n (−M jω1 · · · − M jωN)
∣
∣
∣

∣
∣
∣FW S

n(M jω1)
∣
∣
∣ · · ·

∣
∣
∣FW S

n(M jωN )
∣
∣
∣

6 2M j(N+1)/2ΦS(ω1)Φ
S(ω2) · · ·ΦS(ωN ) (56)

where we use Eqs. (30), (38), (39), and take into acount that|H [r]
mℓ

(ω)| and |HS
mℓ

(ω)| are less than or equal to

1. The upper-bound given by Eq. (56) is independent ofr and integrable; its integral equals2M j(N+1)/2(2π)N .

By taking Eq. (40) into account, we derive from Lebegue’s dominated convergence theorem that the upper bound

in inequality Eq. (55) tends to0 whenr tends to+∞, which completes the proof of statement (i). Statement (ii)

follows from lemma 3 and statement (i).

Remark 4:Note the following. The first statement of theorem 1 can be proved by applying Eq. (53) withN = 1.

In fact, whenN = 1, the cumulant of order2 is the autocorrelation function; strict stationarity plays no role,

wide-sense stationarity is enough and Eq. (36) follows straightforwardly. Two separate proofs have been presented

for the sake of making the reading easier.

Remark 5: If n = nλ(j) is a constant function ofj, that is, if λ is in fact the null sequence, the vanishing

behaviour of the cumulantcum
[r]
j,n[k1, k2, · · · , kN ] when j tends to∞ straightforwardly derives from Eq. (50).

However, similarly to remark 2, Eq. (54) suggests that orderr may play a role in the convergence to0 of the

cumulant. According to the experimental results of the nextsection, this convergence seems to accelerate when the

order increases.

Corollary 1: With the same assumptions and notations as those of theorems1 and 2, assume thatγ is continuous

at a(λ). Then, whenj and r tend to infinity, the sequence
(

c
[r]
j,nλ(j)

)

r,j
converges in distribution to a white

Gaussian process with spectrumγ(a(λ)) in the following sense: For everyx ∈ R
N and everyǫ > 0, there exists

j0 = j0(x, ǫ) > 0 and there existsr0 = r0(x, j0, ǫ) such that, for everyj > j0 and everyr > r0, the absolute value

of the difference between the value atx of the probability distribution of the random vector

(c
[r]
j,nλ(j)[k1], c

[r]
j,nλ(j)[k2], . . . , c

[r]
j,nλ(j)[kN ])

and the value atx of the centredN -variate normal distributionN (0, γ(a(λ))IN ) with covariance matrixγ(a(λ))IN

is less thanǫ.
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Proof: The result is a straightforward consequence of statement (ii) of theorem 1 and statement (ii) of theorem

2.

It is now interesting to study to what extent the results stated above are workable in practical cases. This is what

we discuss in the next section on the basis of some experimental results.

V. EXPERIMENTAL RESULTS

The experimental results presented in this section concernthe standard DWPT, that is theM -DWPT with M = 2,

when Daubechies filters are used to perform the decomposition. We consider this standard case for the following

reasons. To begin with, Daubechies filters are known to converge to the Shannon filters when the numberr of

vanishing moments of the Daubechies mother wavelet increases, whereas the same type of result has not yet been

established forM -band filters withM > 2. Since [4] already presents and comments experimental results regarding

the asymptotic decorrelation of the DWPT coefficients as theresolution level and the order of the filters increase,

the focus is therefore the asymptotic normality described by theorem 2. Inequality (52) then suggests that the larger

M is, the faster the convergence to normality. Therefore, by choosingM = 2, we not only consider the most

standard wavelet packet decomposition but also the decomposition that seems the least favourable with respect to

Eq. (52) used to prove lemma 3, the cornerstone of theorem 2.

With respect to the foregoing, and since theorem 2 is of asymptotic nature, the purpose of this section is to

experimentally study how well the tendency to Gaussianity is satisfied when the input process is non-Gaussian and

the DWPT is performed with finite values for the resolution level and the order.

