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Central Limit Theorems for Wavelet Packet

Decompositions of Stationary Random Processe:

Abdourrahmane M. Atto, Dominique Pastdr
Institut TELECOM, TELECOM Bretagne, Lab-STICC, CNRS, UMR2,
Technopole Brest-Iroise, CS 83818, 29238 Brest Cedex ZNTE

Abstract

This paper provides central limit theorems for the wavebksthet decomposition of stationary band-
limited random processes. The asymptotic analysis is pagd for the sequences of the wavelet packet
coefficients returned at the nodes of any given path ofthband wavelet packet decomposition tree. It is
shown that if the input process is centred and strictly atetiy, these sequences converge in distribution
to white Gaussian processes when the resolution levelasers provided that the decomposition filters
satisfy a suitable property of regularity. For any giventpahe variance of the limit white Gaussian

process directly relates to the value of the input procesgepspectral density at a specific frequency.

Index Terms

Wavelet transforms, Band-limited stochastic processpsctBal analysis.

. INTRODUCTION

This paper addresses the statistical properties ofMh@®and Discrete Wavelet Packet Transform,
hereafter abbreviated as -DWPT. In [1], asymptotic analysis is given for the corredatstructure and
the distribution of theM -Band wavelet packet coefficients of stationary random gsees. The limit
autocorrelation functions and distributions are shown ¢otlhe same for everyt -DWPT path. This
seems to be a paradox becauseheDWPT paths are characterised by several sequences of etavel

filters. Two arbitrary sequences are different, and thuspalohave the same properties. In addition, the
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results presented in [1] seem to be in contradiction witls¢hstated in [2] concerning the autocorrelation
functions of the standard discrete wavelet packet transf@r -DWPT with M = 2) of wide-sense
stationary random processes. The results presented iridBlight that the limit variance of the wavelet
packet coefficients does depend on the path followed in theelaipacket tree.

In fact, as shown below, the limit results in [1, CorollaryProposition 12] apply to only one path of
theM -DWPT, namely the standard approximation path (only lowspfilters are used in this path). The
same holds true for [3, Proposition 7], which extends [1,dllary 5] to the case of the dual-tree -
DWPT. Actually, the limit analysis of the autocorrelationdadistributions of ther -DWPT coefficients
is more intricate than presented in [1] and [3] because, as/stbelow, this analysis depends on the
path chosen and the wavelet filters used for decomposingniingt random process. This analysis is
presented for the Shannon-DWPT filters and standard families of paraunitary filterattbonverge to

the Shannon paraunitary filters.

II. PRELIMINARY RESULTS
A. General formulas on the -DWPT

In what follows, § andM are natural numbers and > 2. An M -DWPT is performed by using
wavelet paraunitary filters with impulse responggs;m = 0;1;2;:::;M 1. For further details about

the computation and the propertiesrof-DWPT filters, the reader is asked to refer to [4]. Let
1 X
Hp ()= p=  hp['lexp( i'!); 1)
M,
27
and be a function such that ,  :k 2 Zgis an orthonormal system af?® ), where , :t7!
(t k). Letu be the closure of the space spanned by this orthonormalmsyste
TheM -DWPT decomposition of the function spave involves splittingu into M orthogonal sub-

spaces (an easy extension [5, Lemma 10.5.1] establishdbdatandard DWPT):

L 1
U = W 1Iﬂ; (2)
m=20
and recursively applying the following splitting
¥ 1
W jn = W 5+1M n+m 7 (3)
m=0

for every natural numbet and everyn = 0;1;2;:::;M 7 1. In this decomposition, theavelet packet

spacew 5 is the closure of the space spanned by the orthonormal séeafavelet packet functions
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fW 55 x :k 2 Zg whose Fourier transforms are given by
FW ng(l)=exp M Ik! FW ,(!); 4)

with

FW in(!)=M I2Fw 1 31 ); (5)
where the sequencde , ;n = 0;1;2;:::;is recursively defined by
FWgo (1)=Hp (!MF (1M ); (6)

and

FWpMnen (1)=Hp (1= )FW , (1M ); (7)

form = 0;1;2;:::;M 1 andn 2 N.

