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WEIGHTED NORM INEQUALITIES FOR

DE BRANGES–ROVNYAK SPACES AND THEIR APPLICATIONS

ANTON BARANOV, EMMANUEL FRICAIN, JAVAD MASHREGHI

Abstract. Let H(b) denote the de Branges–Rovnyak space associated with a function

b in the unit ball of H∞(C+). We study the boundary behavior of the derivatives

of functions in H(b) and obtain weighted norm estimates of the form ‖f (n)‖L2(µ) ≤
C‖f‖H(b), where f ∈ H(b) and µ is a Carleson-type measure on C+ ∪ R. We provide

several applications of these inequalities. We apply them to obtain embedding theorems

for H(b) spaces. These results extend Cohn and Volberg–Treil embedding theorems for

the model (star-invariant) subspaces which are special classes of de Branges–Rovnyak

spaces. We also exploit the inequalities for the derivatives to study stability of Riesz

bases of reproducing kernels {kb
λn

} in H(b) under small perturbations of the points λn.

1. Introduction

Let C+ denote the upper half-plane in the complex plane and let H2(C+) denote the

usual Hardy space on C+. For ϕ ∈ L∞(R), let Tϕ stand for the Toeplitz operator defined

on H2(C+) by

Tϕf := P+(ϕf), f ∈ H2(C+),

where P+ denotes the orthogonal projection of L2(R) onto H2(C+). Then, for ϕ ∈ L∞(R),

‖ϕ‖∞ ≤ 1, the de Branges–Rovnyak space H(ϕ) associated to ϕ consists of those functions

in H2(C+) which are in the range of the operator (Id − TϕTϕ)1/2. It is a Hilbert space
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when equipped with the inner product

〈 (Id− TϕTϕ)1/2f, (Id− TϕTϕ)1/2g 〉ϕ = 〈f, g〉2,

where f, g ∈ H2(C+)⊖ ker (Id− TϕTϕ)1/2. In what follows we always assume that ϕ = b

is an analytic function in the unit ball of H∞(C+). In this case, if

kb
ω(z) :=

1 − b(ω)b(z)

z − ω
, ω ∈ C+,(1.1)

then we have 〈f, kb
ω〉b = 2πif(ω) for all f ∈ H(b). In other words, H(b) is a reproducing

kernel Hilbert space.

These spaces (and, more precisely, their general vector-valued version) were introduced

by de Branges and Rovnyak [14, 15] as universal model spaces for Hilbert space contrac-

tions. Thanks to the pioneer works of Sarason, we know that de Branges–Rovnyak spaces

play an important role in numerous questions of complex analysis and operator theory

(e.g. see [4, 23, 37, 38, 39]). For the general theory of H(b) spaces we refer to [37].

In the special case where b = Θ is an inner function (that is, |Θ| = 1 a.e. on R), the

operator (Id−TΘTΘ)1/2 is an orthogonal projection and H(Θ) becomes a closed (ordinary)

subspace of H2(C+) which coincides with the so-called model subspace

K2
Θ = H2(C+) ⊖ ΘH2(C+) = H2(C+) ∩ ΘH2(C+)

(for the model space theory see [29]). We mention one important particular class of model

spaces. If Θ(z) = exp(iaz), a > 0, then H(Θ) = K2
Θ = H2(C+)∩PW 2

a , where PW 2
a stands

for the Paley–Wiener space of all entire functions of exponential type at most a, whose

restrictions to R belong to L2(R). Then the famous Bernstein’s inequality asserts that

‖f ′‖2 ≤ a‖f‖2, f ∈ PW 2
a .

This classical and important inequality was extended by many authors in many different

directions. It is impossible to give an exhaustive list of references, but we would like to

mention [9, 22, 32, 34, 35, 40] and [26, Lecture 28].
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Notably, one natural direction is to extend Bernstein’s inequality to general model

subspaces. In [27], Levin showed that if Θ is an inner function and |Θ′(x)| < ∞, x ∈ R,

then for each function f ∈ K∞
Θ = H∞(C+)∩ΘH∞(C+), the derivative f ′(x) exists in the

sense of nontangential boundary values and

|f ′(x)/Θ′(x)| ≤ ‖f‖∞.

Differentiation in the model spaces Kp
Θ := Hp(C+) ∩ ΘHp(C+), 1 < p < ∞, was stud-

ied extensively by Dyakonov [16, 17], who showed that the Bernstein-type inequality

‖f ′‖p ≤ C‖f‖p, f ∈ Kp
Θ, holds if and only if Θ′ ∈ L∞(R). Recently, Baranov [5, 6, 8]

has obtained weighted Bernstein-type inequalities for the model subspaces Kp
Θ, which

generalized previous results of Levin and Dyakonov. More precisely, for a general inner

function Θ, he proved estimates of the form

(1.2) ‖f (n)wp,n‖Lp(µ) ≤ C ‖f‖p, f ∈ Kp
Θ,

where n ≥ 1, µ is a Carleson measure in the closed upper half-plane and wp,n is some

weight related to the norm of reproducing kernels of the space K2
Θ which compensates

possible growth of the derivative near the boundary.

One of the main ingredients in the results of Dyakonov and Baranov was an integral

formula for the derivatives of functions in Kp
Θ. Using Cauchy formula, it is easy to see

that if Θ is inner, ω ∈ C+, n is a non-negative integer and f ∈ Kp
Θ, then we have

f (n)(ω) =
1

2πi

∫

R

f(t) kΘ
ω,n(t) dt,(1.3)

where

kΘ
ω,n(z)

n!
:=

1 − Θ(z)

n∑

p=0

Θ(p)(ω)

p!
(z − ω)p

(z − ω)n+1
, z ∈ C+.(1.4)

A natural question is whether one can extend the formula (1.3) to boundary points x0. If

x0 ∈ R does not belong to the boundary spectrum σ(Θ) of Θ (see the definition in Section
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5), then Θ and all functions of Kp
Θ are analytic through a neighborhood of x0 and then it

is obvious that (1.3) is valid for z = x0. More generally, if x0 satisfies

∑

k

Im zk

|x0 − zk|(n+1)q
+

∫

R

dµ(t)

|t− x0|(n+1)q
< +∞,(1.5)

then, by the results of Ahern and Clark [1] (for p = 2) and Cohn [12] (for p > 1),

the formula (1.3) is still valid at the point x0 ∈ R for any f ∈ Kp
Θ (here {zk} is the

sequence of zeros of Θ and µ is the singular measure associated to Θ). Recently Fricain

and Mashreghi studied the boundary behavior of functions in de Branges–Rovnyak spaces

H(b) and obtained a generalization of representation (1.3) [20, 21].

In the present paper de Branges–Rovnyak spaces are studied from the point of view

of function theory. Namely, we are interested in boundary properties of the elements

of H(b) and of their derivatives, and we establish a number of weighted Bernstein-type

inequalities. Our first goal is to exploit the generalization of representation (1.3) and

obtain an analogue of Bernstein-type inequality (1.2) for the de Branges–Rovnyak spaces

H(b), where b is an arbitrary function in the unit ball of H∞(C+) (not necessarily inner).

It should be noted that the inner product in H(b) is not given by a usual integral formula.

This fact causes certain difficulties. For example, we will see that one has to add one

more term to formula (1.3) in the general case. In what follows we try to emphasize the

points where there is a difference with the inner case, and suggest a few open questions.

Our second goal is to provide several applications of these Bernstein-type inequalities.

The classical Carleson embedding theorem gives a simple geometrical condition on a

measure µ in the closed upper half-plane such that the embedding Hp(C+) ⊂ Lp(µ)

holds. A similar question for model subspaces Kp
Θ was studied by Cohn [11] and then by

Volberg and Treil [42]. An approach based on the (weighted norm) Bernstein inequalities

for model subspaces Kp
Θ was suggested in [6]. Given b in the unit ball of H∞(C+), we

describe a class of Borel measures µ in C+ ∪ R such that H(b) ⊂ L2(µ). We obtain
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a geometric condition on µ sufficient for such embedding. This result generalizes the

previous results of Cohn and Volberg–Treil.

Another application concerns the problem of stability of Riesz bases consisting of re-

producing kernels of H(b). This problem is connected with the famous problem of bases

of exponentials in L2 on an interval which goes back to Paley and Wiener [30]. Exponen-

tial bases were described by Pavlov [31] and by Hruschev, Nikolski and Pavlov in [24],

where functional model methods have been used. This approach has been proved fruitful;

it has allowed both to recapture all the classical results and to extend them to general

model spaces (for a detailed presentation of the subject see [29]). Fricain has pursued this

investigation with respect to bases of reproducing kernels in vector-valued model spaces

[18] and in de Branges–Rovnyak spaces [19] where some criteria for a family of repro-

ducing kernels to be a Riesz basis were obtained. However, the criteria mentioned above

involve some properties of a given family of reproducing kernel that are rather difficult

to verify. On the other hand, in many cases, the given family is a slight perturbation of

another family of reproducing kernels that is known to be a basis. This gives rise to the

following stability problem: Given a Riesz basis of reproducing kernels (kb
λn

)n≥1 of H(b),

characterize perturbations of frequencies (λn)n≥1 which preserve the property to be a Riesz

basis.