As above,X(t) stands for the centred Hilbertian random process to decompose. Its spectrum, denotedγ, is

assumed to be an element ofL∞(R) and to have support in[−π, π]. In fact, our experiments concern the case

whereX(t) is Generalized Gaussian (GG). This means that, for everyt ∈ R, X(t) follows the Generalized Gaussian

Distribution (GGD) withscaleα, shapeβ and zero mean. For eacht ∈ R, the Probability Density Function (PDF)

of X(t) is fα,β defined for every real valuex by:

fα,β(x) =
β

2αΓ(1/β)
exp

(
−(|x|/α)β

)
, (57)

whereΓ is the standard Gamma function. The value of the GGD standarddeviation is

σ = α
√

Γ(3/β)/Γ(1/β).

For our experimentations, we choose

α =
√

Γ(1/β)/Γ(3/β), (58)

so thatσ = 1. Note that when the shape parameterβ equals2, the GGD given by Eq. (57) is Gaussian. Whenβ

decreases (from2 to 0), the probability density function of the GGD is sharper, and sharper, at the origin as can

be seen in figure 5. Whenβ = 1, the GGD is the Laplacian distribution.
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Fig. 5. GGD with unit variance and shapeβ = 2, 1, 0.5.

In our experiments, we consider100 independent random copies of the random vector formed by theN samples

X(1), X(2), . . ., X(N) with N = 220. Each copy is used as an input of the DWPT. We then consider thefour

wavelet packet paths associated with the sequencesλq = (δ[q − ℓ])ℓ∈N, for q = 0, 1, 2 and 3 [4, Example 1].

For these sequences, and taking into account Eq. (12), we have nλ0(ℓ) = 0 for every natural numberℓ, and for

q = 1, 2, 3:

nλq
(ℓ) =







0 for ℓ = 1, 2, · · · , q − 1,

2ℓ−q for ℓ = q, q + 1, · · · .

It follows that pλ0(ℓ) = G(nλ0(ℓ)) = 0 and that

pλq
(ℓ) =







0 for ℓ = 1, 2, · · · , q − 1,

2ℓ−q+1 − 1 for ℓ = q, q + 1, · · · ,

for q = 1, 2, 3. According to Eq. (31),a(λ0) = 0 anda(λq) = π/2q−1 for q = 1, 2 and3.

For every pathλ among those introduced above, the Kolmogorov-Smirnov (KS)test with significant level5% is

used to decide whether the samples(c
[r]
j,nλ(j)[k]/

√

γ(a(λ)))k, returned by the DWPT for a given copy, satisfy the

null hypothesis (that is, follow the normal distributionN (0, 1)), or not (alternative hypothesis).

First, we discuss the case where the samplesX(1), X(2), . . ., X(N) of the random processX(t) are uncorrelated.

In this case, since the GGD is such thatσ = 1, we haveγ(a(λ)) = 1 for any of the four paths(Pλq
)q=0,1,2,3 under

consideration. Experimentations show that by increasing the resolution levelj up to 6, and by using Daubechies

filters of order7, the convergence to the normal distribution is significant for 0.5 < β 6 2. Table I presents the

results obtained forβ = 1.5, 1, 0.5.

Now, we address the case where the samplesX(1), X(2), . . ., X(N) of the GG processX(t) are correlated.

These samples are synthesized by filtering a discrete sequence of independent and identically GG distributed random
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variables through an auto-regressive (AR) filter of order1. The Z-transform of this filter is1/(1 − µz−1) where

0 < µ < 1. If α andβ are the parameters of the GG random variables used to synthesize the samples ofX(t), we

henceforth say that the output discrete processX(t) is an AR(1)-GG process with parametersα, β andµ.

Experimental tests are carried out withµ = 0.5, 0.75, 0.9, 0.95. The spectrum of the GG-AR(1) processes

corresponding to these values ofµ are given in figure 6. Table II gives the valuesγ(a(λ)) for the four test sequences.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ω

γ(ω)

 

 

µ = 0.50
µ = 0.75
µ = 0.90
µ = 0.95

Fig. 6. Coloured GG Spectrum for some values ofµ.