Note that the function in Eq. (6) is not necessarily the standard scaling functissoaiated with
the low-pass filtem, (see [5, Lemma 10.5.1] for more details). If is this scaling function, we have
Wo= inEq. (6).

B. M -ary representations of the -DWPT paths

A given wavelet packet patl® is described by a sequence of nested functional subspaces:

U ;W 555 T42n » Wherew 5,5, W 5 1, 1), With n(0) = 0 by convention and

n(3)=Mn(G 1)+ mjy; (8)

for 5> 1, wherem ;2 £0;1;:::;M 1g. Therefore, the shift parameter is
xJ , .
n(j)= m.MJ 2 f0;1;::M 7 1g 9
=1

at every resolution level. By construction, eacli ,,, 5, is obtained by recursively decomposingvia
a particular sequence of filtes,, , ).- 1 2;...;; where eachn . belongs tof0;1;:::;M  1g. Thus, patre
can be associated with a unigMe-ary sequence = (m /).,y Of elements off0;1;:::;M 1g. From
now on, any giverm -DWPT decomposition path will be represented byranary sequence. Since
the shift parameten depends onj and via Eq. (9), the notatiom = n (j) will hereafter be used
to indicate this dependence if required. ThereforeMarary sequence associated with an -DWPT

decomposition path specifies a unique sequefice,, (4 )52x Of wavelet packets. Now we have:

Lemma liLetP = U ;fW ;, (4952n be some path of ther -DWPT decomposition tree. If the

shift parameten is a bounded function of, then is the null sequence, = (0;0;:::).
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Proof: If there exists some, such thath (5,) 6 0, then it follows from Eq. (9) that (§)> M 7

for every > 5. Thereforen cannot be upper-bounded by a constant. |

Remark 1:Lemma 1 states that the approximation path (associatedhdgthull sequence) is the unique
M -DWPT decomposition path for which the shift parameteis bounded by a constant independent of
3. As a consequence, the results established in [1, Corola®roposition 12] and [3, Proposition 7]
concern the approximation path only, because the assumibizdn is constant is made in this reference

to derive the asymptotic analysis.

The results given in the present paper depends on the patiechio them -DWPT tree. In fact, the
M -ary representation of th& -DWPT paths plays an important role throughout becauselatval a
complete path characterization. The following lemma witbye useful in the sequel.

Lemma 2:Forn = n(j) given by Eq. (9), we have

#
Y’ | |

FW, ()=  Hp.( ) F o (—): (10)

M I+l M J
=1

Proof: An easy extension of [2, Lemma 1]. [ |

C. Shanno™ -DWPT and the Paley-Wiener space oband-limited functions

The Shannomn -DWPT filters are hereafter denoteéd for m = 0;1;:::;M 1. These filters are

ideal low-pass, band-pass and high-pass filters. We have

Ho (= 1 ¢ 2; (11)
‘27
where 1 denotes tqle indicator funptio}? of agiven get Ix (x) = 1if x 2 K and %k x) = 0,
1 1

(m+1) m

otherwise, and , = ==, o [ ;@22 The scaling function S associated with these

filters is defined for every 2 R by S (t)= sic(t) = sin( t)= twith °(0)= 1. The Fourier transform

of this scaling function is

Bk (12)
The closureu ° of the space spanned by the orthonormal system ° :k 2 zg is then the Paley-

Wiener (PW) space of those elementsiofr ) that are band-limited in the sense that their Fourier

transform is supported within ; 1

Let x be any band-limited Wide-Sense Stationary (WSS) randormga®whose spectrum is supported
within [ ; 1 We have (see [2, Appendix D])
Z

X kl= X (t) St k)dt; (13)
R
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so thatu ° is the natural representation space of such a process.MARYWPT of X can thus be
initialized with the samples k] k 2 Z.