This problem was also studied by many authors in the context of exponential bases

(see e.g. [25, 36]) and of model subspaces K2
Θ [7, 13, 18]. In the present paper, using the

weighted norm inequalities (1.2) we extend the results about stability in pseudohyperbolic

metrics from [7, 18] to de Branges-Rovnyak spaces.

The paper is organized as follows. Sections 2 and 3 contain some preliminaries concern-

ing integral representations for the n-th derivative of functions in de Branges–Rovnyak

spaces. In Section 4 we prove our first main result, a Bernstein-type inequality for H(b).

Section 5 contains some estimates relating the weight wp,n involved in Bernstein inequal-

ities to the distances to the level sets of |b|. Section 6 is devoted to embedding theorems.
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Finally, in Section 7 we apply the Bernstein inequality to the problem of stability of Riesz

basis of reproducing kernels in H(b).

In what follows, the letter C will denote a positive constant and we assume that its

value may change. We write f ≍ g if C1g ≤ f ≤ C2g for some positive constants C1, C2.

The set of integers 1, 2, · · · will be denoted by N.

2. Preliminaries

Let b be in the unit ball of H∞(C+) and let b = BIµOb be its canonical factorization,

where

B(z) =
∏

r

eiαr
z − zr

z − zr

is a Blaschke product, the singular inner function Iµ is given by

Iµ(z) = exp

(
iaz − i

π

∫

R

(
1

z − t
+

t

t2 + 1

)
dµ(t)

)

with a positive singular measure µ and a ≥ 0, and Ob is the outer function

Ob(z) = exp

(
i

π

∫

R

(
1

z − t
+

t

t2 + 1

)
log |b(t)| dt

)
.

Then the modulus of the angular derivative of b at a point x ∈ R is given by

(2.1) |b′(x)| = a +
∑

r

2 Im zr

|x− zr|2
+

1

π

∫

R

dµ(t)

|x− t|2 +
1

π

∫

R

∣∣ log |b(t)|
∣∣

|x− t|2 dt.

Hence, we are motivated to define

Sn(x) :=

+∞∑

r=1

Im zr

|x− zr|n
+

∫

R

dµ(t)

|x− t|n +

∫

R

∣∣ log |b(t)|
∣∣

|x− t|n dt,(2.2)

and

En(b) := {x ∈ R : Sn(x) < +∞}.

The formula (2.1) explains why the quantity S2 is of special interest.

We will need the following simple estimate.

Lemma 2.1. For any x ∈ R, y > 0, we have |b′(x+ iy)| ≤ |b′(x)|.
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Proof. Let z = x+ iy, y > 0, and assume that b is outer,

b(z) = exp

(
i

π

∫

R

(
1

z − t
+

t

t2 + 1

)
log |b(t)| dt

)
.

Then

b′(z) = −b(z) i
π

∫

R

log |b(t)|
(t− z)2

dt,

and clearly

|b′(z)| ≤ 1

π

∫

R

| log |b(t)||
|t− z|2 dt ≤ 1

π

∫

R

| log |b(t)||
|t− x|2 dt = |b′(x)|,

by (2.1). The estimates for inner factors are analogous and left to the reader (recall that

|b′(x)| = |O′
b(x)| + |I ′µ(x)| + |B′(x)|, x ∈ R).

�

Ahern and Clark [2] showed that if x0 ∈ En(b), then b and all its derivatives up to order

n−1 have (finite) nontangential limits at x0. In [20], we showed that if x0 ∈ E2n+2(b) where

n ∈ Z+ = N ∪ {0}, then, for each f ∈ H(b) and for each 0 ≤ j ≤ n, the nontangential

limit

f (j)(x0) := lim
z−→x0

∢

f (j)(z)

exists. This is a generalization of the Ahern–Clark theorem [1] for the elements of model

subspaces K2
Θ, i.e. for the case when b = Θ is an inner function. Moreover, for every

z0 ∈ C+ ∪ E2n+2(b) and for every function f ∈ H(b), we obtained in [21] the following

integral representation for f (n)(z0). Let ρ(t) = 1 − |b(t)|2 and let H2(ρ) be the span of

the Cauchy kernels kz, z ∈ C+, in L2(ρ) (recall that kz(ω) = (ω − z)−1). Consider the

operator

T̃ρ : L2(ρ) −→ H2(C+)

q 7−→ P+(qρ).

We know from [37, II-3, III-2] that if f ∈ H(b) then there exists a (unique) function g in

H2(ρ) such that Tbf = T̃ρg. It was shown in [21] that, for z0 ∈ C+ ∪ E2n+2(b), n ∈ Z+,
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we have

f (n)(z0) =
n!

2πi

(∫

R

f(t)kb
z0,n(t) dt+

∫

R

g(t)ρ(t)kρ
z0,n(t) dt

)
,(2.3)

where kb
z0,n is the function in H(b) defined by

(2.4) kb
z0,n(z) :=

1 − b(z)

n∑

j=0

b(j)(z0)

j!
(z − z0)

j

(z − z0)n+1
, z ∈ C+,

and kρ
z0,n is the function in L2(ρ) defined by

(2.5) kρ
z0,n(t) :=

n∑

j=0

b(j)(z0)

j!
(t− z0)

j

(t− z0)n+1
, t ∈ R.

Note that if b is inner, then ρ ≡ 0 and thus (2.3) reduces to (1.3) which was the key

representation formula used in [5, 6, 16, 17] to obtain Bernstein-type inequalities for model

subspaces Kp
Θ. If n = 0 then kb

z0,0 corresponds to the reproducing kernel of H(b) defined

in (1.1).

3. A new representation formula for the derivatives

We start with a slight modification of the representation (2.3) for n ∈ N.

Proposition 3.1. Let b be in the unit ball of H∞(C+). Let z0 ∈ C+ ∪ E2n+2(b), n ∈ N,

and let

(3.1) K
ρ
z0,n(t) := b(z0)

∑n
j=0

(
n+1
j+1

)
(−1)j bj(z0) b

j(t)

(t− z0)n+1
, t ∈ R.

Then (kb
z0

)
n+1 ∈ H2(C+) and K

ρ
z0,n ∈ L2(ρ). Moreover, for every function f ∈ H(b), we

have

f (n)(z0) =
n!

2πi

(∫

R

f(t)(kb
z0

)n+1(t) dt+

∫

R

g(t)ρ(t)Kρ
z0,n(t) dt

)
,(3.2)

where g ∈ H2(ρ) is such that Tbf = T̃ρg.
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Proof. Let aj = b(j)(z0)/j!. Then

kb
z0,ℓ(z) =

1 − b(z0)b(z) − b(z)

ℓ∑

j=1

aj(z − z0)
j

(z − z0)ℓ+1

=
1 − b(z0)b(z)

(z − z0)ℓ+1
− b(z)

ℓ∑

j=1

aj

(z − z0)ℓ+1−j
.

Hence, multiplying by (1 − b(z0)b(z))
ℓ, we obtain

(3.3) (kb
z0

)ℓ+1(z) = (1 − b(z0)b(z))
ℓ kb

z0,ℓ(z) + b(z)

ℓ∑

j=1

aj(1 − b(z0)b(z))
j−1(kb

z0
)ℓ+1−j(z).

Since z0 ∈ C+∪E2n+2(b), according to [21, Proposition 3.1 and Lemma 3.2], the functions

kb
z0

and kb
z0,ℓ (1 ≤ ℓ ≤ n) belong to H(b). Hence, using the recurrence relation (3.3) and

that 1 − b(z0)b(z) ∈ H∞(C+), we see immediately by induction that (kb
z0

)n+1 ∈ H2(C+).

We prove now that K
ρ
z0,n ∈ L2(ρ). Write K

ρ
z0,n(t) = (t− z0)

−(n+1)ϕ(t), with

ϕ(t) = b(z0)
n∑

j=0

(
n+ 1

j + 1

)
(−1)jbj(z0)b

j(t).

Since ϕ ∈ L∞(R), it is sufficient to prove that (t− z0)
−(n+1) ∈ L2(ρ). If z0 ∈ C+, this fact

is trivial and if z0 ∈ E2n+2(b), the inequality 1 − x 6 | log x|, x ∈ (0, 1], implies

∫

R

1 − |b(t)|2
|t− z0|2n+2

dt 6 2

∫

R

∣∣ log |b(t)|
∣∣

|t− z0|2n+2
dt < +∞

which is the required result.

