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Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of H ∞ (C + ). We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form f

, where f ∈ H(b) and µ is a Carleson-type measure on C + ∪ R. We provide several applications of these inequalities. We apply them to obtain embedding theorems for H(b) spaces. These results extend Cohn and Volberg-Treil embedding theorems for the model (star-invariant) subspaces which are special classes of de Branges-Rovnyak spaces. We also exploit the inequalities for the derivatives to study stability of Riesz bases of reproducing kernels {k b λn } in H(b) under small perturbations of the points λ n .

Introduction

Let C + denote the upper half-plane in the complex plane and let H 2 (C + ) denote the usual Hardy space on C + . For ϕ ∈ L ∞ (R), let T ϕ stand for the Toeplitz operator defined on H 2 (C + ) by

T ϕ f := P + (ϕf ), f ∈ H 2 (C + ),
where P + denotes the orthogonal projection of L 2 (R) onto H 2 (C + ). Then, for ϕ ∈ L ∞ (R), ϕ ∞ ≤ 1, the de Branges-Rovnyak space H(ϕ) associated to ϕ consists of those functions in H 2 (C + ) which are in the range of the operator (Id -T ϕ T ϕ ) 1/2 . It is a Hilbert space when equipped with the inner product

(Id -T ϕ T ϕ ) 1/2 f, (Id -T ϕ T ϕ ) 1/2 g ϕ = f, g 2 ,
where f, g ∈ H 2 (C + ) ⊖ ker (Id -T ϕ T ϕ ) 1/2 . In what follows we always assume that ϕ = b is an analytic function in the unit ball of H ∞ (C + ). In this case, if These spaces (and, more precisely, their general vector-valued version) were introduced by de Branges and Rovnyak [START_REF] De Branges | Canonical models in quantum scattering theory[END_REF][START_REF] De Branges | Square summable power series[END_REF] as universal model spaces for Hilbert space contractions. Thanks to the pioneer works of Sarason, we know that de Branges-Rovnyak spaces play an important role in numerous questions of complex analysis and operator theory (e.g. see [START_REF] Anderson | On generalized Schwarz-Pick estimates[END_REF][START_REF] Hartmann | Surjective Toeplitz operators[END_REF][START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF][START_REF] Shapiro | Relative angular derivatives[END_REF][START_REF] Shapiro | More relative angular derivatives[END_REF]). For the general theory of H(b) spaces we refer to [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF].

k b ω (z) := 1 -b(ω)b(z) z -ω , ω ∈ C + , ( 1 
In the special case where b = Θ is an inner function (that is, |Θ| = 1 a.e. on R), the operator (Id-T Θ T Θ ) 1/2 is an orthogonal projection and H(Θ) becomes a closed (ordinary) subspace of H 2 (C + ) which coincides with the so-called model subspace

K 2 Θ = H 2 (C + ) ⊖ ΘH 2 (C + ) = H 2 (C + ) ∩ Θ H 2 (C + )
(for the model space theory see [START_REF] Nikolski | Operators, Functions, and Systems: an Easy Reading[END_REF]). We mention one important particular class of model spaces. If Θ(z) = exp(iaz), a > 0, then H(Θ) = K 2 Θ = H 2 (C + )∩P W 2 a , where P W 2 a stands for the Paley-Wiener space of all entire functions of exponential type at most a, whose restrictions to R belong to L 2 (R). Then the famous Bernstein's inequality asserts that

f ′ 2 ≤ a f 2 , f ∈ P W 2 a .
This classical and important inequality was extended by many authors in many different directions. It is impossible to give an exhaustive list of references, but we would like to mention [START_REF] Boas | Variational methods in entire functions[END_REF][START_REF] Gorin | Bernstein inequalities from the operator theory point of view[END_REF][START_REF] Petrosyan | Some extremal problems for analytic functions[END_REF][START_REF] Rahman | L p inequalities for entire functions of exponential type[END_REF][START_REF] Rahman | On Bernstein's inequality for entire functions of exponential type[END_REF][START_REF] Totik | Derivatives of entire functions of higher order[END_REF] and [START_REF] Ya | Lectures on entire functions[END_REF]Lecture 28].

Notably, one natural direction is to extend Bernstein's inequality to general model subspaces. In [START_REF] Levin | An estimate of the derivative of a meromorphic function on the boundary of domain[END_REF], Levin showed that if Θ is an inner function and

|Θ ′ (x)| < ∞, x ∈ R, then for each function f ∈ K ∞ Θ = H ∞ (C + ) ∩ ΘH ∞ (C + )
, the derivative f ′ (x) exists in the sense of nontangential boundary values and

|f ′ (x)/Θ ′ (x)| ≤ f ∞ .
Differentiation in the model spaces K p Θ := H p (C + ) ∩ ΘH p (C + ), 1 < p < ∞, was studied extensively by Dyakonov [START_REF] Dyakonov | Entire functions of exponential type and model subspaces in H p[END_REF][START_REF] Dyakonov | Differentiation in star-invariant subspaces I: boudedness and compactness[END_REF], who showed that the Bernstein-type inequality

f ′ p ≤ C f p , f ∈ K p Θ , holds if and only if Θ ′ ∈ L ∞ (R).
Recently, Baranov [5,[START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF][START_REF] Baranov | Compact and Schatten class embeddings of star-invariant subspaces in the disc[END_REF]] has obtained weighted Bernstein-type inequalities for the model subspaces K p Θ , which generalized previous results of Levin and Dyakonov. More precisely, for a general inner function Θ, he proved estimates of the form

(1.2) f (n) w p,n L p (µ) ≤ C f p , f ∈ K p Θ ,
where n ≥ 1, µ is a Carleson measure in the closed upper half-plane and w p,n is some weight related to the norm of reproducing kernels of the space K 2 Θ which compensates possible growth of the derivative near the boundary.

One of the main ingredients in the results of Dyakonov and Baranov was an integral formula for the derivatives of functions in K p Θ . Using Cauchy formula, it is easy to see that if Θ is inner, ω ∈ C + , n is a non-negative integer and f ∈ K p Θ , then we have

f (n) (ω) = 1 2πi R f (t) k Θ ω,n (t) dt, (1.3) 
where

k Θ ω,n (z) n! := 1 -Θ(z) n p=0 Θ (p) (ω) p! (z -ω) p (z -ω) n+1 , z ∈ C + . (1.4)
A natural question is whether one can extend the formula (1.3) to boundary points x 0 . If x 0 ∈ R does not belong to the boundary spectrum σ(Θ) of Θ (see the definition in Section 5), then Θ and all functions of K p Θ are analytic through a neighborhood of x 0 and then it is obvious that (1.3) is valid for z = x 0 . More generally, if x 0 satisfies k Im z k |x 0z k | (n+1)q + R dµ(t) |tx 0 | (n+1)q < +∞, (1.5) then, by the results of Ahern and Clark [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] (for p = 2) and Cohn [START_REF] Cohn | Radial limits and star invariant subspaces of bounded mean oscillation[END_REF] (for p > 1), the formula (1.3) is still valid at the point x 0 ∈ R for any f ∈ K p Θ (here {z k } is the sequence of zeros of Θ and µ is the singular measure associated to Θ). Recently Fricain It should be noted that the inner product in H(b) is not given by a usual integral formula. This fact causes certain difficulties. For example, we will see that one has to add one more term to formula (1.3) in the general case. In what follows we try to emphasize the points where there is a difference with the inner case, and suggest a few open questions.

Our second goal is to provide several applications of these Bernstein-type inequalities.

The classical Carleson embedding theorem gives a simple geometrical condition on a measure µ in the closed upper half-plane such that the embedding H p (C + ) ⊂ L p (µ) holds. A similar question for model subspaces K p Θ was studied by Cohn [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF] and then by Volberg and Treil [START_REF] Volberg | Embedding theorems for invariant subspaces of the inverse shift operator[END_REF]. An approach based on the (weighted norm) Bernstein inequalities for model subspaces K p Θ was suggested in [START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF]. Given b in the unit ball of H ∞ (C + ), we describe a class of Borel measures µ in C + ∪ R such that H(b) ⊂ L 2 (µ). We obtain a geometric condition on µ sufficient for such embedding. This result generalizes the previous results of Cohn and Volberg-Treil.