Now, let us consider the Shannen-DWPT of the PW space °. The wavelet packet functions Jin
of thism -DWPT can be computed by means of Egs. (5), (6) and (7), bingett= °anda, = H >,
m = 0;1;:::;M 1. The Fourier transforms of these wavelet packet functioesgaven by proposition

1 below, which extends [6, Proposition 8.2, p. 328] sincel#ier follows from the former withv = 2.

Proposition 1: For every non-negative integegrand everyn 2 £0;:::;M 7 1g,

NERES T a4)
where, for any non-negative integer
(k+ 1) k k (k+ 1)
®= T M3 7 M3 [ ELEETER (15)

andG is defined by recursively setting, far = 0;1;:::;M land“‘= 0;1;2;::; G (0)= 0and
8

< MG(()+m if G (*)is even
GM “+m)= (16)
MG() m+M 1 if G (*)is odd:

In the rest of the paper, we set, for any paitk) of non-negative integers,

k k+ 1)
+ . .
SE 3T M3 ’ (17)
IIl. ASYMPTOTIC ANALYSIS FOR THE AUTOCORRELATION FUNCTIONS OF TEM -DWPT OF

SECOND-ORDERWSSRANDOM PROCESSES

Let X denote a centred second-order real random process assameddontinuous in quadratic mean.
The autocorrelation function af , denoted byr, is defined byr (t;s)= E X (£)X (s)} The projection

of X onw 5, yields a sequence of random variables, the wavelet padedticientsof X :
v4

Cinkl= X (EW jnx ()t k2 Z; (18)
R

provided that the integral 7.7

R (£;8)W §p g (DWW 55 & (s)dtds (29)
RZ

exists, which will be assumed in the rest of the paper sinaanconly used wavelet functions are
compactly supported or have sufficiently fast decay. Thaisege given by Eq. (18) defines the discrete
random process;,, = (cjn klk2z Of the wavelet packetoefficientsof X at any resolution levef and

for any shift parameten 2 £0;1;:::;M 7 1q.
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A. Problem formulation
Let R 5, stand for the autocorrelation function of the random preegs. We have
77

Rink;’]= E cjnkkjnl’] = R (5iSIW 4 (W 54, (5)dtds: (20)
RZ

If x is WSS, we writerR (t;s) = R (t s) with some usual and slight abuse of language. From Eq.

(20), it follows that 77

Rinlk;’]= R (EW px (E+ SIW 55, (s)dids: (21)
RZ

In the sequel, the spectrumof x , that is, the Fourier transform &, is assumed to exist. By using
Fubini's theorem and Parseval's equality, we can procedd & Appendix C] to derive from Egs. (4),
(5) and (21) that;, is WSS. For any;‘ 2 z, and with the same abuse of language as above, the value

R n [k;“]of the autocorrelation functiog of the discrete random pB3C;,, ISR ok  “Jwith
Rinkl= 2i . (ﬁ)fwn(!)fexp(jk!)d!: (22)
Let us assume that 2 L! (R) and is continuous ab. These two assumptions have two easy
consequences. First, the integrand on the right hand did¢ 6f Eq. (22) is integrable since its absolute
value is upper-bounded by k; ¥w ,( ¥ whose integral equals k; ; second, the limit of (ﬁ)
is (0) when § tends tol . Therefore, for every given natural numbey it follows from Lebesgue’s

dominated convergence theorem applied to Eq. (22) that
Z
1

Im Rynkl= — O)FW o (! )Fexp (ik!)d!;
Jl o+ 1 2 %

= (0) WLEW,(t k)dt= (0) kJ; (23)
R 8
< 1 if mo=0;

where is the standard Kronecker symbol defined foe z by k1=
0 if m6 0:

The result thus obtained is that given in [1, Corollary 5].