It remains to prove (3.2). Let ψ be any element of H2(C+). According to (2.3), we

have

2πi

n!
f (n)(z0) =〈f, kb

z0,n〉2 + 〈ρg, kρ
z0,n〉2

=〈f, kb
z0,n − bψ〉2 + 〈b̄f, ψ〉2 + 〈ρg, kρ

z0,n〉2.
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But we have Tbf = T̃ρg, which means that bf − ρg ⊥ H2(C+). Since ψ ∈ H2(C+), it

follows that 〈bf, ψ〉2 = 〈ρg, ψ〉2. Hence the identity

(3.4)
2πi

n!
f (n)(z0) = 〈f, kb

z0,n − bψ〉2 + 〈ρg, kρ
z0,n + ψ〉2

holds for each ψ ∈ H2(C+). A very specific ψ gives us the required representation. To

find ψ note that, on one hand, we have

kb
z0,n(t) − (kb

z0
)n+1(t) =

1 − b(t)
∑n

j=0 aj(t− z0)
j − (1 − b(z0)b(t))

n+1

(t− z0)n+1

=
1 − (1 − b(z0)b(t))

n+1

(t− z0)n+1
− b(t)

∑n
j=0 aj(t− z0)

j

(t− z0)n+1
= b(t)ψ(t),

where

ψ(t) =

∑n+1
j=1 (−1)j+1

(
n+1

j

)
(b(z0))

j(b(t))j−1

(t− z0)n+1
−

∑n
j=0 aj(t− z0)

j

(t− z0)n+1
.

On the other hand, we easily see that

kρ
z0,n(t) + ψ(t) =

∑n+1
j=1 (−1)j+1

(
n+1

j

)
(b(z0))

j(b(t))j−1

(t− z0)n+1

= b(z0)

∑n
j=0(−1)j

(
n+1
j+1

)
(b(z0))

j(b(t))j

(t− z0)n+1
= K

ρ
z0,n(t).

Therefore, (3.2) follows immediately from (3.4).

�

We now introduce the weight involved in our Bernstein-type inequalities. Let 1 < p ≤ 2

and let q be its conjugate exponent. Let n ∈ N. Then, for z ∈ C+, we define

wp,n(z) := min
{
‖(kb

z)
n+1‖−pn/(pn+1)

q , ‖ρ1/q
K

ρ
z,n‖−pn/(pn+1)

q

}
;

we assume wp,n(x) = 0, whenever x ∈ R and at least one of the functions (kb
x)

n+1 or

ρ1/q
K

ρ
x,n is not in Lq(R). In what follows we will write wp for wp,1.

The choice of the weight is motivated by representation (3.2) which shows that the

quantity max
{
‖(kb

z)
n+1‖2, ‖ρ1/2

K
ρ
z,n‖2

}
is related to the norm of the functional f 7→ f ′(z)

on H(b). Moreover, we strongly believe that the norms of reproducing kernels are an
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important characteristic of the space H(b) which captures many geometric properties of

b (see Section 5 for certain estimates confirming this point).

Using similar arguments as in the proof of Proposition 3.1, it is easy to see that

ρ1/q
K

ρ
x,n ∈ Lq(R) if x ∈ Eq(n+1)(b). It is also natural to expect that (kb

x)
n+1 ∈ Lq(R)

for x ∈ Eq(n+1)(b). This is true when b is an inner function, by a result of Cohn [12], and

for a general function b with q = 2 by (3.3) and [20, Lemma 3.2]. However, it seems that

the methods of [12] and [20] do not apply in the general case.

Question 3.2. Is it true that for x ∈ R, (kb
x)

n+1 ∈ Lq(R) if x ∈ Eq(n+1)(b)?

Remark 3.3. If f ∈ H(b) and 1 < p ≤ 2, then (f (n)wp,n)(x) is well-defined on R. It

follows from the [20] that f (n)(x) and wp,n(x) are finite if S2n+2(x) < +∞. If S2n+2(x) =

+∞, then ‖(kb
x)

n+1‖2 = +∞. Hence, ‖(kb
x)

n+1‖q = +∞ which, by definition, implies

wp,n(x) = 0, and thus we may assume (f (n)wp,n)(x) = 0.

Remark 3.4. In the inner case, we have ρ(t) ≡ 0 and the second term in the definition

of the weight wp,n disappears. It should be emphasized that in the general case both

terms are essential: below we show (Example 4.2) that the norm ‖ρ1/q
K

ρ
z,n‖q can not be

majorized uniformly by the norm ‖(kb
z)

n+1‖q.

Lemma 3.5. For 1 < p ≤ 2, n ∈ N, there is a constant A = A(p, n) > 0 such that

wp,n(z) ≥ A
(Im z)n

(1 − |b(z)|)
pn

q(pn+1)

, z ∈ C+.

Proof. On one hand, note that

‖(kb
z)

n+1‖q
q =

∫

R

∣∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣∣

(n+1)q

dt ≤ C

(Im z)(n+1)q−2

∫

R

∣∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣∣

2

dt

=
C

(Im z)(n+1)q−2
‖kb

z‖2
b ≤ C

1 − |b(z)|
(Im z)(n+1)q−1

.
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On the other hand, we have

‖ρ1/q
K

ρ
z,n‖q

q =

∫

R

∣∣∣∣
b(z)

∑n
j=0

(
n+1
j+1

)
(−1)jb(z)

j
bj(t)

(t− z)n+1

∣∣∣∣
q

(1 − |b(t)|2) dt

≤ C

(Im z)(n+1)q−2

∫

R

1 − |b(t)|
|t− z|2 dt.

If |b(z)| < 1/2, then we obviously have

∫

R

1 − |b(t)|
|t− z|2 dt ≤ C

1 − |b(z)|
Im z

,

and if |b(z)| ≥ 1/2, using 1 − |b(t)| ≤
∣∣ log |b(t)|

∣∣, we get

Im z

∫

R

1 − |b(t)|
|t− z|2 dt ≤ Im z

∫

R

∣∣ log |b(t)|
∣∣

|t− z|2 dt = π log
1

|Ob(z)|
≍ 1 − |Ob(z)|,

since |Ob(z)| ≥ |b(z)| ≥ 1/2. We recall that Ob is the outer part of b. Therefore, in any

case we have ∫

R

1 − |b(t)|
|t− z|2 dt ≤ C

1 − |b(z)|
Im z

,

and we get

‖ρ1/q
K

ρ
z,n‖q

q ≤ C
1 − |b(z)|

(Im z)(n+1)q−1
.

To complete the proof, it suffices to note that (n+1)q−1
q

= n+ 1
p

= np+1
p

.

�

Representation formulae discussed above reduce the study of differentiation in de

Branges–Rovnyak spaces H(b) to the study of certain integral operators.

4. Bernstein-type inequalities

A Borel measure µ in the closed upper half-plane C+ is said to be a Carleson measure

if there is a constant Cµ > 0 such that

(4.1) µ(S(x, h) ) ≤ Cµ h,
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for all squares S(x, h) = [x, x + h] × [0, h], x ∈ R, h > 0, with the lower side on the real

axis. We denote the class of Carleson measures by C. Recall that, according to a classical

theorem of Carleson, µ ∈ C if and only if Hp(C+) ⊂ Lp(µ) for some (all) p > 0.

One of our main results in this paper is the following Bernstein-type inequality.

Theorem 4.1. Let µ ∈ C, let n ∈ N, let 1 < p ≤ 2, and let

(Tp,nf)(z) = f (n)(z)wp,n(z), f ∈ H(b).

If 1 < p < 2, then Tp,n is a bounded operator from H(b) to L2(µ), that is, there is a

constant C = C(µ, p, n) > 0 such that

(4.2) ‖f (n)wp,n‖L2(µ) ≤ C‖f‖b, f ∈ H(b).

If p = 2, then T2,n is of weak type (2, 2) as an operator from H(b) to L2(µ).

Proof. According to Proposition 3.1, for all z ∈ C+ and any function f ∈ H(b), we have

(4.3)
2πi

n!
f (n)(z)wp,n(z) = wp,n(z)

∫

R

f(t)(kb
z0

)n+1(t) dt+ wp,n(z)

∫

R

g(t)ρ(t)Kρ
z,n(t) dt.

Let

w(1)
p,n(z) := ‖(kb

z)
n+1‖−pn/(pn+1)

q , w(2)
p,n(z) := ‖ρ1/q

K
ρ
z,n‖−pn/(pn+1)

q ,

where we assume that w
(i)
p,n(z) = 0 if the corresponding integrand is not in Lq(R), and put

hi(z) = (w
(i)
p,n(z))1/n, i = 1, 2. We remind that

wp,n(z) = min{w(1)
p,n(z), w

(2)
p,n(z)}.

We split each of the two integrals in (4.3) into two parts, i.e.

2πi

n!
f (n)(z)wp,n(z) = I1f(z) + I2f(z) + I3g(z) + I4g(z),

where

I1f(z) = wp,n(z)

∫

|t−z|≥h1(z)

f(t)(kb
z)

n+1(t) dt,

I2f(z) = wp,n(z)

∫

|t−z|<h1(z)

f(t)(kb
z)

n+1(t) dt,
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I3g(z) = wp,n(z)

∫

|t−z|≥h2(z)

g(t)ρ(t)Kρ
z,n(t) dt,

I4g(z) = wp,n(z)

∫

|t−z|<h2(z)

g(t)ρ(t)Kρ
z,n(t) dt.