Another application concerns the problem of stability of Riesz bases consisting of reproducing kernels of H(b). This problem is connected with the famous problem of bases of exponentials in L 2 on an interval which goes back to Paley and Wiener [START_REF] Paley | Fourier Transforms in the Complex Domain[END_REF]. Exponential bases were described by Pavlov [START_REF] Pavlov | Bases of exponentials and the Muchenhoupt condition[END_REF] and by Hruschev, Nikolski and Pavlov in [START_REF] Hruscev | Unconditional Bases of Exponentials and Reproducing Kernels[END_REF],

where functional model methods have been used. This approach has been proved fruitful; it has allowed both to recapture all the classical results and to extend them to general model spaces (for a detailed presentation of the subject see [START_REF] Nikolski | Operators, Functions, and Systems: an Easy Reading[END_REF]). Fricain has pursued this investigation with respect to bases of reproducing kernels in vector-valued model spaces [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF] and in de Branges-Rovnyak spaces [START_REF] Fricain | Bases of reproducing kernels in de Branges spaces[END_REF] where some criteria for a family of reproducing kernels to be a Riesz basis were obtained. However, the criteria mentioned above involve some properties of a given family of reproducing kernel that are rather difficult to verify. On the other hand, in many cases, the given family is a slight perturbation of another family of reproducing kernels that is known to be a basis. This gives rise to the following stability problem: Given a Riesz basis of reproducing kernels (k b λn ) n≥1 of H(b), characterize perturbations of frequencies (λ n ) n≥1 which preserve the property to be a Riesz basis.

This problem was also studied by many authors in the context of exponential bases (see e.g. [START_REF] Kadec | The exact value of the Paley-Wiener constant[END_REF][START_REF] Redheffer | Completeness of sets of complex exponentials[END_REF]) and of model subspaces K 2 Θ [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF][START_REF] Cohn | Carleson measures and operators on star-invariant subspaces[END_REF][START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF]. In the present paper, using the weighted norm inequalities (1.2) we extend the results about stability in pseudohyperbolic metrics from [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF][START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF] to de Branges-Rovnyak spaces.

The paper is organized as follows. Sections 2 and 3 contain some preliminaries concerning integral representations for the n-th derivative of functions in de Branges-Rovnyak spaces. In Section 4 we prove our first main result, a Bernstein-type inequality for H(b).

Section 5 contains some estimates relating the weight w p,n involved in Bernstein inequalities to the distances to the level sets of |b|. Section 6 is devoted to embedding theorems. In what follows, the letter C will denote a positive constant and we assume that its value may change. We write

f ≍ g if C 1 g ≤ f ≤ C 2 g for some positive constants C 1 , C 2 .
The set of integers 1, 2, • • • will be denoted by N.

Preliminaries

Let b be in the unit ball of H ∞ (C + ) and let b = BI µ O b be its canonical factorization, where

B(z) = r e iαr z -z r z -z r
is a Blaschke product, the singular inner function I µ is given by

I µ (z) = exp iaz - i π R 1 z -t + t t 2 + 1 dµ(t)
with a positive singular measure µ and a ≥ 0, and O b is the outer function

O b (z) = exp i π R 1 z -t + t t 2 + 1 log |b(t)| dt .
Then the modulus of the angular derivative of b at a point x ∈ R is given by (2.1)

|b ′ (x)| = a + r 2 Im z r |x -z r | 2 + 1 π R dµ(t) |x -t| 2 + 1 π R log |b(t)| |x -t| 2 dt.
Hence, we are motivated to define

S n (x) := +∞ r=1 Im z r |x -z r | n + R dµ(t) |x -t| n + R log |b(t)| |x -t| n dt, (2.2) and E n (b) := {x ∈ R : S n (x) < +∞}.
The formula (2.1) explains why the quantity S 2 is of special interest.

We will need the following simple estimate. Proof. Let z = x + iy, y > 0, and assume that b is outer,

b(z) = exp i π R 1 z -t + t t 2 + 1 log |b(t)| dt . Then b ′ (z) = -b(z) i π R log |b(t)| (t -z) 2 dt,
and clearly

|b ′ (z)| ≤ 1 π R | log |b(t)|| |t -z| 2 dt ≤ 1 π R | log |b(t)|| |t -x| 2 dt = |b ′ (x)|,
by (2.1). The estimates for inner factors are analogous and left to the reader (recall that

|b ′ (x)| = |O ′ b (x)| + |I ′ µ (x)| + |B ′ (x)|, x ∈ R).
Ahern and Clark [START_REF] Ahern | Radial nth derivatives of Blaschke products[END_REF] showed that if x 0 ∈ E n (b), then b and all its derivatives up to order n-1 have (finite) nontangential limits at x 0 . In [START_REF] Fricain | Boundary behavior of functions of the de Branges-Rovnyak spaces[END_REF], we showed that if

x 0 ∈ E 2n+2 (b)
where

n ∈ Z + = N ∪ {0}, then, for each f ∈ H(b)
and for each 0 ≤ j ≤ n, the nontangential limit

f (j) (x 0 ) := lim z-→x 0 ∢ f (j) (z)
exists. This is a generalization of the Ahern-Clark theorem [START_REF] Ahern | Radial limits and invariant subspaces[END_REF] for the elements of model subspaces K 2 Θ , i.e. for the case when b = Θ is an inner function. Moreover, for every z 0 ∈ C + ∪ E 2n+2 (b) and for every function f ∈ H(b), we obtained in [START_REF] Fricain | Integral representation of the n-th derivative in de Branges-Rovnyak spaces and the norm convergence of its reproducing kernel[END_REF] the following integral representation for f (n) (z 0 ). Let ρ(t) = 1 -|b(t)| 2 and let H 2 (ρ) be the span of the Cauchy kernels k z , z ∈ C + , in L 2 (ρ) (recall that k z (ω) = (ωz) -1 ). Consider the operator

T ρ : L 2 (ρ) -→ H 2 (C + ) q -→ P + (qρ).
We know from [37, II-3, III-2] that if f ∈ H(b) then there exists a (unique) function g in

H 2 (ρ) such that T b f = T ρ g. It was shown in [21] that, for z 0 ∈ C + ∪ E 2n+2 (b), n ∈ Z + ,
we have

f (n) (z 0 ) = n! 2πi R f (t)k b z 0 ,n (t) dt + R g(t)ρ(t)k ρ z 0 ,n (t) dt , (2.3)
where k b z 0 ,n is the function in H(b) defined by

(2.4) k b z 0 ,n (z) := 1 -b(z) n j=0 b (j) (z 0 ) j! (z -z 0 ) j (z -z 0 ) n+1 , z ∈ C + ,
and k ρ z 0 ,n is the function in L 2 (ρ) defined by

(2.5) k ρ z 0 ,n (t) := n j=0 b (j) (z 0 ) j! (t -z 0 ) j (t -z 0 ) n+1 , t ∈ R.
Note that if b is inner, then ρ ≡ 0 and thus (2.3) reduces to (1.3) which was the key representation formula used in [START_REF] Baranov | Weighted Bernstein-type inequalities and embedding theorems for shift-coinvariant subspaces[END_REF][START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF][START_REF] Dyakonov | Entire functions of exponential type and model subspaces in H p[END_REF][START_REF] Dyakonov | Differentiation in star-invariant subspaces I: boudedness and compactness[END_REF] to obtain Bernstein-type inequalities for model subspaces K p Θ . If n = 0 then k b z 0 ,0 corresponds to the reproducing kernel of H(b) defined in (1.1).

A new representation formula for the derivatives

We start with a slight modification of the representation (2.3) for n ∈ N.