From Lemma 1, we distinguish two cases, for any giveRDWPT pathP = U ;fW j, (5,952 -
First, if n is a constant function of, then is the null sequence,, and thusp is the approximation
path. In this case, the shift parameter(j) is 0 at each resolution level and them -DWPT of x
through pathp = P | consists of an infinite sequence of low-pass filters. The delztion is then

guaranteed by Eq. (23) (see also [1, Corollary 5]). The se@ase is that of a function which cannot

be upper-bounded by a constant independent when j tends to infinity. In such cases whene is

1Example: for the sequence= (1;1;:::), we haven (j)=M 7 1. The nodes(j;M 7 1) are those of the path located

at the extreme rhs of the -DWPT decomposition tree.
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not a constant function of, the asymptotic decorrelation of thve-DWPT coefficients at nodeéj;n (35))
when jtends tol is no longer a mere consequence of Eq. (23) since Lebesguamdted convergence
theorem does not apply. To proceed, we then write Eq. (22heénform
v4
1

Rinlkl= o (FW 45 (1) Fexp ™M k! d!: (24)
R

This equality derives from Eq. (22) after a change of vagadhd by taking into account Eq. (5).
The purpose of the next section is then to analyse the belmagior 5, in the case of the Shannon

filters and some families of filters that converge to the Shanfilters.

B. Asymptotic decorrelation achieved by the ShanmoiDWPT

Let = m .)»y be anM -ary sequence of elements 66;1;:::;M 1g. Consider the Shannaomn -
DWPT, that is, the decomposition of° associated with the Shannan-DWPT filters (hS ), 0 1-

_ S. S
Letp = (U°;fwW in

tree. It follows from proposition 1 that the supportmfj’.sm ) 1S 4p (5 Wherep (3)= G (n (9)). For

(5)932n ) be the path associated within the Shannom -DWPT decomposition

j 2 N, the sets (4, are nested closed intervals whose diameters tend Therefore, their intersection

jip"
contains only one point . It then follows from (15) that
Lo~ o 29 (25)

9 +1 M J

Let x be some centred second-order WSS random process, corgirinoguadratic mean, with
spectrum . The autocorrelation functior ?m resulting from the projection ok onw ?m derives from

Eq. (24) and is given by

1 .
Rinkl= ) (FW 5 (Hfexp M k! dl: (26)
From Egs. (14) and (26) and by taking into account th& even, as the Fourier transform of the even

functionr, it follows that 7

J .
RS, k= . (1)cos @ k! dl (27)

where % is given by Eq. (17) and = G (n). Whenx satisfies some additional assumptions, the
following theorem 1 states that the ShannorRDWPT of X yields coefficients that tend to be decorrelated
when 5 tends to infinity. One of these additional assumptions i$ xhas band-limited in the sense that

its spectrum is supported within ; 1 WhenM = 2, theorem 1 is equivalent to [2, Proposition 1].

Theorem 1:Let X be a centred second-order WSS random process, continuogisaiiratic mean.

Assume that the spectrumof x is an element of.! (R ) and is supported withif ; 1 Let =
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m «)y be anM -ary sequence of elements 66;1;:::;M lgandP = (U °;fW ?m (j)992n ) be the
Shannomv -DWPT decomposition path associated with

If the spectrum of X is continuous at point , then

RS, kl= (1) K] (28)

b +1
uniformly in k 2 z, wherer ?m &) is the autocorrelation function of the coefficients resigtfrom the
— S
projection ofx onw n )
Proof: The proof is an easy generalisation of that of [2, Propasifih which concerns the standard
wavelet packet transformM( = 2). The key point of the proof is proposition 1 above, which skt

possible to compute Eq. (25). [ |

The foregoing theorem is mainly of theoretical interestsithe Shannor -DWPT filters have infinite
supports and are not really suitable for practical purpdseorder to obtain a result of the same type
for filters of practical interest, th&t -DWPT is now assumed to be performed by using decomposition

filters of orderr, h! m = 0;1;:::;M 1, such that

m HE'=H @.e): (29)

s
The parametet is called the order of ther -DWPT filters. According to [7], the Daubechies filters
satisfy Eq. (29) form = 2 when r is the number of vanishing moments of the Daubechies wavelet
function; according to [8], Battle-Lemarié filters alsatisy Eq. (29) forMm = 2 whenr is the spline
order of the Battle-Lemarié scaling function. The exisef such families fom > 2 remains an open
issue to address in forthcoming work. However, it seemsomrasle to expect that genenal -DWPT

filters of the Daubechies or Battle-Lemarié type conveaythe Shannon filters in the sense given above.