Note that by Lemma 3.5, hi(z) ≥ A Im z, z ∈ C+, i = 1, 2. Hence,

|I1f(z)| ≤Chn
1 (z)

∫

|t−z|≥h1(z)

|f(t)|
|t− z|n+1

dt

≤Ch1(z)

∫

|t−z|≥h1(z)

|f(t)|
|t− z|2 dt,

and

|I3g(z)| ≤Chn
2 (z)

∫

|t−z|≥h2(z)

|g(t)|ρ1/2(t)

|t− z|n+1
dt

≤Ch2(z)

∫

|t−z|≥h2(z)

|g(t)|ρ1/2(t)

|t− z|2 dt.

Using [6, Theorem 3.1], we see that I1 : L2(R) −→ L2(µ) and I3 : L2(ρ) −→ L2(µ) are

bounded operators. To estimate the integral I2f , put

K(z, t) := hn
1 (z)|(kb

z)
n+1(t)|.

Then

‖K(z, ·)‖−p
q =(h1(z))

−pn‖(kb
z)

n+1‖−p
q

=(h1(z))
−pn(w(1)

p,n(z))
(pn+1)/n = h1(z).

Thus

|I2f(z)| ≤ hn
1 (z)

∫

|t−z|<h1(z)

|f(t)||(kb
z)

n+1
(t)| dt =

∫

|t−z|<‖K(z,·)‖−p
q

|f(t)|K(z, t) dt.

Since ‖K(z, ·)‖−p
q = h1(z) ≥ A Im z, we may apply [6, Theorem 3.2]. Therefore, the

operator I2 is of weak type (2, 2) as an operator from L2(R) to L2(µ) if p = 2 and it is a
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bounded operator from L2(R) to L2(µ) if 1 < p < 2. To estimate the integral I4g, we use

the same technique and put

κ(z, t) :=
ρ1/q(t)|Kρ

z,n(t)|
‖ρ1/qK

ρ
z,n‖pn/(pn+1)

q

.

In other words, κ(z, t) = w
(2)
p,n(z)ρ1/q(t)|Kρ

z,n(t)|. Thus

|I4g(z)| ≤ w(2)
p,n(z)

∫

|t−z|<h2(z)

|g(t)|ρ(t)|Kρ
z,n(t)| dt

=

∫

|t−z|<h2(z)

|g(t)|ρ1/p(t)κ(z, t) dt.

But ‖κ(z, ·)‖−p
q = (w

(2)
p,n(z))−p‖ρ1/q

K
ρ
z,n‖−p

q = h2(z). Hence, we get

|I4g(z)| ≤
∫

|t−z|<‖κ(z,·)‖−p
q

|g(t)|ρ1/p(t)κ(z, t) dt.

Since p ≤ 2 and ρ(t) ≤ 1, we have

|I4g(z)| ≤
∫

|t−z|<‖κ(z,·)‖−p
q

|g(t)|ρ1/2(t)κ(z, t) dt,

and since ‖κ(z, ·)‖−p
q = h2(z) ≥ A Im z, we may apply again [6, Theorem 3.2]. Therefore,

the operator I4 is of weak type (2, 2) as an operator from L2(ρ) to L2(µ) if p = 2 and it

is a bounded operator from L2(ρ) to L2(µ) if 1 < p < 2.

To conclude it remains to note that

‖f‖2
b = ‖f‖2

2 + ‖g‖2
ρ,

which implies that the operators f 7→ f from H(b) to H2(C+) and f 7→ g from H(b) to

L2(ρ) are contractions.

�

Example 4.2. We show that for a general function b both terms in the definition of

the weight wp,n are important. Obviously, for an inner b the norm ‖ρ1/q
K

ρ
z,n‖q vanishes.

However, for some outer functions b it may be essentially larger than ‖(kb
z)

n+1‖q.
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Let ε ∈ (0, 1) and let b be an outer function such that |b(t)| = ε for |t| < 1 and |b(t)| = 1

for |t| > 1. Note that b(z) = exp
(
− i

π
log ε log z−1

z+1

)
, where log is the main branch of the

logarithm in C \ (−∞, 0]. We show that

(4.4) sup
y>0

‖ρ1/q
K

ρ
iy,1‖q

‖(kb
iy)

2‖q

−→ ∞ as ε −→ 1−,

and so, the second term in the weight wp,1 can be dominating. Note that b(iy) → ε and

b(t) → ε, as y → 0+ and |t| ≤ √
y. Hence, for a fixed ε and sufficiently small y > 0 we

have

∫

|t|≤√
y

|kb
iy(t)|2qdt =

∫

|t|≤√
y

∣∣∣∣∣
1 − b(iy)b(t)

t+ iy

∣∣∣∣∣

2q

dt ≤ C(1 − ε)2q

∫

|t|≤√
y

dt

|t+ iy|2q
.

Thus

(4.5)

∫

|t|≤√
y

∣∣∣∣∣
1 − b(iy)b(t)

t+ iy

∣∣∣∣∣

2q

dt ≤ C
(1 − ε)2q

y2q−1
,

whereas

(4.6)

∫

|t|>√
y

∣∣∣∣∣
1 − b(iy)b(t)

t+ iy

∣∣∣∣∣

2q

dt ≤ Cy−q+1/2.

On the other hand,

K
ρ
iy,1(t) = b(iy)

2 − b(iy)b(t)

(t+ iy)2
,

and so

‖ρ1/q
K

ρ
iy,1‖q

q ≍ |b(iy)|q
∫

R

1 − |b(t)|
|t+ iy|2q

≍ 1 − ε

y2q−1
.

Combining the last estimate with (4.5) and (4.6), we obtain (4.4).

Remark 4.3. It should be emphasized that the constants in the Bernstein-type inequal-

ities corresponding to Theorem 4.1 depend only on p, n and the Carleson constant Cµ of

the measure µ, but not on b (the properties of b are contained in the weight wp,n in the

left-hand side of (4.2)).
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Remark 4.4. All the results stated above have their natural analogues for the spaces

H(b) in the unit disc. In particular, Theorem 4.1 remains true when we replace the

kernels for the half-plane by the kernels for the disc. The case of inner functions in the

disc is considered in detail in [8].

Remark 4.5. An important feature of the de Branges–Rovnyak spaces theory is the

difference between the extreme (i.e. b is an extreme point of the unit ball of H∞(C+))

and the non-extreme cases. Our Bernstein inequality applies to both cases. However, in

the extreme case one can expect more regularity near the boundary and this situation is

more interesting for us.

5. Distances to the level sets

To apply Theorem 4.1, one should have effective estimates for the weight wp,n, that

is, for the norms of the reproducing kernels. In this section we relate the weight wp,n to

the distances to the level sets of |b|. We start with some notations. Denote by σ(b) the

boundary spectrum of b, i.e.

σ(b) :=
{
x ∈ R : lim inf

z−→x
z∈C+

|b(z)| < 1
}
.

Then, for b = BIµOb, Clos σ(b) is the smallest closed subset of R containing the limit

points of the zeros of the Blaschke product B and the supports of the measures µ and

log |b(t)| dt. It is well known and easy to see that b and any element of H(b) has an

analytic extension through any interval from the open set R \ Closσ(b).

For ε ∈ (0, 1), we put

Ω(b, ε) := {z ∈ C+ : |b(z)| < ε},

and

Ω̃(b, ε) := σ(b) ∪ Ω(b, ε),
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where σ(b) is the boundary spectrum of b. Finally, for x ∈ R, we introduce the following

three distances

d0(x) := dist (x, σ(b)),

dε(x) := dist (x,Ω(b, ε)),

d̃ε(x) := dist (x, Ω̃(b, ε)).

Note that whenever b = Θ is an inner function, for all x ∈ σ(Θ), we have

lim inf
z−→x
z∈C+

|Θ(z)| = 0,

and thus dε(t) = d̃ε(t), t ∈ R. However, for an arbitrary function b in the unit ball of

H∞(C+), we have to distinguish between the distance functions dε and d̃ε.

Lemma 5.1. There exists a positive constant C = C(ε) such that, for all x ∈ R \ σ(b),

|b′(x)| ≤ C
(
d̃ε(x)

)−1
.

Proof. For the case of an inner function the inequality is proved in [6, Theorem 4.9].

For the general case, let b = IbOb be the inner-outer factorization of b. Since |b′(x)| =

|I ′b(x)|+ |O′
b(x)|, x ∈ R \ σ(b), we may assume, without loss of generality, that b is outer.

Recall that in this case

|b′(x)| =
1

π

∫

R

∣∣ log |b(t)|
∣∣

|t− x|2 dt.

Fix x ∈ R \ σ(b) and suppose 0 < y < d0(x). Let z = x+ iy. Then

log
1

|b(z)| =
y

π

∫

R

∣∣ log |b(t)|
∣∣

|t− z|2 dt =
y

π

∫

|t−x|≥d0(x)

∣∣ log |b(t)|
∣∣

|t− z|2 dt.