The experimental results obtained with the AR(1)-GG process are presented in table III. By increasing the resolution

level, from j = 3 to j = 6 when the order of the filters is constant and equalsr = 1, the number of times the

KS test accepts the Gaussian distributionN (0, 1) for the sequence of random variables(c
[r]
j,nλ(j)[k]/

√

γ(a(λ)))k

increases for most of the DWPT paths. When the resolution is fixed toj = 6, it suffices to increase the orderr to

also increase the acceptance rate of the Gaussian distribution. If the input coloured AR(1)-GG processX(t) is such

that0.5 < β 6 2 and0 < µ < 0.9, normality can reasonably be considered to be attained whenthe resolution level

j is 6 and the order of the Daubechies filters isr = 7. The less satisfactory results occur for large values ofµ or

small values ofβ. However, whenµ is large, the spectrum of the process tends to become ‘singular’ because it is

rather sharp around the null frequency (see figure 6 forµ = 0.95); on the other hand, whenβ becomes small, the

GGD becomes ‘singular’ in the sense that its PDF is still sharper at the origin (see figure 5 forβ = 0.5). However,

even for large values ofµ and small values ofβ, increasing both the order of the filters and the resolution level

leads to better results, as can be seen in table IV.

From tables I, III and IV, we observe a significant acceptancerate by increasing first the resolution level from

j = 3 to j = 6 whenr is fixed to1. In addition, we observe a significant improvement in the acceptance rate by

increasing the order of the filters from1 to 7, given a fixed resolution levelj = 6. It follows that increasing both

the resolution level and the order of the filters yields a highKS test acceptance rate for the normalityN (0, 1) of
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TABLE I

KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTIONN (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL

j = 3, 6 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO

EITHER 1 OR 7. THE DWPT INPUT PROCESS ISGG. THE GGD PARAMETERS AREα GIVEN BY EQ. (58) AND β = 1.5, 1, 0.5. THE SAMPLES

OF THE GG PROCESS ARE UNCORRELATED.

White GG process

Path

Pλ0

Pλ1

Pλ2

Pλ3

GGD, with β = 1.5

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

51% 94% 96%

53% 97% 98%

47% 94% 97%

56% 94% 94%

GGD, with β = 1

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 97% 97%

0% 96% 93%

0% 94% 96%

0% 92% 94%

GGD, with β = 0.5

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 44% 74%

0% 44% 71%

0% 31% 39%

0% 37% 38%

TABLE II

VALUES γ(a(λ)) FOR THE FOUR TEST SEQUENCES.

Path

Pλ0

Pλ1

Pλ2

Pλ3

µ = 0.5 µ = 0.75 µ = 0.9 µ = 0.95

1 1 1 1

0.1111 0.0204 0.0028 0.0007

0.2052 0.0412 0.0057 0.0014

0.4798 0.1332 0.0201 0.0048

the samples(c[r]
j,nλ(j)/

√

γ(a(λ)))k.

As an illustration, figure 7 shows histograms of the DWPT coefficients obtained at resolution level6, by using

Daubechies filters of order7. The decomposition concerns the samples of an AR(1)-GG process withα, given by

Eq. (58),β = 1 andµ = 0.75. These histograms are compared with the PDF of the Gaussian limit distribution.

As already mentioned above (see remark 5), the order of the filters speeds up the convergence to normality when

the decomposition path isPλ0 associated with the null sequenceλ0 = (0, 0, . . .), which applies only low-pass

filters to the input process. Indeed, for this path, higher order filters yield better approximation of the distribution

N (0, γ(0)) than lower order ones. This can be noticed by comparing, at resolution levelj = 6, the acceptance

rates obtained forr = 1 to those obtained forr = 7 in tables I, III and IV forPλ0 .

VI. CONCLUSION

In this paper,M -DWPTs of band-limited stationary random processes have been considered. The asymptotic

analysis of the distribution of the wavelet packet coefficients is achievedvia certain families ofM -DWPT filters.