Proposition 3.1. Let b be in the unit ball of H ∞ (C + ). Let z 0 ∈ C + ∪ E 2n+2 (b), n ∈ N,
and let

(3.1) K ρ z 0 ,n (t) := b(z 0 ) n j=0 n+1 j+1 (-1) j b j (z 0 ) b j (t) (t -z 0 ) n+1 , t ∈ R. Then (k b z 0 ) n+1 ∈ H 2 (C + ) and K ρ z 0 ,n ∈ L 2 (ρ).
Moreover, for every function f ∈ H(b), we have

f (n) (z 0 ) = n! 2πi R f (t)(k b z 0 ) n+1 (t) dt + R g(t)ρ(t)K ρ z 0 ,n (t) dt , (3.2)
where g ∈ H 2 (ρ) is such that T b f = T ρ g. Proof. Let a j = b (j) (z 0 )/j!. Then k b z 0 ,ℓ (z) = 1 -b(z 0 )b(z) -b(z) ℓ j=1 a j (z -z 0 ) j (z -z 0 ) ℓ+1 = 1 -b(z 0 )b(z) (z -z 0 ) ℓ+1 -b(z) ℓ j=1 a j (z -z 0 ) ℓ+1-j .
Hence, multiplying by (1b(z 0 )b(z)) ℓ , we obtain

(3.3) (k b z 0 ) ℓ+1 (z) = (1 -b(z 0 )b(z)) ℓ k b z 0 ,ℓ (z) + b(z) ℓ j=1 a j (1 -b(z 0 )b(z)) j-1 (k b z 0 ) ℓ+1-j (z).
Since z 0 ∈ C + ∪ E 2n+2 (b), according to [21, Proposition 3.1 and Lemma 3.2], the functions

k b z 0 and k b z 0 ,ℓ (1 ≤ ℓ ≤ n) belong to H(b). Hence, using the recurrence relation (3.3) and that 1 -b(z 0 )b(z) ∈ H ∞ (C + ), we see immediately by induction that (k b z 0 ) n+1 ∈ H 2 (C + ). We prove now that K ρ z 0 ,n ∈ L 2 (ρ). Write K ρ z 0 ,n (t) = (t -z 0 ) -(n+1) ϕ(t), with ϕ(t) = b(z 0 ) n j=0 n + 1 j + 1 (-1) j b j (z 0 )b j (t). Since ϕ ∈ L ∞ (R), it is sufficient to prove that (t -z 0 ) -(n+1) ∈ L 2 (ρ). If z 0 ∈ C + , this fact is trivial and if z 0 ∈ E 2n+2 (b), the inequality 1 -x | log x|, x ∈ (0, 1], implies R 1 -|b(t)| 2 |t -z 0 | 2n+2 dt 2 R log |b(t)| |t -z 0 | 2n+2 dt < +∞ which is the required result. It remains to prove (3.2). Let ψ be any element of H 2 (C + ). According to (2.3), we have 2πi n! f (n) (z 0 ) = f, k b z 0 ,n 2 + ρg, k ρ z 0 ,n 2 = f, k b z 0 ,n -bψ 2 + bf, ψ 2 + ρg, k ρ z 0 ,n 2 . But we have T b f = T ρ g, which means that bf -ρg ⊥ H 2 (C + ). Since ψ ∈ H 2 (C + ), it
follows that bf, ψ 2 = ρg, ψ 2 . Hence the identity

(3.4) 2πi n! f (n) (z 0 ) = f, k b z 0 ,n -bψ 2 + ρg, k ρ z 0 ,n + ψ 2
holds for each ψ ∈ H 2 (C + ). A very specific ψ gives us the required representation. To find ψ note that, on one hand, we have

k b z 0 ,n (t) -(k b z 0 ) n+1 (t) = 1 -b(t) n j=0 a j (t -z 0 ) j -(1 -b(z 0 )b(t)) n+1 (t -z 0 ) n+1 = 1 -(1 -b(z 0 )b(t)) n+1 (t -z 0 ) n+1 -b(t) n j=0 a j (t -z 0 ) j (t -z 0 ) n+1 = b(t)ψ(t),
where

ψ(t) = n+1 j=1 (-1) j+1 n+1 j (b(z 0 )) j (b(t)) j-1 (t -z 0 ) n+1 - n j=0 a j (t -z 0 ) j (t -z 0 ) n+1 .
On the other hand, we easily see that

k ρ z 0 ,n (t) + ψ(t) = n+1 j=1 (-1) j+1 n+1 j (b(z 0 )) j (b(t)) j-1 (t -z 0 ) n+1 = b(z 0 ) n j=0 (-1) j n+1 j+1 (b(z 0 )) j (b(t)) j (t -z 0 ) n+1 = K ρ z 0 ,n (t).
Therefore, (3.2) follows immediately from (3.4).

We now introduce the weight involved in our Bernstein-type inequalities. Let 1 < p ≤ 2 and let q be its conjugate exponent. Let n ∈ N. Then, for z ∈ C + , we define

w p,n (z) := min (k b z ) n+1 -pn/(pn+1) q , ρ 1/q K ρ z,n -pn/(pn+1) q ;
we assume w p,n (x) = 0, whenever x ∈ R and at least one of the functions

(k b x ) n+1 or ρ 1/q K ρ x,n is not in L q (R).
In what follows we will write w p for w p,1 . The choice of the weight is motivated by representation (3.2) which shows that the

quantity max (k b z ) n+1 2 , ρ 1/2 K ρ z,n 2 is related to the norm of the functional f → f ′ (z) on H(b)
. Moreover, we strongly believe that the norms of reproducing kernels are an important characteristic of the space H(b) which captures many geometric properties of b (see Section 5 for certain estimates confirming this point).

Using similar arguments as in the proof of Proposition 3.1, it is easy to see that

ρ 1/q K ρ x,n ∈ L q (R) if x ∈ E q(n+1) (b). It is also natural to expect that (k b x ) n+1 ∈ L q (R) for x ∈ E q(n+1) (b)
. This is true when b is an inner function, by a result of Cohn [START_REF] Cohn | Radial limits and star invariant subspaces of bounded mean oscillation[END_REF], and for a general function b with q = 2 by (3.3) and [START_REF] Fricain | Boundary behavior of functions of the de Branges-Rovnyak spaces[END_REF]Lemma 3.2]. However, it seems that the methods of [START_REF] Cohn | Radial limits and star invariant subspaces of bounded mean oscillation[END_REF] and [START_REF] Fricain | Boundary behavior of functions of the de Branges-Rovnyak spaces[END_REF] do not apply in the general case.

Question 3.2. Is it true that for x ∈ R, (k b x ) n+1 ∈ L q (R) if x ∈ E q(n+1) (b)? Remark 3.3. If f ∈ H(b) and 1 < p ≤ 2, then (f (n) w p,n )(x) is well-defined on R. It follows from the [20] that f (n) (x) and w p,n (x) are finite if S 2n+2 (x) < +∞. If S 2n+2 (x) = +∞, then (k b x ) n+1 2 = +∞. Hence, (k b x ) n+1 q = +∞
which, by definition, implies w p,n (x) = 0, and thus we may assume (f (n) w p,n )(x) = 0. Remark 3.4. In the inner case, we have ρ(t) ≡ 0 and the second term in the definition of the weight w p,n disappears. It should be emphasized that in the general case both terms are essential: below we show (Example 4.2) that the norm ρ 1/q K ρ z,n q can not be majorized uniformly by the norm (k b z ) n+1 q .

Lemma 3.5. For

1 < p ≤ 2, n ∈ N, there is a constant A = A(p, n) > 0 such that w p,n (z) ≥ A (Im z) n (1 -|b(z)|) pn q(pn+1) , z ∈ C + .
Proof. On one hand, note that

(k b z ) n+1 q q = R 1 -b(z)b(t) t -z (n+1)q dt ≤ C (Im z) (n+1)q-2 R 1 -b(z)b(t) t -z 2 dt = C (Im z) (n+1)q-2 k b z 2 b ≤ C 1 -|b(z)| (Im z) (n+1)q-1 .
On the other hand, we have

ρ 1/q K ρ z,n q q = R b(z) n j=0 n+1 j+1 (-1) j b(z) j b j (t) (t -z) n+1 q (1 -|b(t)| 2 ) dt ≤ C (Im z) (n+1)q-2 R 1 -|b(t)| |t -z| 2 dt. If |b(z)| < 1/2, then we obviously have R 1 -|b(t)| |t -z| 2 dt ≤ C 1 -|b(z)| Im z ,
and if |b(z)| ≥ 1/2, using 1 -|b(t)| ≤ log |b(t)| , we get Im z R 1 -|b(t)| |t -z| 2 dt ≤ Im z R log |b(t)| |t -z| 2 dt = π log 1 |O b (z)| ≍ 1 -|O b (z)|, since |O b (z)| ≥ |b(z)| ≥ 1/2. We recall that O b is the outer part of b. Therefore, in any case we have R 1 -|b(t)| |t -z| 2 dt ≤ C 1 -|b(z)| Im z ,
and we get

ρ 1/q K ρ z,n q q ≤ C 1 -|b(z)| (Im z) (n+1)q-1 .
To complete the proof, it suffices to note that (n+1)q-1 q = n + 1 p = np+1 p .