Since |t− z| ≤ |t− x| + y ≤ 2|t− x| whenever |t− x| ≥ d0(x), we have

log
1

|b(z)| ≥
y

4π

∫

|t−x|≥d0(x)

∣∣ log |b(t)|
∣∣

|t− x|2 dt =
y|b′(x)|

4
.

Hence

(5.1) |b(x+ iy)| ≤ exp
(
− y|b′(x)|/4

)
,
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provided that 0 < y < d0(x).

Let C = 4 log ε−1. If |b′(x)| ≤ C/|d0(x)|, then the statement is valid since d̃ε(x) ≤ d0(x).

On the other hand, if |b′(x)| > C/|d0(x)|, then we consider the point z = x+ iC/|b′(x)| for

which Im z = C/|b′(x)| < d0(x). Hence, by (5.1), we have |b(z)| ≤ ε which immediately

implies d̃ε(x) ≤ C/|b′(x)|.
�

Lemma 5.2. For each p > 1, n ≥ 1 and ε ∈ (0, 1), there exists C = C(ε, p, n) > 0 such

that

(5.2)
(
d̃ε(x)

)n ≤ C wp,n(x+ iy),

for all x ∈ R and y ≥ 0.

Proof. Let z = x+ iy, y ≥ 0. Assume that x ∈ R \ σ(b) (otherwise d̃ε(x) = 0 and (5.2) is

trivial). Since −(n + 1)q + 1 = −q np+1
p

, the estimate (5.2) is equivalent to

∫

R

∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣
(n+1)q

dt ≤ C(d̃ε(x))
−(n+1)q+1,(5.3)

and

∫

R

∣∣∣∣∣∣

b(z)
∑n

j=0

(
n+1
j+1

)
(−1)jb(z)

j
bj(t)

(t− z)n+1

∣∣∣∣∣∣

q

ρ(t) dt ≤ C(d̃ε(x))
−(n+1)q+1.(5.4)

Inequality (5.4) is obvious, since ρ(t) = 0 if |t − x| < d̃ε(x). To prove (5.3), we estimate

separately the integrals over {t : |t−x| ≤ d̃ε(x)/2} and {t : |t−x| > d̃ε(x)/2}. Obviously,

∫

|t−x|>d̃ε(x)/2

∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣
(n+1)q

dt ≤ C(d̃ε(x))
−(n+1)q+1.

Since |b(t)| = 1 if |t− x| ≤ d̃ε(x)/2, for the second integral we have

∫

|t−x|≤d̃ε(x)/2

∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣
(n+1)q

dt =

∫

|t−x|≤d̃ε(x)/2

∣∣∣∣
b(t) − b(z)

t− z

∣∣∣∣
(n+1)q

dt

≤ d̃ε(x) max |b′(u)|(n+1)q,
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where the maximum is taken over u ∈ [t, z] with |t − x| ≤ d̃ε(x)/2 (by [t, z] we denote

the straight line segment with the endpoints t and z). Note that for such u we have

|Reu− x| ≤ d̃ε(x)/2. By Lemma 5.2, |b′(u)| ≤ |b′(Reu)|, and hence,

∫

|t−x|≤d̃ε(x)/2

∣∣∣∣
1 − b(z)b(t)

t− z

∣∣∣∣
(n+1)q

dt ≤ d̃ε(x) max
|t−x|≤d̃ε(x)/2

|b′(t)|(n+1)q.

According to Lemma 5.1, |b′(t)| ≤ C1(d̃ε(t))
−1 ≤ C2(d̃ε(x))

−1 whenever |t− x| < d̃ε(x)/2

which leads to the required estimate.

�

Corollary 5.3. For each ε ∈ (0, 1) and n ∈ N, there exists C = C(ε, n) such that

‖f (n)d̃n
ε‖2 ≤ C‖f‖b, f ∈ H(b).

Proof. The statement follows immediately from Lemma 5.2 and Theorem 4.1.

�

We conclude this section with a a corollary of our Bernstein inequalities, concerning

the regularity on the boundary for functions in H(b). This technical result will be used

later.

Corollary 5.4. Let I = [x0, x0 + y0] be a bounded interval on R, 1 < p < 2. Assume that
∫

I

wp(x)
−2dx < +∞.(5.5)

Then we have

a) ]x0, x0 + y0[∩σ(b) = ∅. In particular, each function f in H(b) is differentiable on

]x0, x0 + y0[.

b) b is continuous on the Carleson square S(I) = [x0, x0 + y0] × [0, y0].

Proof. a) According to Theorem 4.1, there is a constant C > 0 such that
∫

R

|f ′(x)wp(x)|2 dx ≤ C‖f‖2
b , f ∈ H(b).
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Then, using (5.5) and the Cauchy–Schwartz inequality, we get f ′ ∈ L1(I) for any f ∈ H(b).

Now choose z ∈ C+ such that b(z) 6= 0 and take f = kb
z. We have

f ′(x) = −b(z) b
′(x)

x− z
− kb

z(x)

x− z

and, since kb
z ∈ L1(I), we conclude that

∫ x0+y0

x0

|b′(x)| dx < +∞.(5.6)

Now it follows immediately from the formula (2.1) for |b′(x)| that (5.6) implies ]x0, x0 +

y0[∩σ(b) = ∅. As a matter of fact, this is obvious for the outer and the singular inner

factors since
∫

I
(x − t)−2dt = ∞ for any x ∈ I; and if b is a Blaschke product with zeros

zr tending to x ∈]x0, x0 + y0[, then, for sufficiently large r,

∫ x0+y0

x0

2 Im zr

|x− zr|2
dx ≥ π,

and so the integral in (5.6) diverges.

b) By statement a), b is continuous on S(I) except possibly at the points x0 and x0+y0.

It remains to show that b is continuous at x0 and x0 + y0. Fix x1 ∈]x0, x0 + y0[ and define

b(x0) := b(x1) −
∫ x1

x0

b′(x) dx.

(Note that this definition of b(x0) does not seem to correspond to the classical one with

non-tangential limits but, in fact, as we will see at the end, they coincide). Since b is

differentiable on ]x0, x0 + y0[, this definition does not depend on the choice of x1 and we

see from (5.6) that b(x) tends to b(x0) as x → x0 along I. Now let z = x+ iy ∈ S(I), with

x ∈ [x0, x0 +y0/2[, y ∈]0, y0/2[. Write b(z)−b(x0) = b(x+ iy)−b(x+y)+b(x+y)−b(x0).

Using the continuity of b at x0 along I, we have b(x + y) − b(x0) → 0, as x → x0 and

y → 0. Moreover, since b is analytic on C+∪ ]x0, x0 + y0[, we can write

b(x+ y) − b(x+ iy) = (1 − i)y

∫ 1

0

b′(t(x+ y) + (1 − t)(x+ iy)) dt.
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Applying Lemma 2.1, we get

|b(x+ y) − b(x+ iy)| ≤
√

2

∫ x+y

x

|b′(u)| du.

According to (5.6), we deduce that b(x + y) − b(x + iy) → 0, as x → x0 and y → 0.

Therefore, b(z) → b(x0), as z → x0, z ∈ S(I). �

6. Carleson-type embedding theorems

Weighted Bernstein-type inequalities of the form (1.2) turned out to be an efficient tool

for the study of the so-called Carleson-type embedding theorems for the shift-coinvariant

subspaces Kp
Θ. More precisely, given an inner function Θ, we want to describe the class of

Borel measure µ in the closed upper half-plane C+ such that the embedding Kp
Θ ⊂ Lp(µ)

takes place. In other words, we are interested in the class of Borel measure µ in C+ such

that there is a constant C satisfying

‖f‖Lp(µ) ≤ C‖f‖p,

for all f ∈ Kp
Θ. This problem was posed by Cohn in [11]. In spite of a number of

beautiful results (see, e.g., [11, 12, 28, 42]), the question still remains open in the general

case. Compactness of the embedding operator is also of interest and is considered in

[10, 13, 41].

Methods based on the Bernstein-type inequalities allow to give unified proofs and es-

sentially generalize almost all known results concerning these problems (see [6, 8]). Here

we obtain an embedding theorem for de Branges–Rovnyak spaces. In the case of an inner

function the first statement coincides with a well-known theorem due to Volberg and Treil

[42].

A Carleson measure for the closed upper half-plane is called a vanishing Carleson mea-

sure if µ(S(x, h))/h → 0 whenever h → 0 or dist (S(x, h), 0) → ∞. Vanishing Carleson

measures in the closed unit disc are discussed, e.g., in [33]. An equivalent definition for a
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vanishing Carleson measure ν in the disc is that
∫

D

1 − |z|2
|1 − zζ |2dν(ζ) −→ 0, as |z| → 1.