The specificity of these filters is that their Fourier transforms converge almost everywhere to the Fourier transform

of the Shannon filters. Daubechies and Battle-Lemarié filters are examples of such families of filters whenM = 2
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TABLE III

KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTIONN (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL

j = 3, 6 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO

EITHER 1 OR 7. THE DWPT INPUT PROCESS ISAR(1)-GGWITH α GIVEN BY EQ. (58),β = 1.5, 1, 0.5 AND µ = 0.5, 0.75, 0.9, 0.95.

Coloured GG process, withβ = 1.5

Path

Pλ0

Pλ1

Pλ2

Pλ3

AR-1 filtering: µ = 0.5

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 95% 98%

0% 91% 98%

0% 95% 88%

0% 0% 86%

AR-1 filtering: µ = 0.75

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 42% 99%

0% 52% 96%

0% 37% 86%

0% 14% 65%

AR-1 filtering: µ = 0.9

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 19%

0% 0% 94%

0% 0% 91%

0% 0% 53%

AR-1 filtering: µ = 0.95

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 0%

0% 0% 96%

0% 0% 90%

0% 0% 52%

Coloured GG process, withβ = 1

Path

Pλ0

Pλ1

Pλ2

Pλ3

AR-1 filtering: µ = 0.5

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 84% 94%

0% 94% 96%

0% 95% 82%

0% 0% 71%

AR-1 filtering: µ = 0.75

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 31% 96%

0% 67% 93%

0% 56% 78%

0% 3% 50%

AR-1 filtering: µ = 0.9

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 21%

0% 0% 92%

0% 0% 89%

0% 0% 41%

AR-1 filtering: µ = 0.95

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 0%

0% 0% 94%

0% 0% 84%

0% 0% 18%

Coloured GG process, withβ = 0.5

Path

Pλ0

Pλ1

Pλ2

Pλ3

AR-1 filtering: µ = 0.5

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 5% 67%

0% 66% 70%

0% 10% 4%

0% 0% 2%

AR-1 filtering: µ = 0.75

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 75%

0% 93% 93%

0% 71% 46%

0% 0% 7%

AR-1 filtering: µ = 0.9

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 3%

0% 1% 89%

0% 0% 29%

0% 44% 8%

AR-1 filtering: µ = 0.95

j = 3 j = 6 j = 6

r = 1 r = 1 r = 7

0% 0% 0%

0% 0% 78%

0% 0% 2%

0% 0% 0%

(standard DWPT). Furthermore, since the Daubechies (resp.Battle-Lemarié) scaling function is proved to converge

to the Shannon scaling function when the number of vanishingmoments of the Daubechies wavelet function (resp.

spline order of the Battle-Lemarié scaling function) increases [10] (resp. [12]), we may expect that generalM -

DWPT decomposition filters of Daubechies or Battle-Lemari´e types may converge to the Shannon filters. This

remains to be proved. However, if this holds true, it can be expected that the tendency to normality of the wavelet

packet coefficients will be accelerated since Eq. (52) suggests that the largerM is, the faster the cumulants vanish.

Therefore, designing families ofM -DWPT filters that converge to the Shannon filters is of theoretical and practical

interest.

Some authors present the wavelet decomposition as an alternative to the Karhunen-Loève (KL) expansion [14].
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TABLE IV

KS TEST ACCEPTANCE RATES FOR THE NORMAL DISTRIBUTIONN (0, 1) OF THE DWPT COEFFICIENTS RETURNED AT RESOLUTION LEVEL

j = 6, 7 FOR DIFFERENTDWPT PATHS AND WHEN THEDWPT IS PERFORMED WITHDAUBECHIES FILTERS WITH ORDER EQUAL TO

EITHER 7 OR 20. THE DWPT INPUT PROCESS ISAR(1)-GGWITH α GIVEN BY EQ. (58),β = 0.5 AND µ = 0.95.

Coloured GG process, withβ = 0.5, µ = 0.95

Path

Pλ0

Pλ1

Pλ2

Pλ3

j = 6 j = 6 j = 7

r = 7 r = 20 r = 20

0% 0% 45%

78% 86% 91%

2% 30% 79%

0% 4% 35%

More precisely, [4] highlights the decorrelation that can be achieved in DWPT paths by considering the same

families of decomposition filters as those used in the present work. The results given above go beyond the simple

decorrelation process of the DWPT by making more precise theasymptotic distribution of the wavelet packet

coefficients. This asymptotic distribution is normal with variance equal to the value taken by the input process

spectrum at some specific frequency. This frequency can be computed with respect to the nested supports of the

Fourier transforms of the wavelet packets associated with the chosen path. The results of this paper may thus be

applicable to several signal processing fields, data analysis or communication applications.