Representation formulae discussed above reduce the study of differentiation in de

Branges-Rovnyak spaces H(b) to the study of certain integral operators.

Bernstein-type inequalities

A Borel measure µ in the closed upper half-plane C + is said to be a Carleson measure if there is a constant 

C µ > 0 such that (4.1) µ( S(x, h) ) ≤ C µ h, for all squares S(x, h) = [x, x + h] × [0, h], x ∈ R, h > 0,
(T p,n f )(z) = f (n) (z)w p,n (z), f ∈ H(b). If 1 < p < 2, then T p,n is a bounded operator from H(b) to L 2 (µ), that is, there is a constant C = C(µ, p, n) > 0 such that (4.2) f (n) w p,n L 2 (µ) ≤ C f b , f ∈ H(b). If p = 2, then T 2,n is of weak type (2, 2) as an operator from H(b) to L 2 (µ).
Proof. According to Proposition 3.1, for all z ∈ C + and any function f ∈ H(b), we have

(4.3) 2πi n! f (n) (z)w p,n (z) = w p,n (z) R f (t)(k b z 0 ) n+1 (t) dt + w p,n (z) R g(t)ρ(t)K ρ z,n (t) dt. Let w (1) p,n (z) := (k b z ) n+1 -pn/(pn+1) q , w (2) 
p,n (z) := ρ 1/q K ρ z,n -pn/(pn+1) q

, where we assume that w

(i)
p,n (z) = 0 if the corresponding integrand is not in L q (R), and put h i (z) = (w

(i) p,n (z)) 1/n , i = 1, 2.
We remind that w p,n (z) = min{ w (1) p,n (z), w (2) p,n (z)}.

We split each of the two integrals in (4.3) into two parts, i.e.

2πi n! f (n) (z)w p,n (z) = I 1 f (z) + I 2 f (z) + I 3 g(z) + I 4 g(z),
where

I 1 f (z) = w p,n (z) |t-z|≥h 1 (z) f (t)(k b z ) n+1 (t) dt, I 2 f (z) = w p,n (z) |t-z|<h 1 (z) f (t)(k b z ) n+1 (t) dt, I 3 g(z) = w p,n (z) |t-z|≥h 2 (z) g(t)ρ(t)K ρ z,n (t) dt, I 4 g(z) = w p,n (z) |t-z|<h 2 (z) g(t)ρ(t)K ρ z,n (t) dt.
Note that by Lemma 3.5,

h i (z) ≥ A Im z, z ∈ C + , i = 1, 2. Hence, |I 1 f (z)| ≤Ch n 1 (z) |t-z|≥h 1 (z) |f (t)| |t -z| n+1 dt ≤Ch 1 (z) |t-z|≥h 1 (z) |f (t)| |t -z| 2 dt,
and

|I 3 g(z)| ≤Ch n 2 (z) |t-z|≥h 2 (z) |g(t)|ρ 1/2 (t) |t -z| n+1 dt ≤Ch 2 (z) |t-z|≥h 2 (z) |g(t)|ρ 1/2 (t) |t -z| 2 dt.
Using [6, Theorem 3.1], we see that

I 1 : L 2 (R) -→ L 2 (µ) and I 3 : L 2 (ρ) -→ L 2 (µ) are
bounded operators. To estimate the integral I 2 f , put

K(z, t) := h n 1 (z)|(k b z ) n+1 (t)|.
Then

K(z, •) -p q =(h 1 (z)) -pn (k b z ) n+1 -p q =(h 1 (z)) -pn (w (1) p,n (z)) (pn+1)/n = h 1 (z).
Thus 

|I 2 f (z)| ≤ h n 1 (z) |t-z|<h 1 (z) |f (t)||(k b z ) n+1 (t)| dt = |t-z|< K(z,•) -p q |f (t)|K(z, t) dt. Since K(z, •) -p q = h 1 (z) ≥ A Im z,
κ(z, t) := ρ 1/q (t)|K ρ z,n (t)| ρ 1/q K ρ z,n pn/(pn+1) q
.

In other words, κ(z, t) = w

(2)

p,n (z)ρ 1/q (t)|K ρ z,n (t)|. Thus |I 4 g(z)| ≤ w (2) p,n (z) |t-z|<h 2 (z) |g(t)|ρ(t)|K ρ z,n (t)| dt = |t-z|<h 2 (z) |g(t)|ρ 1/p (t)κ(z, t) dt. But κ(z, •) -p q = (w (2) p,n (z)) -p ρ 1/q K ρ z,n -p q = h 2 (z)
. Hence, we get

|I 4 g(z)| ≤ |t-z|< κ(z,•) -p q |g(t)|ρ 1/p (t)κ(z, t) dt.
Since p ≤ 2 and ρ(t) ≤ 1, we have

|I 4 g(z)| ≤ |t-z|< κ(z,•) -p q |g(t)|ρ 1/2 (t)κ(z, t) dt,
and since κ(z, •) -p q = h 2 (z) ≥ A Im z, we may apply again [6, Theorem 3.2]. Therefore, the operator I 4 is of weak type (2, 2) as an operator from L 2 (ρ) to L 2 (µ) if p = 2 and it is a bounded operator from L 2 (ρ) to L 2 (µ) if 1 < p < 2.

To conclude it remains to note that

f 2 b = f 2 2 + g 2 ρ ,
which implies that the operators

f → f from H(b) to H 2 (C + ) and f → g from H(b) to L 2 (ρ) are contractions.
Example 4.2. We show that for a general function b both terms in the definition of the weight w p,n are important. Obviously, for an inner b the norm ρ 1/q K ρ z,n q vanishes. However, for some outer functions b it may be essentially larger than (k b z ) n+1 q .

Let ε ∈ (0, 1) and let b be an outer function such that |b(t)| = ε for |t| < 1 and |b(t

)| = 1 for |t| > 1. Note that b(z) = exp -i π log ε log z-1 z+1
, where log is the main branch of the logarithm in C \ (-∞, 0]. We show that (4.4) sup

y>0 ρ 1/q K ρ iy,1 q (k b iy ) 2 q -→ ∞ as ε -→ 1-,
and so, the second term in the weight w p,1 can be dominating. Note that b(iy) → ε and b(t) → ε, as y → 0+ and |t| ≤ √ y. Hence, for a fixed ε and sufficiently small y > 0 we

have |t|≤ √ y |k b iy (t)| 2q dt = |t|≤ √ y 1 -b(iy)b(t) t + iy 2q dt ≤ C(1 -ε) 2q |t|≤ √ y dt |t + iy| 2q . Thus (4.5) |t|≤ √ y 1 -b(iy)b(t) t + iy 2q dt ≤ C (1 -ε) 2q y 2q-1 , whereas (4.6) 
|t|> √ y 1 -b(iy)b(t) t + iy 2q dt ≤ Cy -q+1/2 .
On the other hand,

K ρ iy,1 (t) = b(iy) 2 -b(iy)b(t) (t + iy) 2
, and so

ρ 1/q K ρ iy,1 q q ≍ |b(iy)| q R 1 -|b(t)| |t + iy| 2q ≍ 1 -ε y 2q-1 .
Combining the last estimate with (4.5) and (4.6), we obtain (4.4). Proof. 

|b ′ (x)| = 1 π R log |b(t)| |t -x| 2 dt. Fix x ∈ R \ σ(b) and suppose 0 < y < d 0 (x). Let z = x + iy. Then log 1 |b(z)| = y π R log |b(t)| |t -z| 2 dt = y π |t-x|≥d 0 (x) log |b(t)| |t -z| 2 dt. Since |t -z| ≤ |t -x| + y ≤ 2|t -x| whenever |t -x| ≥ d 0 (x), we have log 1 |b(z)| ≥ y 4π |t-x|≥d 0 (x) log |b(t)| |t -x| 2 dt = y|b ′ (x)| 4 .