Changing the variables to the upper half-plane with |w + i|−2dµ(w) = dν(ζ), we obtain
∫

C+

Im z

|w − z|2dµ(w) −→ 0,

whenever either Im z → 0 or |z| → +∞. It is easily seen that this condition is equivalent to

the above definition of a vanishing Carleson measure. It is well known that an embedding

Hp(C+) ⊂ Lp(µ) is compact if and only if µ is a vanishing Carleson measure.

Theorem 6.1. Let µ be a Borel measure in C+, and let ε ∈ (0, 1).

(a) Assume that µ(S(x, h)) ≤ Kh for all Carleson squares S(x, h) satisfying

S(x, h) ∩ Ω̃(b, ε) 6= ∅.

Then H(b) ⊂ L2(µ), that is, there is a constant C > 0 such that

‖f‖L2(µ) ≤ C‖f‖b, f ∈ H(b).

(b) Assume that µ is a vanishing Carleson measure for H(b), that is, µ(S(x, h))/h→ 0

whenever S(x, h) ∩ Ω̃(b, ε) 6= ∅ and h → 0 or dist(S(x, h), 0) → +∞. Then the

embedding H(b) ⊂ L2(µ) is compact.

In Theorem 6.1 we need to verify the Carleson condition only on a special subclass

of squares. Geometrically this means that when we are far from the spectrum σ(b), the

measure µ in Theorem 6.1 can be essentially larger than standard Carleson measures. The

reason is that functions in H(b) have much more regularity at the points x ∈ R\Closσ(b)

where |b(x)| = 1. On the other hand, if |b(x)| ≤ δ < 1, almost everywhere on some

interval I ⊂ R, then the functions in H(b) behave on I essentially the same as a general

element of H2(C+) on that interval, and for any Carleson measure for H(b) its restriction

to the square S(I) is a standard Carleson measure.
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We will see that, for a class of functions b, the sufficient condition of Theorem 6.1 is

also necessary. However, it may be far from being necessary for certain functions b even

in the model space setting.

By a closed square in C+, we mean a set of the form

(6.1) S(x0, y0, h) := {x+ iy : x0 ≤ x ≤ x0 + h, y0 ≤ y ≤ y0 + h},

where x0 ∈ R, y0 ≥ 0 and h > 0; by the lower side of the closed square S(x0, y0, h) we

mean the interval {x+ iy0 : x0 ≤ x ≤ x0 + h}.
We deduce Theorem 6.1 from the following more general result. Recall that

wp(z) = wp,1(z) = min(‖(kb
z)

2‖−p/(p+1)
q , ‖ρ1/q

K
ρ
z,1‖−p/(p+1)

q ).

Theorem 6.2. Let {Sk}k≥1 be a sequence of closed squares in C+, let Ik denote the lower

side of the square Sk, and let δIk
be the Lebesgue measure on Ik. Assume that the squares

Sk satisfy the following two conditions:

(6.2)
∑

k

δIk
∈ C,

and, for some p, 1 < p < 2,

(6.3) sup
k≥1, y≥0

|Ik|
∫

Sk∩{Im z=y}
w−2

p (u)|du| <∞.

Let µ be a Borel measure with supp µ ⊂ ⋃
k

Sk. Then

(a) if µ(Sk) ≤ C|Ik|, then H(b) ⊂ L2(µ).

(b) if, moreover, Ik ∩ Closσ(b) = ∅, k ≥ 1, and µ(Sk) = o(|Ik|), k → ∞, then the

embedding H(b) ⊂ L2(µ) is compact.

For the model subspaces a result, analogous to Theorem 6.2, was obtained in [6, The-

orem 2.2]. For the sake of completeness, we include the proof.
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Proof. (a) The idea of the proof is to replace the measure µ with some Carleson measure

ν, and to estimate the difference between the norms ‖f‖L2(µ) and ‖f‖L2(ν) using the

Bernstein-type inequality of Section 4.

It follows from Corollary 5.4 (b) that the set of functions f ∈ H(b) which are continuous

on each of Sk is dense in H(b) (take the reproducing kernels kb
z, z ∈ C+). Thus it is

sufficient to prove the estimate ‖f‖L2(µ) ≤ C‖f‖b only for f ∈ H(b) continuous on
⋃
k

Sk.

Now let f ∈ H(b) be continuous on each of Sk. Then there exist wk ∈ Sk such that

(6.4) ‖f‖2
L2(µ) ≤

∑

k

|f(wk)|2µ(Sk) ≤ sup
k

µ(Sk)

|Ik|
·
∑

k

|f(wk)|2|Ik|.

Statement (a) will be proved as soon as we show that

(6.5)
∑

k

|f(wk)|2|Ik| ≤ C‖f‖2
b

where the constant C does not depend on f and on the choice of wk ∈ Sk.

Consider the intervals Jk = Sk ∩ {Im z = Imwk}. Let ν =
∑

k δJk
. Then it follows

from (6.2) that ν ∈ C (and the Carleson constants Cν of such measures ν are uniformly

bounded). We have

(6.6)

( ∑

k

|f(wk)|2|Ik|
)1/2

≤ ‖f‖L2(ν) +

( ∑

k

∫

Jk

|f(z) − f(wk)|2|dz|
)1/2

,

and ‖f‖L2(ν) ≤ C1‖f‖2 ≤ C1‖f‖b.

We estimate the last term in (6.6). For z ∈ Jk denote by [z, wk] the straight line interval

with the endpoints z and wk. Then f(z) − f(wk) =
∫
[z,wk]

f ′(u)du (in the case Jk ⊂ R

note that, by Corollary 5.4 (a), any f ∈ H(b) is differentiable on Jk except, may be, at

the endpoints). So, by the Cauchy–Schwartz inequality,

∑

k

∫

Jk

|f(z) − f(wk)|2|dz| ≤
∑

k

∫

Jk

∣∣∣∣
∫

Jk

|f ′(u)||du|
∣∣∣∣
2

|dz|

≤
∑

k

|Jk|
( ∫

Jk

w−2
p (u)|du|

)( ∫

Jk

|f ′(u)|2w2
p(u)|du|

)
.
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By (6.3), we obtain

∑

k

∫

Jk

|f(z) − f(wk)|2|dz| ≤ C2

∑

k

∫

Jk

|f ′(u)|2w2
p(u)|du|

= C2‖f ′wp‖2
L2(ν) ≤ C3‖f‖2

b ,

where the last inequality follows from Theorem 4.1.

(b) For a Borel set E ⊂ C+ define the operator IE : H(b) → L2(µ) by IEf = χEf where

χE is the characteristic function of E. For N ∈ N put FN =
N⋃

k=1

Sk and F̂N = C+ \ FN .

As above we assume that f ∈ H(b) is continuous on
⋃
k

Sk. Then it follows from (6.4) and

(6.5) that
∫

F̂N

|f |2dµ ≤ C sup
k>N

µ(Sk)

|Ik|
‖f‖2

b ,

and so ‖IF̂N
‖ → 0, N → ∞. Statement (b) will be proved as soon as we show that

IFN
is a compact operator for any N (thus, our embedding operator IFN

+ IF̂N
may be

approximated in the operator norm by compact operators IFN
). Clearly, it suffices to

prove the compactness of ISk
for each fixed k.

We approximate ISk
by finite rank operators. For a given ǫ > 0, partition the square

Sk into finite union of squares {S̃l}L
l=1 with pairwise disjoint interiors so that

(6.7)

( ∫

[ζ,z]

w−2
p (u)|du|

)
< ǫ

for any l, 1 ≤ l ≤ L, and any ζ, z ∈ S̃l. Such a partition exists since Ik ∩ Closσ(b) = ∅,
k ≥ 1. Indeed, b is analytic in a neighborhood of Sk, and the norms involved in the

definition of wp(z) are continuous on Sk.

Now fix ζl ∈ S̃l and consider the finite rank operator T : H(b) → L2(µ), (Tf)(z) =
∑L

l=1 f(ζl)χS̃l
(z). We show that ‖ISk

− T‖2 ≤ Cǫ. As in the proof of (a), we have

‖(ISK
− T )f‖2

L2(µ) =

L∑

l=1

∫

S̃l

|f(z) − f(ζl)|2dµ(z)
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≤
L∑

l=1

∫

S̃l

( ∫

[ζl,z]

|f ′(u)|2w2
p(u)|du|

)
·
( ∫

[ζl,z]

w−2
p (u)|du|

)
dµ(z).

By Theorem 4.1, ∫

[ζl,z]

|f ′(u)|2w2
p(u)|du| ≤ C1‖f‖2

b

where C1 does not depend on f ∈ H(b), 1 ≤ l ≤ L and z ∈ S̃l. Hence, by (6.7),

‖(ISK
− T )f‖2

L2(µ) ≤ C1ǫ‖f‖2
b

L∑

l=1

µ(S̃l) = C1ǫµ(Sk)‖f‖2
b .

We conclude that ISK
may be approximated by finite rank operators and is, therefore,

compact. �

We comment now on a couple of details of the proof where the situation differs from

the inner case.