Theorem 2:Let X be a centred second-order WSS random process, continuogisaiiratic mean.
Assume that the spectrumof x is an element of.' (R ) and is supported within ; 1 Assume that
them -DWPT of the PW spac® ° is achieved by using decomposition filtet§' m = 0;1;::05M 1,
satisfying Eq. (29).

“) stand for the autocorrelation

For every natural numbet and everyn = 0;1;:::;M 7 1, let R,

function of the wavelet packet coefficients xf with respect to the packet ;r;r]l We have

[r]
rl+1 Rin

kl= R5, KkJ; (30)

uniformly in k 2 z andn, wherer ?m is given by Eq. (27).
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Remark 2:Since them -DWPT concerns the space®, we have
" #
FW S(!)= v HS (o) F S (31)
nt- ) M J+1 3
"o #
w ) = v B () F Sy (32)
n \ - mety o J+1 M3

wheren is given by Eq. (9). These equations straightforwardlydefrom Eq. (10) of lemma 2. From

Egs. (5), (29), (31) and (32), we obtain, for every given rataumber, that

Im FW =Fuw 2 (@e); (33)

r! +1 Jm

uniformly in n. The three equalities above will prove useful below.

Proof: (of theorem 2)The autocorrelation funcan . Is given by Eq. (24) and is equal to
v4

1
R: = — ! W
aklm o (OF

[r] Fexp M k! d!: (34)

In addition, we have
7
[r]

1
Rink] R5pK1 6 ——  3(1)3 Fu ) Fw S (Hf ar; (35)

R
wherer £_ is given by Eq. (27). From Egs. (5), (31) and (32), and by tgkirto acount thatfi (! )7
and # 7 (! )jare less than or equal to (due to the paraunitarity of the -DWPT filters), we obtain

2

;Fw]m ¥ oFws ) f emIE S(1) (36)

The results derives from Egs. (33), (35), (36) and Lebesgdeminated convergence theorem. ®

IV. CENTRAL LIMIT THEOREMS

We now consider a real random processthat has finite cumulants and polyspectra. Denote by
cum (tjsyispiiiiisy )= cum £X (£);X (s1);X (s2)7:::;X (sy )g; (37)

the cumulant of ordex + 1 of x . The above cumulant is hereafter assumed to belong?t@™ * 1)
and to be finite for any natural numbgr (see [9, Proposition 1] for a discussion about the exist@ifce
this cumulant). The cumulant of ordar + 1 of the random process;,, has the integral form given by

(see [9, Proposition 1]):

cum g ki‘riiini'n 1= aam cynkln 1 ]iiicn s ]
z

= dtds; :::dsy cum (t7s1;S27:::580 W 5p % (EW 5m;0 (S1) 12:W 5544, (Sy )z (38)
RN+1
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of the cumulantum (4 ;5 ;:::;t ). WhenN = 1, 1 is the spectrum ok and is simply denoted as

in section lll. Then after some routine algebra, Eq. (38)usts:

M o 1=2?
cum 55 Ky jiiiky 1= W dliiid!y exp ( i(ky!1+ o0+ ky 'y )
RN
N O UM Ty 'y M O DFW L 1y i Vg FW ()i FW L (T ): (39)

If nis a bounded function of, it follows from Lebesgue’s dominated convergence theotieat, for

to 1 . This is a consequence of [1, Proposition 11]. On the othadhd n cannot be upper-bounded
by a constant independent with the situation is similar to that discussed in section liltAe shift
parameter depends onj and Lebesgue’s dominated convergence theorem does ngttappt). (39) to
prove the vanishing behaviour of the cumulants. The vanisbehaviour of the cumulants are hereafter

given by theorems 3 and 4.