APPENDIX A

PROOF OF LEMMA 1

According to Eqs. (5) and (13), we have

FWn(j)(ω)=FWMn(j−1)+mj
(ω) (59)

=Hmj
(

ω

M
)FWn(j−1)(

ω

M
).

An easy recurrence leads to

FWn(j)(ω)

= Hmj
(

ω

M
)Hmj−1 (

ω

M2
) . . . Hm2(

ω

M j−1
)FWm1(

ω

M j−1
),

sincen(1) = m1. It then suffices to apply Eq. (4) to conclude.

APPENDIX B

PROOF OF PROPOSITION1

The proof is achieved by induction onj. By definition of the Shannon wavelet packet functionsW S
j,n (see section

II-C), it follows from Eq. (6) thatW S
0,0 = W0 = ΦS, since the Shannon wavelet packet functions are obtained

according to Eq. (2) withΦ = ΦS. It then follows from Eq. (16) that Eq. (18) holds true forj = 0.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 2008 25

According to the definition of the Shannon wavelet packet functions, it follows from Eqs. (7), (15) and the

definition of ∆j,n (see Eq. (19)) that

FW S

j+1,Mn+m(ω) =
√

MHS

m(M jω)FW S

j,n(ω), (60)

with

HS

m(M jω) =
∑

ℓ∈Z

1l∆j+1,m
(ω − 2πℓ

M j
),

=
∑

ℓ∈Z

1l∆j+1,m,ℓ
(ω), (61)

where, for any non-negative integerj, any integerℓ and anym = 0, 1, . . . , M − 1,

∆j+1,m,ℓ =
[
(−m − 1 + 2Mℓ)π

M j+1
,
(−m + 2Mℓ)π

M j+1

]

⋃

[
(m + 2Mℓ)π

M j+1
,
(m + 1 + 2Mℓ)π

M j+1

]

.

Suppose that Eq. (18) holds true at resolution levelj, for n ∈ {0, 1, . . . , M j − 1} andp = G(n). We derive from

Eqs. (18), (60) and (61) that

FW S

j+1,Mn+m = M (j+1)/21l(
⋃

ℓ∈Z
∆j+1,m,ℓ)

⋂
∆j,p

. (62)

The following lemma gives the intersection between
(⋃

ℓ∈Z
∆j+1,m,ℓ

)
and∆j,p.

Lemma 4:
(
⋃

ℓ∈Z

∆j+1,m,ℓ

)
⋂

∆j,p =







∆j+1,Mp+m if p is even,

∆j+1,Mp+M−m−1 if p is odd.

Proof: (of lemma 4). Given any subsetA of R and any real valuex, let xA = {xa : a ∈ A} be thedilate of

A by x andA + x = {a + x : x ∈ A} be thetranslateof A by x.

The set∆j,p ∩
(⋃

ℓ∈Z
∆j+1,m,ℓ

)
is symmetrical with respect to0 since∆j,p is itself symmetrical with respect to

the origin and
⋃

ℓ∈Z
∆j+1,m,ℓ = −

(⋃

ℓ∈Z
∆j+1,m,ℓ

)
. Thus, it suffices to determine∆+

j,p ∩
(⋃

ℓ∈Z
∆j+1,m,ℓ

)
where

∆+
j,p = [pπ/M j , (p + 1)π/M j ].