Remark 6.3. In the inner case b = Θ one can prove the estimate ‖f‖L2(µ) ≤ C‖f‖2 for

functions f in K2
Θ which are continuous on the closed upper half-plane C+ and then use

a result of Aleksandrov [3] which says that such functions are dense in K2
Θ. We do not

know if this result is still valid in H(b). To avoid this difficulty, in the proof of Theorem

6.2, we used the density in H(b) of the functions continuous on all squares Sk.

Question 6.4. Let b be in the unit ball of H∞(C+). Is it true that the set of functions

f in H(b), continuous on C+, is dense in H(b)?

Remark 6.5. In the inner case, in Theorem 6.2, the assumption (6.3) can be replaced

by the weaker assumption (only for the lower side of the square)

sup
k≥1

|Ik|
∫

Ik

w−2
p (u)|du| <∞.(6.8)

It was noticed in [6, Corollary 4.7] that in the inner case, for q > 1, there exists C =

C(q) > 0 such that, for any x ∈ R and 0 ≤ y2 ≤ y1, we have

‖kb
x+iy1

‖q ≤ C(q)‖kb
x+iy2

‖q.(6.9)
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Thus, it follows from (6.9) that if the sequence {Sk} satisfies (6.8), then it also satisfies

(6.3).

Question 6.6. Does the monotonicity property (6.9) of the norms of the reproducing

kernels along the rays parallel to imaginary axis remains true for a general b? (It is true

for q = 2, but this is not the interesting case for us.)

Proof. of Theorem 6.1. (a) Consider the open set E = R \ Clos Ω̃(b, ε). If E = ∅, then µ

is a Carleson measure and H(b) ⊂ H2(C+) ⊂ L2(µ). So we may assume that E 6= ∅ and

we can write it as a union of disjoint intervals ∆l. Note that
∫
∆l

(d̃ε(t))
−1dt = ∞. Hence,

partitioning the intervals ∆l, we may represent E as a union of intervals Ik with mutually

disjoint interiors such that
∫

Ik

[
d̃ε(t)

]−1
dt =

1

2
.

It follows that there exists xk ∈ Ik such that d̃ε(xk) = 2|Ik|. Hence, for any x ∈ Ik,

d̃ε(x) ≥ d̃ε(xk) − |Ik| = |Ik| and d̃ε(x) ≤ 3|Ik|. This implies

|Ik|
∫

Ik

[
d̃ε(t)

]−2
dt ≤ 1,

and using Lemma 5.2, we conclude that the intervals Ik satisfy (6.3). Condition (6.2) is

obvious.

Let Sk = S(Ik) be the Carleson square with the lower side Ik, let F =
⋃

k Sk, and let

G = C+ \ F . Put µ1 = µ|F and µ2 = µ|G. We show that the measure µ1 satisfies the

conditions of Theorem 6.2 whereas µ2 is a usual Carleson measure (and, thus, H(b) ⊂
H2(C+) ⊂ L2(µ2)).

Let us show that µ1(Sk) ≤ C2|Ik|. Indeed, it follows from the estimate |Ik| ≤ d̃ε(x) ≤
3|Ik|, x ∈ Ik, that S(6Ik) ∩ Ω̃(b, ε) 6= ∅ (by 6Ik we denote the 6 times larger interval

with the same center as Ik). By the hypothesis, µ1(Sk) ≤ µ(S(6Ik)) ≤ C|Ik|. Hence, µ1

satisfies the conditions of Theorem 6.2 (a), and so H(b) ⊂ L2(µ1).
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Now we show that µ2 ∈ C. Assume that S(I) ∩G 6= ∅ for some interval I ⊂ R, and let

z = x+ iy ∈ S(I) ∩G. If x ∈ Clos Ω̃(b, ε), then S(2I) ∩ Ω̃(b, ε) 6= ∅. Otherwise, if x ∈ Ik

for some k, then d̃ε(x) ≤ 3|Ik| ≤ 3|I| since z ∈ S(I) \ S(Ik). Thus

S(6I) ∩ Ω̃(b, ε) 6= ∅.(6.10)

By the hypothesis, µ2(S(I)) ≤ µ(S(6I)) ≤ C|I|, and so µ2 is a Carleson measure.

(b) Let F,G, µ1 and µ2 be the same as above. We show that µ1 satisfies the conditions

of Theorem 6.2 (b), whereas µ2 is a vanishing Carleson measure. Indeed, we can split the

family {Sk} into two families {Sk}k∈K1 and {Sk}k∈K2 such that |Ik| → 0, k → ∞, k ∈ K1,

whereas dist (Ik, 0) → ∞ when k → ∞, k ∈ K2. Since S(6Ik) ∩ Ω̃(b, ε) 6= ∅ we conclude

that Theorem 6.2 (b) applies to µ1 and the embedding H(b) ⊂ L2(µ1) is compact. Finally,

any Carleson square S(I) with S(I) ∩G 6= ∅ satisfies (6.10), and so, by the assumptions

of Theorem 6.1 (b), µ2 is a vanishing Carleson measure.

�

We state an analogous result for the spaces in the unit disc (for the case of inner

functions statement (b) is proved in [8]; it answers a question posed in [10]).

Theorem 6.7. Let µ be a Borel measure in the closed unit disc D, and let ε ∈ (0, 1).

(a) Assume that µ(S(x, h) ≤ Ch for all Carleson squares S(x, h) such that S(x, h) ∩
Ω̃(b, ε) 6= ∅. Then H(b) ⊂ L2(µ).

(b) If, moreover, µ(S(x, h))/h → 0 when h → 0 and S(x, h) ∩ Ω̃(b, ε) 6= ∅, then the

embedding H(b) ⊂ L2(µ) is compact.

For a class of functions b the converse to Theorem 6.1 is also true. We say that b

satisfies the connected level set condition if the set Ω(b, ε) is connected for some ε ∈ (0, 1).

Our next result is analogous to certain results from [11] and to [42, Theorem 3].
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Theorem 6.8. Let b satisfy the connected level set condition for some ε ∈ (0, 1). Assume

that Ω(b, ε) is unbounded and σ(b) ⊂ Clos Ω(b, ε). Let µ be a Borel measure on C+. Then

the following statements are equivalent:

(a) H(b) ⊂ L2(µ).

(b) There exists C > 0 such that µ(S(x, h)) ≤ Ch for all Carleson squares S(x, h)

such that S(x, h) ∩ Ω̃(b, ε) 6= ∅.
(c) There exists C > 0 such that

(6.11)

∫

C+

Im z

|ζ − z|2dµ(ζ) ≤ C

1 − |b(z)| , z ∈ C+.

Proof. The implication (b) =⇒ (a) holds for any b by Theorem 6.1, and the implication

(a) =⇒ (c) is trivial (apply the inequality ‖f‖L2(µ) ≤ C‖f‖b to f = kb
z). To prove that

(c) =⇒ (b), we use an argument from [42]. Let S(x, h) be a Carleson square such that

S(x, h) ∩ Ω̃(b, ε) 6= ∅. Since σ(b) ⊂ Clos Ω(b, ε) it follows that S(x, 2h) ∩ Ω(b, ε) 6= ∅.
Choose z1 ∈ S(x, 2h) ∩ C+ with |b(z1)| < ε. Now consider S(x, 3h). Since Ω(b, ε) is

connected and unbounded, there exists a point z2 on the boundary of S(x, 3h) such that

|b(z2)| < ε. Hence, there exists a continuous curve γ connecting z1 and z2 and such that

|b| < ε on γ. Now let z = x+ ih. Applying the theorem on two constants to the domain

IntS(x, 3h) \ γ we conclude that |b(z)| ≤ δ where δ ∈ (0, 1) depends only on ε. Then

inequality (6.11) implies

h

∫

S(x,h)

dµ(ζ)

|ζ − z|2 ≤ C(1 − δ)−1.

It remains to note that |ζ − z| ≤ C1h, ζ ∈ S(x, h) to obtain µ(S(x, h)) ≤ C2h.

�

Example 6.9. Examples are known of inner functions satisfying the connected level set

condition. We would like to emphasize that there are also many outer functions satisfying

the conditions of Theorem 6.8. For example, let b(z) = exp( i
π

log z), where log z is the

main branch of the logarithm in C \ (−∞, 0].
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Remark 6.10. We see that if b satisfies the conditions of Theorem 6.8, then it suffices

to verify the inequality ‖f‖L2(µ) ≤ C‖f‖b for the reproducing kernels of the space H(b)

to get it for all functions f in H(b). Recently, Nazarov and Volberg [28] showed that it is

no longer true in the general case.

7. Stability of bases of reproducing kernels

Another application of Bernstein inequalities for model subspaces Kp
Θ is considered

in [7]; it is connected with stability of Riesz bases and frames of reproducing kernels

(kΘ
λn

) under small perturbations of the points λn. Riesz bases of reproducing kernels in

de Branges–Rovnyak spaces H(b) were studied in [19]. Making use of Theorem 4.1 we

extend the results of [7] to the spaces H(b).