Hence

Let z = x + iy, y ≥ 0. Assume that x ∈ R \ σ(b) (otherwise dε (x) = 0 and (5.2) is trivial). Since -(n + 1)q + 1 = -q np+1 p , the estimate (5.2) is equivalent to R 1 -b(z)b(t) t -z (n+1)q dt ≤ C( dε (x)) -(n+1)q+1 , (5.3 
|t-x|> dε(x)/2 1 -b(z)b(t) t -z (n+1)q dt ≤ C( dε (x)) -(n+1)q+1 . Since |b(t)| = 1 if |t -x| ≤ dε (x)/2, for the second integral we have |t-x|≤ dε(x)/2 1 -b(z)b(t) t -z (n+1)q dt = |t-x|≤ dε(x)/2 b(t) -b(z) t -z (n+1)q dt ≤ dε (x) max |b ′ (u)| (n+1)q ,
where the maximum is taken over u ∈ 

1 -b(z)b(t) t -z (n+1)q dt ≤ dε (x) max |t-x|≤ dε(x)/2 |b ′ (t)| (n+1)q . According to Lemma 5.1, |b ′ (t)| ≤ C 1 ( dε (t)) -1 ≤ C 2 ( dε (x)) -1 whenever |t -x| < dε (x)/2
which leads to the required estimate.

Corollary 5.3. For each ε ∈ (0, 1) and n ∈ N, there exists C = C(ε, n) such that

f (n) dn ε 2 ≤ C f b , f ∈ H(b).
Proof. The statement follows immediately from Lemma 5.2 and Theorem 4.1.

We conclude this section with a a corollary of our Bernstein inequalities, concerning the regularity on the boundary for functions in H(b). This technical result will be used later.

Corollary 5.4. Let I = [x 0 , x 0 + y 0 ] be a bounded interval on R, 1 < p < 2. Assume that I w p (x) -2 dx < +∞. (5.5)

Then we have a) ]x 0 , x 0 + y 0 [ ∩ σ(b) = ∅. In particular, each function f in H(b) is differentiable on ]x 0 , x 0 + y 0 [. b) b is continuous on the Carleson square S(I) = [x 0 , x 0 + y 0 ] × [0, y 0 ]. Proof. a) According to Theorem 4.1, there is a constant C > 0 such that R |f ′ (x)w p (x)| 2 dx ≤ C f 2 b , f ∈ H(b).
Then, using (5.5) and the Cauchy-Schwartz inequality, we get f ′ ∈ L 1 (I) for any f ∈ H(b).

Now choose z ∈ C + such that b(z) = 0 and take f = k b z . We have

f ′ (x) = -b(z) b ′ (x) x -z - k b z (x)
xz and, since k b z ∈ L 1 (I), we conclude that

x 0 +y 0 x 0 |b ′ (x)| dx < +∞. (5.6)
Now it follows immediately from the formula (2.1) for |b ′ (x)| that (5.6) implies ]x 0 , x 0 + y 0 [ ∩ σ(b) = ∅. As a matter of fact, this is obvious for the outer and the singular inner factors since I (xt) -2 dt = ∞ for any x ∈ I; and if b is a Blaschke product with zeros z r tending to x ∈]x 0 , x 0 + y 0 [, then, for sufficiently large r, (Note that this definition of b(x 0 ) does not seem to correspond to the classical one with non-tangential limits but, in fact, as we will see at the end, they coincide). Since b is differentiable on ]x 0 , x 0 + y 0 [, this definition does not depend on the choice of x 1 and we see from (5.6) that b(x) tends to b(x 0 ) as x → x 0 along I. Now let z = x + iy ∈ S(I), with

x 0 +y 0 x 0 2 Im z r |x -z r | 2 dx ≥ π,
x ∈ [x 0 , x 0 + y 0 /2[, y ∈]0, y 0 /2[. Write b(z) -b(x 0 ) = b(x + iy) -b(x + y) + b(x + y) -b(x 0 ).
Using the continuity of b at x 0 along I, we have b(x + y)b(x 0 ) → 0, as x → x 0 and y → 0. Moreover, since b is analytic on

C + ∪ ]x 0 , x 0 + y 0 [, we can write b(x + y) -b(x + iy) = (1 -i)y 1 0 b ′ (t(x + y) + (1 -t)(x + iy)) dt.
Applying Lemma 2.1, we get

|b(x + y) -b(x + iy)| ≤ √ 2 x+y x |b ′ (u)| du.
According to (5.6), we deduce that b(x + y)b(x + iy) → 0, as x → x 0 and y → 0.

Therefore, b(z) → b(x 0 ), as z → x 0 , z ∈ S(I).

Carleson-type embedding theorems

Weighted Bernstein-type inequalities of the form (1.2) turned out to be an efficient tool for the study of the so-called Carleson-type embedding theorems for the shift-coinvariant subspaces K p Θ . More precisely, given an inner function Θ, we want to describe the class of Borel measure µ in the closed upper half-plane C + such that the embedding K p Θ ⊂ L p (µ) takes place. In other words, we are interested in the class of Borel measure µ in C + such that there is a constant C satisfying

f L p (µ) ≤ C f p , for all f ∈ K p Θ .
This problem was posed by Cohn in [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF]. In spite of a number of beautiful results (see, e.g., [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF][START_REF] Cohn | Radial limits and star invariant subspaces of bounded mean oscillation[END_REF][START_REF] Nazarov | The Bellman function, the two-weight Hilbert transform, and embeddings of the model space K Θ[END_REF][START_REF] Volberg | Embedding theorems for invariant subspaces of the inverse shift operator[END_REF]), the question still remains open in the general case. Compactness of the embedding operator is also of interest and is considered in [START_REF] Cima | On Carleson embeddings of star-invariant subspaces[END_REF][START_REF] Cohn | Carleson measures and operators on star-invariant subspaces[END_REF][START_REF] Volberg | Thin and thick families of rational fractions[END_REF].

Methods based on the Bernstein-type inequalities allow to give unified proofs and essentially generalize almost all known results concerning these problems (see [START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF][START_REF] Baranov | Compact and Schatten class embeddings of star-invariant subspaces in the disc[END_REF]). Here we obtain an embedding theorem for de Branges-Rovnyak spaces. In the case of an inner function the first statement coincides with a well-known theorem due to Volberg and Treil [START_REF] Volberg | Embedding theorems for invariant subspaces of the inverse shift operator[END_REF].

A Carleson measure for the closed upper half-plane is called a vanishing Carleson measure if µ(S(x, h))/h → 0 whenever h → 0 or dist (S(x, h), 0) → ∞. Vanishing Carleson measures in the closed unit disc are discussed, e.g., in [START_REF] Power | Vanishing Carleson measures[END_REF]. An equivalent definition for a vanishing Carleson measure ν in the disc is that

D 1 -|z| 2 |1 -zζ| 2 dν(ζ) -→ 0, as |z| → 1.
Changing the variables to the upper half-plane with |w + i| -2 dµ(w) = dν(ζ), we obtain (a) Assume that µ(S(x, h)) ≤ Kh for all Carleson squares S(x, h) satisfying We will see that, for a class of functions b, the sufficient condition of Theorem 6.1 is also necessary. However, it may be far from being necessary for certain functions b even in the model space setting.

C + Im z |w -z| 2 dµ(w) -→ 0,
S(x, h) ∩ Ω(b, ε) = ∅. Then H(b) ⊂ L 2 (µ), that is, there is a constant C > 0 such that f L 2 (µ) ≤ C f b , f ∈ H(b).
By a closed square in C + , we mean a set of the form (6.1) S(x 0 , y 0 , h) := {x + iy :

x 0 ≤ x ≤ x 0 + h, y 0 ≤ y ≤ y 0 + h},
where x 0 ∈ R, y 0 ≥ 0 and h > 0; by the lower side of the closed square S(x 0 , y 0 , h) we mean the interval {x + iy 0 : x 0 ≤ x ≤ x 0 + h}.