By taking into account Eq. (5), Eqg. (39) can also be writteithvan easy change of variables:

cum 55 kyj:iiky 1= dlq::dly exp ij(k1!1+ i+t ky 'y )
N tagriny IWOFEW 5n( Yy it I )FW 5n (Y1) intFW g0 (My ): (40)
Theorem 3:Letx be a centred second-order strictly stationary random pgycmntinuous in quadratic

mean. Assume that the polyspectrum of x is an element of.* ®Y ) for anyN > 1 and that the

spectrum is supported withinf ; 1 If N > 1, then we have, uniformly ik 1 ;ks;:::5ky,

j'erFl cum &, Ky jkziiitiky 1= O: (41)

Proof: When the wavelet packet functions are the functiwn%, it follows from Egs. (14) and (40)

S+ 1) Z
. .M T2 kyk
pumim[kl;kz;:::;kN 16 — e . d!{d!, :::d!y (42)
where I = _® B, T im andp= G (n).

N times
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R .
According to Eq. (15), d! = 2 a4 J:Therefore, we obtain

Fum S, ki jkoiiriike 196 k yka M M D7 (43)

vanishes whenj tends to1 , which completes the proof. |

Corollary 1: With the same assumptions and notation as those of theoreand B, assume thatis
continuous at! . Then, whenj tend to infinity, the sequencecg;n 5 L converges in the following
distributional sense to a white Gaussian process with negia(! ). for everyx 2 RN and every > 0,
there existsj, = jo(x; ) > 0 such that, for everyj > +, the absolute value of the difference between

the value atx of the probability distribution of the random vector

and the value ak of the centredv -variate normal distributiomw (0; (! )L, ) with covariance matrix

(! )Ly Is less than.
Proof: A straightforward consequence of theorems 1 and 3. |

Consider filters satisfying Eqg. (29). Letbe anM -ary sequence of elements 66;1;:::;M  1q.
The following results describe the asymptotic distribotaf the discrete random procesgg & returned
at node(j;n (3)) when the resolution level and the order of the filters increase.

Theorem 4:Letx be a centred second-order strictly stationary random pgycmntinuous in quadratic
mean. Assume that the polyspectrum of X is an element of.! RY ) for every natural numbexr > 1
and that the spectrumis supported withinf ; ]

For every given natural numberand everyn 2 £0;1;:::;M 3 1g, let cum grj stand for the cumulant

of orderN + 1 of the wavelet packet coefficients @af with respect to the packet ;r;i

lin cum ) ky ko gtk 1= cum S, ks koot sky ) (44)

Z
: Eln ..., k- [T k. 6 1 ] L] [
Fum o kegiiiky 1ocum S kegiiiike I 2 )ijN]jL dlq:idly
RN
ij[;]( IR !N)ij[;}(!l):::FWj[;](!N) wam( IR !N)wam(ll):::wam(!N):
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The integrand on the rhs of the second inequality above canb®oupper-bounded by

M JIN + 1)=2 S(!l) S(|

To)izs S(ly) (46)

where we use Egs. (5), (31), (32), and take into acount that (1 )jand H3 (!)jare less than or
equal to1. The upper-bound given by Eq. (46) is independent-and integrable; its integral equals
oM W+ 1=2 o )N By taking Eq. (33) into account, we derive from Lebegue’snittated convergence

theorem that the upper bound in Eq. (45) tend$ twwhenr tends to+ 1 . [ |

Corollary 2: With the same assumptions and notations as those of the@eamnsd 4, assume that

is continuous at! . Then, whenj and r tend to infinity, the sequencec[r1

L converges in the
jm (J) :

7]

following distributional sense to a white Gaussian proogih variance (! ). for everyx 2 RN and
every > 0, there existsjy = j(x; ) > 0 and there exists, = ry(x;7j0; ) such that, for everyj > 5
and everyr > rg, the absolute value of the difference between the valweddithe probability distribution

of the random vector

gkilich o kelitsict, ok )

jm (3)
and the value ak of the centredv -variate normal distributiomw (0; (! )L ) with covariance matrix

(! )Ly Is less than.

Proof: The result follows from Egs. (28), (30), (41) and (44). [
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