Now, we have

∆+
j,p ∩

(
⋃

ℓ∈Z

∆j+1,m,ℓ

)

=
π

M j+1

(

Jp ∩
(
⋃

ℓ∈Z

(Im + 2Mℓ)

))

, (63)
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whereJp = [pM, (p + 1)M ] and Im = [−m − 1,−m] ∪ [m, m + 1]. To compute(Jp ∩ (∪ℓ∈Z(Im + 2Mℓ))), we

determine the setsJp ∩ (Im + 2Mℓ) for any ℓ ∈ Z. Since

Jp ∩ (Im + 2Mℓ) = ((Jp − 2Mℓ) ∩ Im) + 2Mℓ, (64)

we calculate(Jp−2Mℓ)∩Im for anyℓ ∈ Z, which is quite easy. In fact, sinceJp−2Mℓ = [(p−2ℓ)M, (p+1−2ℓ)M ],

the reader will straightforwardly verify the following facts.

If ℓ < p−1
2 or ℓ > p+2

2 , then(Jp − 2Mℓ) ∩ Im = ∅,

If p is odd andℓ = p−1
2 , then

(Jp − 2Mℓ) ∩ Im =







∅ if m < M − 1,

{M} if m = M − 1,

If p is even andℓ = p
2 , then

(Jp − 2Mℓ) ∩ Im = [m, m + 1],

If p is odd andℓ = p+1
2 , then

(Jp − 2Mℓ) ∩ Im = [−m − 1,−m],

If p is even andℓ = p+2
2 , then

(Jp − 2Mℓ) ∩ Im =







∅ if m < M − 1,

{−M} if m = M − 1,

We derive from these results and Eq. (64) that

(Jp ∩ (∪ℓ∈Z(Im + 2Mℓ)))

=







[m + pM, m + 1 + pM ] if p is even,

[−m − 1 + pM + M,−m + pM + M ] if p is odd.

It then suffices to apply Eq. (63) to complete the proof.

Sincep = G(n), we obtain

FW S

j+1,Mn+m = M (j+1)/21l∆j+1,G(Mn+m)

whereG(Mn + m) is given by Eq. (20). Therefore, Eq. (18) holds true at resolution level j + 1 and the proof is

complete.

APPENDIX C

PROOF OF OF LEMMA2

Consider anM -ary sequenceλ = (mk)k∈N of elements of{0, 1, . . . , M − 1} and let (WS

j,nλ(j))j∈N be the

sequence of wavelet packets associated withλ. The sequence of autocorrelation functions resulting fromthe

projection ofX on (WS

j,nλ(j))j∈N is (RS

j,nλ(j))j∈N, whereRS

j,nλ(j) is given by Eq. (33).
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Now, if γ is continuous ata(λ), then for every real numberη > 0, there exists a real numberα > 0 such that,

for everyω ∈ [a(λ) − α, a(λ) + α], we have|γ(ω) − γ(a(λ))| < η. In addition, since

lim
j→+∞

pλ(j)π

M j
= lim

j→+∞

(pλ(j) + 1)π

M j
= a(λ),

there exists an integerj0 = j0(α), such that, for every natural numberj > j0, the valuespλ(j)π/M j and

(pλ(j) +1)π/M j are within the interval[a(λ)−α, a(λ) + α]. It follows that, for every natural numberj > j0 and

everyω ∈ ∆+
j,pλ(j),

|γ(ω) − γ(a(λ))| < η.

Therefore, for any natural numberj > j0

M j

π

∫

∆+
j,pλ(j)

|γ(ω) − γ(a(λ))| dω

< η
M j

π

∫

∆+
j,pλ(j)

dω = η. (65)

On the other hand, it follows from Eq. (33) that for any natural numberj > j0 and every integerk,

∣
∣
∣RS

j,nλ(j)[k] − M j

π

∫

∆+
j,pλ(j)

γ(a(λ)) cos (M jkω)dω
∣
∣
∣

=
∣
∣
∣
M j

π

∫

∆+
j,pλ(j)

(γ(ω) − γ(a(λ))) cos (M jkω)dω
∣
∣
∣,

≤ M j

π

∫

∆+
j,pλ(j)

|γ(ω) − γ(a(λ))| dω. (66)

Hence, we derive from Eqs. (65) and (66) that, for every natural numberj > j0,

|RS

j,nλ(j)[k] − M j

π

∫

∆+
j,pλ(j)

γ(a(λ)) cos (M jkω)dω| < η

uniformly in k ∈ Z. Since
M j

π

∫

∆+
j,pλ(j)