We deduce Theorem 6.1 from the following more general result. Recall that

w p (z) = w p,1 (z) = min( (k b z ) 2 -p/(p+1) q , ρ 1/q K ρ z,1 -p/(p+1) q
). Theorem 6.2. Let {S k } k≥1 be a sequence of closed squares in C + , let I k denote the lower side of the square S k , and let δ I k be the Lebesgue measure on I k . Assume that the squares S k satisfy the following two conditions:

(6.2) k δ I k ∈ C,
and, for some p, 1 < p < 2, (

|I k | S k ∩{Im z=y} w -2 p (u)|du| < ∞. 6.3) sup k≥1, y≥0 
Let µ be a Borel measure with supp µ

⊂ k S k . Then (a) if µ(S k ) ≤ C|I k |, then H(b) ⊂ L 2 (µ). (b) if, moreover, I k ∩ Clos σ(b) = ∅, k ≥ 1, and µ(S k ) = o(|I k |), k → ∞, then the embedding H(b) ⊂ L 2 (µ) is compact.
For the model subspaces a result, analogous to Theorem 6.2, was obtained in [6, Theorem 2.2]. For the sake of completeness, we include the proof.

Proof. (a) The idea of the proof is to replace the measure µ with some Carleson measure ν, and to estimate the difference between the norms f L 2 (µ) and f L 2 (ν) using the Bernstein-type inequality of Section 4.

It follows from Corollary 5.4 (b) that the set of functions f ∈ H(b) which are continuous on each of S k is dense in H(b) (take the reproducing kernels

k b z , z ∈ C + ). Thus it is sufficient to prove the estimate f L 2 (µ) ≤ C f b only for f ∈ H(b) continuous on k S k . Now let f ∈ H(b) be continuous on each of S k . Then there exist w k ∈ S k such that (6.4) f 2 L 2 (µ) ≤ k |f (w k )| 2 µ(S k ) ≤ sup k µ(S k ) |I k | • k |f (w k )| 2 |I k |.
Statement (a) will be proved as soon as we show that (6.5)

k |f (w k )| 2 |I k | ≤ C f 2 b
where the constant C does not depend on f and on the choice of w k ∈ S k .

Consider the intervals

J k = S k ∩ {Im z = Im w k }. Let ν = k δ J k .
Then it follows from (6.2) that ν ∈ C (and the Carleson constants C ν of such measures ν are uniformly bounded). We have

(6.6) k |f (w k )| 2 |I k | 1/2 ≤ f L 2 (ν) + k J k |f (z) -f (w k )| 2 |dz| 1/2
,

and f L 2 (ν) ≤ C 1 f 2 ≤ C 1 f b .
We estimate the last term in (6.6). For z ∈ J k denote by [z, w k ] the straight line interval with the endpoints z and w k . Then

f (z) -f (w k ) = [z,w k ] f ′ (u)du (in the case J k ⊂ R
note that, by Corollary 5.4 (a), any f ∈ H(b) is differentiable on J k except, may be, at the endpoints). So, by the Cauchy-Schwartz inequality,

k J k |f (z) -f (w k )| 2 |dz| ≤ k J k J k |f ′ (u)||du| 2 |dz| ≤ k |J k | J k w -2 p (u)|du| J k |f ′ (u)| 2 w 2 p (u)|du| .
By (6.3), we obtain

k J k |f (z) -f (w k )| 2 |dz| ≤ C 2 k J k |f ′ (u)| 2 w 2 p (u)|du| = C 2 f ′ w p 2 L 2 (ν) ≤ C 3 f 2 b ,
where the last inequality follows from Theorem 4.1.

(b) For a Borel set E ⊂ C + define the operator

I E : H(b) → L 2 (µ) by I E f = χ E f where χ E is the characteristic function of E. For N ∈ N put F N = N k=1
S k and

F N = C + \ F N .
As above we assume that f ∈ H(b) is continuous on k S k . Then it follows from (6.4) and (6.5) that

F N |f | 2 dµ ≤ C sup k>N µ(S k ) |I k | f 2 b ,
and so I F N → 0, N → ∞. Statement (b) will be proved as soon as we show that I F N is a compact operator for any N (thus, our embedding operator I F N + I F N may be approximated in the operator norm by compact operators I F N ). Clearly, it suffices to prove the compactness of I S k for each fixed k.

We approximate I S k by finite rank operators. For a given ǫ > 0, partition the square S k into finite union of squares { Sl } L l=1 with pairwise disjoint interiors so that (6.7) 

[ζ,z]
H(b) → L 2 (µ), (T f )(z) = L l=1 f (ζ l )χ Sl (z). We show that I S k -T 2 ≤ Cǫ.
As in the proof of (a), we have

(I S K -T )f 2 L 2 (µ) = L l=1 Sl |f (z) -f (ζ l )| 2 dµ(z) ≤ L l=1 Sl [ζ l ,z] |f ′ (u)| 2 w 2 p (u)|du| • [ζ l ,z] w -2 p (u)|du| dµ(z).
By Theorem 4.1,

[ζ l ,z] |f ′ (u)| 2 w 2 p (u)|du| ≤ C 1 f 2 b
where C 1 does not depend on f ∈ H(b), 1 ≤ l ≤ L and z ∈ Sl . Hence, by (6.7),

(I S K -T )f 2 L 2 (µ) ≤ C 1 ǫ f 2 b L l=1 µ( Sl ) = C 1 ǫµ(S k ) f 2 b .
We conclude that I S K may be approximated by finite rank operators and is, therefore, compact.

We comment now on a couple of details of the proof where the situation differs from the inner case.

Remark 6.3. In the inner case b = Θ one can prove the estimate f L 2 (µ) ≤ C f 2 for functions f in K 2 Θ which are continuous on the closed upper half-plane C + and then use a result of Aleksandrov [START_REF] Aleksandrov | Invariant subspaces of shift operators. An axiomatic approach[END_REF] which says that such functions are dense in K 2 Θ . We do not know if this result is still valid in H(b). To avoid this difficulty, in the proof of Theorem 6.2, we used the density in H(b) of the functions continuous on all squares S k . Question 6.4. Let b be in the unit ball of H ∞ (C + ). Is it true that the set of functions f in H(b), continuous on C + , is dense in H(b)? Remark 6.5. In the inner case, in Theorem 6.2, the assumption (6.3) can be replaced by the weaker assumption (only for the lower side of the square)

sup k≥1 |I k | I k w -2 p (u)|du| < ∞. (6.8)
It was noticed in [START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF]Corollary 4.7] that in the inner case, for q > 1, there exists C = C(q) > 0 such that, for any x ∈ R and 0 ≤ y 2 ≤ y 1 , we have k b x+iy 1 q ≤ C(q) k b x+iy 2 q . (6.9) Thus, it follows from (6.9) that if the sequence {S k } satisfies (6.8), then it also satisfies (6.3). Question 6.6. Does the monotonicity property (6.9) of the norms of the reproducing kernels along the rays parallel to imaginary axis remains true for a general b? (It is true for q = 2, but this is not the interesting case for us.) 

I k dε (t) -1 dt = 1 2 .
It follows that there exists

x k ∈ I k such that dε (x k ) = 2|I k |. Hence, for any x ∈ I k , dε (x) ≥ dε (x k ) -|I k | = |I k | and dε (x) ≤ 3|I k |. This implies |I k | I k dε (t) -2 dt ≤ 1,
and using Lemma 5.2, we conclude that the intervals I k satisfy (6.3). Condition (6.2) is obvious.

Let S k = S(I k ) be the Carleson square with the lower side I k , let F = k S k , and let

G = C + \ F . Put µ 1 = µ| F and µ 2 = µ| G .
We show that the measure µ 1 satisfies the conditions of Theorem 6.2 whereas µ 2 is a usual Carleson measure (and, thus, H(b) ⊂ (b) Let F, G, µ 1 and µ 2 be the same as above. We show that µ 1 satisfies the conditions of Theorem 6.2 (b), whereas µ 2 is a vanishing Carleson measure. Indeed, we can split the We state an analogous result for the spaces in the unit disc (for the case of inner functions statement (b) is proved in [START_REF] Baranov | Compact and Schatten class embeddings of star-invariant subspaces in the disc[END_REF]; it answers a question posed in [START_REF] Cima | On Carleson embeddings of star-invariant subspaces[END_REF]). Theorem 6.7. Let µ be a Borel measure in the closed unit disc D, and let ε ∈ (0, 1).