For λ ∈ C+ ∪ E2(b), we denote by κb
λ the normalized reproducing kernel at the point

λ, that is, κb
λ = kb

λ/(2πi ‖kb
λ‖b). Let (κb

λn
)n≥1 be a Riesz basis in H(b), let λn ∈ Gn and

let G =
⋃

nGn ⊂ C+ satisfy the following properties.

(i) There exist positive constants c and C such that

c ≤ ‖kb
zn
‖b

‖kb
λn
‖b

≤ C, zn ∈ Gn.

(ii) For any zn ∈ Gn, the measure ν =
∑

n δ[λn,zn] is a Carleson measure and, moreover,

the Carleson constants Cν of such measures (see (4.1)) are uniformly bounded with

respect to zn. Here [λn, zn] is the straight line interval with the endpoints λn and

zn, and δ[λn,zn] is the Lebesgue measure on the interval.

Remark 7.1. As in the inner case, it should be noted that for λn ∈ C+, there always

exist non-trivial sets Gn satisfying (i) and (ii). More precisely, we can take

Gn := {z ∈ C+ : |z − λn| < r Im λn},
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for sufficiently small r > 0. Indeed, we know [19] that if (κb
λn

)n≥1 is a Riesz basis in H(b),

then (λn)n>1 is a Carleson sequence, that is,

inf
k>1

∏

n 6=k

∣∣∣∣
λn − λk

λn − λk

∣∣∣∣ > 0.

In particular, the measure ν :=
∑

n Imλn δλn
is a Carleson measure. Therefore, we see

that Gn satisfy (ii). Moreover, using Lemma 7.3 below, we see that Gn satisfy also the

condition (i).

Recall that wp(z) = min(‖(kb
z)

2‖−p/(p+1)
q , ‖ρ1/q

K
ρ
z,1‖−p/(p+1)

q ).

Theorem 7.2. Let (λn)n≥1 ⊂ C+ ∪ E2(b) be such that (κb
λn

)n≥1 is a Riesz basis in H(b)

and let p ∈ [1, 2). Then for any set G =
⋃

nGn satisfying (i) and (ii), there is ε > 0 such

that the system of reproducing kernels (κb
µn

)n≥1 is a Riesz basis whenever µn ∈ Gn and

sup
n≥1

1

‖kb
λn
‖2

b

∫

[λn,µn]

wp(z)
−2|dz| < ε.(7.1)

Proof. Since µn ∈ Gn, the condition (i) implies that ‖kb
µn
‖b ≍ ‖kb

λn
‖b and thus (κb

µn
)n≥1

is a Riesz basis if and only if (κ̃b
µn

)n≥1 is a Riesz basis where

κ̃b
µn

=
kb

µn

2πi ‖kb
λn
‖b

.

In view of [7, Lemma 2.3], it suffices to check the estimate

∞∑

n=1

|〈f, κb
λn

− κ̃b
µn
〉b|2 ≤ ε‖f‖2

b, f ∈ H(b),(7.2)

for sufficiently small ε > 0. Now it follows from (7.1) and Corollary 5.4 (a) that any

f in H(b) is differentiable in ]λn, µn[. Moreover, the set of functions in H(b) which are

continuous on [λn, µn] is dense in H(b) (take the set of reproducing kernels). Therefore,

we can prove (7.2) only for functions f ∈ H(b) continuous on [λn, µn]. Then

|〈f, κb
λn

− κ̃b
µn
〉b|2 =

|f(λn) − f(µn)|2
‖kb

λn
‖2

b

=
1

‖kb
λn
‖2

b

∣∣∣∣
∫

[λn,µn]

f ′(z) dz

∣∣∣∣
2

.
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By the Cauchy–Schwartz inequality and (7.1), we get

|〈f, κb
λn

− κ̃b
µn
〉b|2 ≤ ε

∫

[λn,µn]

|f ′(z)wp(z)|2|dz|.

It follows from assumption (ii) that ν :=
∑

n δ[λn,µn] is a Carleson measure with a constant

Cν which does not exceed some absolute constant depending only on G. Hence, according

to Theorem 4.1, we have

∞∑

n=1

|〈f, κb
λn

− κ̃b
µn
〉b|2 ≤ ε

∞∑

n=1

∫

[λn,µn]

|f ′(z)wp(z)|2|dz|

= ε‖f ′wp‖2
L2(ν) ≤ C ε ‖f‖2

b,

for a constant C which depends on G, (λn) and p. Then Lemma 2.3 of [7] implies that

we can choose a sufficiently small ε > 0 such that (κ̃b
µn

)n≥1 is a Riesz basis in H(b).

�

Denote by ρ(z, ω) the pseudohyperbolic distance between z and ω,

ρ(z, ω) :=

∣∣∣∣
z − ω

z − ω

∣∣∣∣ .

For the proof of the next corollary we need the following well-known property.

Lemma 7.3. Let b ∈ H∞(C+) with ‖b‖∞ ≤ 1 and ε0 ∈ (0, 1). Then there exist constants

C1, C2 > 0 (depending only on ε0) such that for any z, ω ∈ C+ satisfying ρ(z, ω) < ε0, we

have

C1 ≤
1 − |b(z)|
1 − |b(ω)| ≤ C2.(7.3)

Proof. For the case of an inner function, the proof can be found, e.g., in [7, Lemma 4.1].

Since for 0 ≤ t1, t2, s1, s2 < 1, we have

1 − t1t2
1 − s1s2

≤ 1 − t1
1 − s1

+
1 − t2
1 − s2

,
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the inner and outer factors of b can be treated separately and we can assume that b is

outer. It follows easily from ρ(z, ω) < ε0 that

(7.4) |z − ω| < 2ε0

1 − ε0

Imω

and
1 − ε0

1 + ε0

<
Im z

Imω
<

1 + ε0

1 − ε0

.

Hence
Im z

π

∫

R

∣∣ log |b(t)|
∣∣

|t− z|2 dt ≍ Imω

π

∫

R

∣∣ log |b(t)|
∣∣

|t− ω|2 dt.

Since b is outer, we have

log |b(z)| = −Im z

π

∫

R

∣∣ log |b(t)|
∣∣

|t− z|2 dt ≍ log |b(ω)|,(7.5)

which implies 1 − |b(z)| ≍ 1 − |b(ω)|.
�

Corollary 7.4. Let (λn) ⊂ C+, let (κb
λn

)n≥1 be a Riesz basis in H(b), and let γ > 1/3.

Then there is ε > 0 such that the system (κb
µn

)n≥1 is a Riesz basis whenever
∣∣∣∣
λn − µn

λn − µn

∣∣∣∣ ≤ ε(1 − |b(λn)|)γ.(7.6)

Proof. By Remark 7.1, for sufficiently small r > 0, the sets Gn = {z : |z − λn| ≤ r Imλn}
satisfy the conditions (i) and (ii). Let (µn)n≥1 satisfy (7.6). Then, by (7.4), we have

|λn − µn| ≤
2ε

1 − ε
(1 − |b(λn)|)γ Imλn.(7.7)

Therefore, if ε is sufficiently small, then µn ∈ Gn. Without loss of generality, we can

assume that γ < 1 and since γ > 1/3, there exists 1 < p < 2 such that 2p−1
p+1

= 1− γ. Let

q be the conjugate exponent of p and note that 2p
q(p+1)

= 1 − γ.

Then it follows from Lemma 3.5 that there is a constant C = C(p) > 0 such that

wp(z) ≥ C
Im z

(1 − |b(z)|)
p

q(p+1)

, z ∈ C+.
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Therefore, by Lemma 7.3, we have

w−2
p (z) ≤ C1

(1 − |b(λn)|)1−γ

(Imλn)2

for z ∈ [λn, µn]. Hence,

1

‖kb
λn
‖2

b

∫

[λn,µn]

wp(z)
−2|dz| ≤ C2

Imλn

1 − |b(λn)| |λn − µn|
(1 − |b(λn)|)1−γ

(Imλn)2

and using (7.7), we obtain

1

‖kb
λn
‖2

b

∫

[λn,µn]

wp(z)
−2|dz| ≤ C3ε.

To complete the proof, take a sufficiently small ε and apply Theorem 7.2.

�

Remark 7.5. It should be noted that all the statements remain valid if we are interested

in the stability of Riesz sequences of reproducing kernels, that is, of systems of reproducing

kernels which constitute Riesz bases in their closed linear spans.

Remark 7.6. In the case where

sup
n≥1

|b(λn)| < 1,(7.8)

the stability condition (7.6) is equivalent to

∣∣∣∣
λn − µn

λn − µn

∣∣∣∣ ≤ ε,

and we essentially get the result of stability obtained in the inner case in [18]. Moreover, if

b is an extreme point of the unit ball of H∞(C+) and if (7.8) is satisfied, then a criterion

for (κn
λn

) to be a Riesz basis of H(b) is given in [19]. On the other hand, in the non-

extreme case, there are no Riesz bases of H(b) and the previous results (Theorem 7.2 and

Corollary 7.4) apply only for Riesz sequences.
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Département de mathématiques et de statistique, Université Laval, Québec, QC,
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