γ(a(λ)) cos (M jkω)dω = γ(a(λ))δ[k],

we conclude that, for every natural numberj > j0,

∣
∣
∣RS

j,nλ(j)[k] − γ(a(λ))δ[k]
∣
∣
∣ < η

uniformly in k ∈ Z.
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APPENDIX D

PROOF OFEQ. (48)

From (46), and by taking into account thatcum(t1, t2, · · · , tN ) is the inverse Fourier transform ofγ(ω1, ω2, · · · , ωN),

we have

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=
1

(2π)N

∫

R

dtWj,n,k(t)

∫

RN

dt1dt2 · · · dtN

Wj,n,ℓ1(t + t1)Wj,n,ℓ2(t + t2) · · ·Wj,n,ℓN
(t + tN)

∫

RN

dω1dω2 · · · dωN exp (−i(t1ω1 + t2ω2 + · · · + tNωN))

γN (−ω1,−ω2, · · · ,−ωN).

According to Fubini’s theorem,

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=
1

(2π)N

∫

R

dtWj,n,k(t)

∫

RN

dω1dω2 · · · dωN

γN (−ω1,−ω2, · · · ,−ωN)

∫

RN

dt1dt2 · · · dtN

exp (−i(t1ω1 + t2ω2 + · · · + tNωN ))Wj,n,ℓ1(t + t1)

Wj,n,ℓ2(t + t2) · · ·Wj,n,ℓN
(t + tN ),

and then,

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=
1

(2π)N

∫

R

dtWj,n,k(t)

∫

RN

dω1dω2 · · ·dωN

exp (it(ω1 + ω2 + · · · + ωN )) γN (−ω1,−ω2, · · · ,−ωN)

FWj,n,ℓ1(ω1)FWj,n,ℓ2(ω2) · · · FWj,n,ℓN
(ωN ).

This equation can also be re-written, by using Fubini’s theorem again,

cumj,n[k, ℓ1, ℓ2, · · · , ℓN ]

=
1

(2π)N

∫

RN

dω1dω2 · · ·dωNγN (−ω1,−ω2, · · · ,−ωN)

FWj,n,ℓ1(ω1)FWj,n,ℓ2(ω2) · · · FWj,n,ℓN
(ωN )

[∫

R

dtWj,n,k(t) exp (it(ω1 + ω2 + · · · + ωN))

]

,

which leads to Eq. (48) by definition of the Fourier transform.

DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY, JANUARY 2008 29

REFERENCES

[1] D. Donoho and I. Johnstone, “Ideal spatial adaptation bywavelet shrinkage,”Biometrica, vol. 81, no. 3, pp. 425–455, Aug. 1994.

[2] I. Johnstone, “Wavelets and the theory of non-parametric function estimation,”Journal of the Royal Statistical Society, vol. A, no. 357,

pp. 2475–2493, 1999.

[3] D. Leporini and J. Pesquet, “High-order wavelet packetsand cumulant field analysis,”IEEE Transactions on Information Theory, vol. 45,

no. 3, pp. 863–877, Apr. 1999.

[4] A. Atto, D. Pastor, and A. Isar, “On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary

random process,”Signal Processing, vol. 87, no. 10, pp. 2320–2335, Oct. 2007.

[5] P. Steffen, P. Heller, R. Gopinath, and C. Burrus, “Theory of regularm-band wavelet bases,”IEEE Transactions on Signal Processing,

vol. 41, no. 12, pp. 3497–3511, Dec. 1993.

[6] I. Daubechies,Ten lectures on wavelets. SIAM, Philadelphie, PA, 1992.

[7] S. Mallat, A wavelet tour of signal processing, second edition. Academic Press, 1999.
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Fig. 7. Histograms of the DWPT coefficients, at resolution level 6, using Daubechies filters of order 7. The decompositionis applied to

samples of an AR(1)-GG process withα given by Eq. (58),β = 1 andµ = 0.75. The limit distributionN (0, γ(a(λ))) wherea(λ0) = 0 and

a(λq) = π/2q−1 for q = 1, 2 and3 is represented by the (red) continuous line.
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