H 2 (C + ) ⊂ L 2 (µ 2 )). Let us show that µ 1 (S k ) ≤ C 2 |I k |. Indeed, it follows from the estimate |I k | ≤ dε (x) ≤ 3|I k |, x ∈ I k , that S(6I k ) ∩ Ω(b, ε) = ∅ (
family {S k } into two families {S k } k∈K 1 and {S k } k∈K 2 such that |I k | → 0, k → ∞, k ∈ K 1 , whereas dist (I k , 0) → ∞ when k → ∞, k ∈ K 2 . Since S(6I k ) ∩ Ω(b, ε) = ∅ we conclude that Theorem 6.
(a) Assume that µ(S(x, h) ≤ Ch for all Carleson squares S(x, h) such that S(x, h) ∩

Ω(b, ε) = ∅. Then H(b) ⊂ L 2 (µ). (b) If, moreover, µ(S(x, h))/h → 0 when h → 0 and S(x, h) ∩ Ω(b, ε) = ∅, then the embedding H(b) ⊂ L 2 (µ) is compact.
For a class of functions b the converse to Theorem 6.1 is also true. We say that b satisfies the connected level set condition if the set Ω(b, ε) is connected for some ε ∈ (0, 1).

Our next result is analogous to certain results from [START_REF] Cohn | Carleson measures for functions orthogonal to invariant subspaces[END_REF] and to [START_REF] Volberg | Embedding theorems for invariant subspaces of the inverse shift operator[END_REF]Theorem 3]. Theorem 6.8. Let b satisfy the connected level set condition for some ε ∈ (0, 1). Assume that Ω(b, ε) is unbounded and σ(b) ⊂ Clos Ω(b, ε). Let µ be a Borel measure on C + . Then the following statements are equivalent: 

C + Im z |ζ -z| 2 dµ(ζ) ≤ C 1 -|b(z)| , z ∈ C + .
Proof. The implication (b) =⇒ (a) holds for any b by Theorem 6.1, and the implication

(a) =⇒ (c) is trivial (apply the inequality f L 2 (µ) ≤ C f b to f = k b z ).
To prove that (c) =⇒ (b), we use an argument from [START_REF] Volberg | Embedding theorems for invariant subspaces of the inverse shift operator[END_REF]. Let S(x, h) be a Carleson square such that 

S(x, h) ∩ Ω(b, ε) = ∅. Since σ(b) ⊂ Clos Ω(b, ε) it follows that S(x, 2h) ∩ Ω(b, ε) = ∅. Choose z 1 ∈ S(x, 2h) ∩ C + with |b(z 1 )| < ε. Now consider S(x, 3h). Since Ω(b, ε) is
dµ(ζ) |ζ -z| 2 ≤ C(1 -δ) -1 . It remains to note that |ζ -z| ≤ C 1 h, ζ ∈ S(x, h) to obtain µ(S(x, h)) ≤ C 2 h.
Example 6.9. Examples are known of inner functions satisfying the connected level set condition. We would like to emphasize that there are also many outer functions satisfying the conditions of Theorem 6.8. For example, let b(z) = exp( i π log z), where log z is the main branch of the logarithm in C \ (-∞, 0]. Remark 6.10. We see that if b satisfies the conditions of Theorem 6.8, then it suffices to verify the inequality f L 2 (µ) ≤ C f b for the reproducing kernels of the space H(b) to get it for all functions f in H(b). Recently, Nazarov and Volberg [START_REF] Nazarov | The Bellman function, the two-weight Hilbert transform, and embeddings of the model space K Θ[END_REF] showed that it is no longer true in the general case.

Stability of bases of reproducing kernels

Another application of Bernstein inequalities for model subspaces K p Θ is considered in [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF]; it is connected with stability of Riesz bases and frames of reproducing kernels (k Θ λn ) under small perturbations of the points λ n . Riesz bases of reproducing kernels in de Branges-Rovnyak spaces H(b) were studied in [START_REF] Fricain | Bases of reproducing kernels in de Branges spaces[END_REF]. Making use of Theorem 4.1 we extend the results of [START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF] to the spaces H(b). Remark 7.1. As in the inner case, it should be noted that for λ n ∈ C + , there always exist non-trivial sets G n satisfying (i) and (ii). More precisely, we can take

G n := {z ∈ C + : |z -λ n | < r Im λ n },
for sufficiently small r > 0. Indeed, we know [START_REF] Fricain | Bases of reproducing kernels in de Branges spaces[END_REF] 

that if (κ b λn ) n≥1 is a Riesz basis in H(b), then (λ n ) n 1 is a Carleson sequence, that is, inf k 1 n =k λ n -λ k λ n -λ k > 0.
In particular, the measure ν := n Im λ n δ λn is a Carleson measure. Therefore, we see that G n satisfy (ii). Moreover, using Lemma 7.3 below, we see that G n satisfy also the condition (i).

Recall that Denote by ρ(z, ω) the pseudohyperbolic distance between z and ω, ρ(z, ω) := zω zω .

w p (z) = min( (k b z ) 2 -p/(p+1) q , ρ 1/q K ρ z,1 -p/(p+1) q ). Theorem 7.2. Let (λ n ) n≥1 ⊂ C + ∪ E 2 (b) be such that (κ b λn ) n≥1 is a
For the proof of the next corollary we need the following well-known property. Since for 0 ≤ t 1 , t 2 , s 1 , s 2 < 1, we have Therefore, if ε is sufficiently small, then µ n ∈ G n . Without loss of generality, we can assume that γ < 1 and since γ > 1/3, there exists 1 < p < 2 such that 2 p-1 p+1 = 1γ. Let q be the conjugate exponent of p and note that 2p q(p+1) = 1γ. Then it follows from Lemma 3.5 that there is a constant C = C(p) > 0 such that w p (z) -2 |dz| ≤ C 3 ε.

1 -t 1 t 2 1 -s 1 s 2 ≤ 1 -t 1 1 -s 1 + 1 -t 2 1 -
To complete the proof, take a sufficiently small ε and apply Theorem 7.2. 

λ n -µ n λ n -µ n ≤ ε,
and we essentially get the result of stability obtained in the inner case in [START_REF] Fricain | Bases of reproducing kernels in model spaces[END_REF]. Moreover, if

b is an extreme point of the unit ball of H ∞ (C + ) and if (7.8) is satisfied, then a criterion for (κ n λn ) to be a Riesz basis of H(b) is given in [START_REF] Fricain | Bases of reproducing kernels in de Branges spaces[END_REF]. On the other hand, in the nonextreme case, there are no Riesz bases of H(b) and the previous results (Theorem 7.2 and Corollary 7.4) apply only for Riesz sequences.

. 1 )

 1 then we have f, k b ω b = 2πif (ω) for all f ∈ H(b). In other words, H(b) is a reproducing kernel Hilbert space.

and

  Mashreghi studied the boundary behavior of functions in de Branges-Rovnyak spaces H(b) and obtained a generalization of representation (1.3) [20, 21]. In the present paper de Branges-Rovnyak spaces are studied from the point of view of function theory. Namely, we are interested in boundary properties of the elements of H(b) and of their derivatives, and we establish a number of weighted Bernstein-type inequalities. Our first goal is to exploit the generalization of representation (1.3) and obtain an analogue of Bernstein-type inequality (1.2) for the de Branges-Rovnyak spaces H(b), where b is an arbitrary function in the unit ball of H ∞ (C + ) (not necessarily inner).

Finally, in Section 7

 7 we apply the Bernstein inequality to the problem of stability of Riesz basis of reproducing kernels in H(b).

Lemma 2 . 1 .

 21 For any x ∈ R, y > 0, we have |b ′ (x + iy)| ≤ |b ′ (x)|.

Remark 4 . 3 .

 43 It should be emphasized that the constants in the Bernstein-type inequalities corresponding to Theorem 4.1 depend only on p, n and the Carleson constant C µ of the measure µ, but not on b (the properties of b are contained in the weight w p,n in the left-hand side of (4.2)).

Remark 4 . 4 .Remark 4 . 5 . 5 .Lemma 5 . 1 . 1 .

 44455511 All the results stated above have their natural analogues for the spaces H(b) in the unit disc. In particular, Theorem 4.1 remains true when we replace the kernels for the half-plane by the kernels for the disc. The case of inner functions in the disc is considered in detail in[START_REF] Baranov | Compact and Schatten class embeddings of star-invariant subspaces in the disc[END_REF]. An important feature of the de Branges-Rovnyak spaces theory is the difference between the extreme (i.e. b is an extreme point of the unit ball of H ∞ (C + )) and the non-extreme cases. Our Bernstein inequality applies to both cases. However, in the extreme case one can expect more regularity near the boundary and this situation is more interesting for us. Distances to the level sets To apply Theorem 4.1, one should have effective estimates for the weight w p,n , that is, for the norms of the reproducing kernels. In this section we relate the weight w p,n to the distances to the level sets of |b|. We start with some notations. Denote by σ(b) the boundary spectrum of b, i.e. σ(b) := x ∈ R : lim inf z-→x z∈C + |b(z)| < 1 . Then, for b = BI µ O b , Clos σ(b) is the smallest closed subset of R containing the limit points of the zeros of the Blaschke product B and the supports of the measures µ and log |b(t)| dt. It is well known and easy to see that b and any element of H(b) has an analytic extension through any interval from the open set R \ Clos σ(b). For ε ∈ (0, 1), we put Ω(b, ε) := {z ∈ C + : |b(z)| < ε}, and Ω(b, ε) := σ(b) ∪ Ω(b, ε), where σ(b) is the boundary spectrum of b. Finally, for x ∈ R, we introduce the following three distances d 0 (x) := dist (x, σ(b)), d ε (x) := dist (x, Ω(b, ε)), dε (x) := dist (x, Ω(b, ε)). Note that whenever b = Θ is an inner function, for all x ∈ σ(Θ), we have lim inf z-→x z∈C + |Θ(z)| = 0, and thus d ε (t) = dε (t), t ∈ R. However, for an arbitrary function b in the unit ball of H ∞ (C + ), we have to distinguish between the distance functions d ε and dε . There exists a positive constant C = C(ε) such that, for all x ∈ R \ σ(b), |b ′ (x)| ≤ C dε (x) -Proof. For the case of an inner function the inequality is proved in [6, Theorem 4.9]. For the general case, let b = I b O b be the inner-outer factorization of b. Since |b ′ (x)| = |I ′ b (x)| + |O ′ b (x)|, x ∈ R \ σ(b), we may assume, without loss of generality, that b is outer. Recall that in this case

(5. 1 )Lemma 5 . 2 .

 152 |b(x + iy)| ≤ exp -y|b ′ (x)|/4 , provided that 0 < y < d 0 (x). Let C = 4 log ε -1 . If |b ′ (x)| ≤ C/|d 0 (x)|, then the statement is valid since dε (x) ≤ d 0 (x). On the other hand, if |b ′ (x)| > C/|d 0 (x)|, then we consider the point z = x+ iC/|b ′ (x)| for which Im z = C/|b ′ (x)| < d 0 (x). Hence, by (5.1), we have |b(z)| ≤ ε which immediately implies dε (x) ≤ C/|b ′ (x)|. For each p > 1, n ≥ 1 and ε ∈ (0, 1), there exists C = C(ε, p, n) > 0 such that (5.2) dε (x) n ≤ C w p,n (x + iy), for all x ∈ R and y ≥ 0.

  1) j b(z) j b j (t) (tz) n+1 q ρ(t) dt ≤ C( dε (x)) -(n+1)q+1 . (5.4) Inequality (5.4) is obvious, since ρ(t) = 0 if |t -x| < dε (x). To prove (5.3), we estimate separately the integrals over {t : |t-x| ≤ dε (x)/2} and {t : |t-x| > dε (x)/2}. Obviously,

1 x 0 b

 10 and so the integral in(5.6) diverges. b) By statement a), b is continuous on S(I) except possibly at the points x 0 and x 0 +y 0 . It remains to show that b is continuous at x 0 and x 0 + y 0 . Fix x 1 ∈]x 0 , x 0 + y 0 [ and define b(x 0 ) := b(x 1 ) -x ′ (x) dx.

  whenever either Im z → 0 or |z| → +∞. It is easily seen that this condition is equivalent to the above definition of a vanishing Carleson measure. It is well known that an embeddingH p (C + ) ⊂ L p (µ) is compact if and only if µ is a vanishing Carleson measure.Theorem 6.1. Let µ be a Borel measure in C + , and let ε ∈ (0, 1).

( b )

 b Assume that µ is a vanishing Carleson measure for H(b), that is, µ(S(x, h))/h → 0 whenever S(x, h) ∩ Ω(b, ε) = ∅ and h → 0 or dist(S(x, h), 0) → +∞. Then the embedding H(b) ⊂ L 2 (µ) is compact. In Theorem 6.1 we need to verify the Carleson condition only on a special subclass of squares. Geometrically this means that when we are far from the spectrum σ(b), the measure µ in Theorem 6.1 can be essentially larger than standard Carleson measures. The reason is that functions in H(b) have much more regularity at the points x ∈ R \ Clos σ(b) where |b(x)| = 1. On the other hand, if |b(x)| ≤ δ < 1, almost everywhere on some interval I ⊂ R, then the functions in H(b) behave on I essentially the same as a general element of H 2 (C + ) on that interval, and for any Carleson measure for H(b) its restriction to the square S(I) is a standard Carleson measure.

w - 2 p

 2 (u)|du| < ǫ for any l, 1 ≤ l ≤ L, and any ζ, z ∈ Sl . Such a partition exists since I k ∩ Clos σ(b) = ∅, k ≥ 1. Indeed, b is analytic in a neighborhood of S k , and the norms involved in the definition of w p (z) are continuous on S k . Now fix ζ l ∈ Sl and consider the finite rank operator T :

Proof. of Theorem 6 . 1 .

 61 (a) Consider the open set E = R \ Clos Ω(b, ε). If E = ∅, then µ is a Carleson measure and H(b) ⊂ H 2 (C + ) ⊂ L 2 (µ).So we may assume that E = ∅ and we can write it as a union of disjoint intervals ∆ l . Note that ∆ l ( dε (t)) -1 dt = ∞. Hence, partitioning the intervals ∆ l , we may represent E as a union of intervals I k with mutually disjoint interiors such that

  by 6I k we denote the 6 times larger interval with the same center as I k ). By the hypothesis, µ 1 (S k ) ≤ µ(S(6I k )) ≤ C|I k |. Hence, µ 1 satisfies the conditions of Theorem 6.2 (a), and so H(b) ⊂ L 2 (µ 1 ). Now we show that µ 2 ∈ C. Assume that S(I) ∩ G = ∅ for some interval I ⊂ R, and let z = x + iy ∈ S(I) ∩ G. If x ∈ Clos Ω(b, ε), then S(2I) ∩ Ω(b, ε) = ∅. Otherwise, if x ∈ I k for some k, then dε (x) ≤ 3|I k | ≤ 3|I| since z ∈ S(I) \ S(I k ). Thus S(6I) ∩ Ω(b, ε) = ∅. (6.10) By the hypothesis, µ 2 (S(I)) ≤ µ(S(6I)) ≤ C|I|, and so µ 2 is a Carleson measure.

  2 (b) applies to µ 1 and the embedding H(b) ⊂ L 2 (µ 1 ) is compact. Finally, any Carleson square S(I) with S(I) ∩ G = ∅ satisfies (6.10), and so, by the assumptions of Theorem 6.1 (b), µ 2 is a vanishing Carleson measure.

  (a) H(b) ⊂ L 2 (µ). (b) There exists C > 0 such that µ(S(x, h)) ≤ Ch for all Carleson squares S(x, h)such that S(x, h) ∩ Ω(b, ε) = ∅.(c) There exists C > 0 such that(6.11) 

  connected and unbounded, there exists a point z 2 on the boundary of S(x, 3h) such that |b(z 2 )| < ε. Hence, there exists a continuous curve γ connecting z 1 and z 2 and such that |b| < ε on γ. Now let z = x + ih. Applying the theorem on two constants to the domain Int S(x, 3h) \ γ we conclude that |b(z)| ≤ δ where δ ∈ (0, 1) depends only on ε. Then inequality (6.11) implies h S(x,h)

  For λ ∈ C + ∪ E 2 (b), we denote by κ b λ the normalized reproducing kernel at the point λ, that is,κ b λ = k b λ /(2πi k b λ b ). Let (κ b λn ) n≥1 be a Riesz basis in H(b), let λ n ∈ G n and let G = n G n ⊂ C +satisfy the following properties. (i) There exist positive constants c and C such that z n ∈ G n . (ii) For any z n ∈ G n , the measure ν = n δ [λn,zn] is a Carleson measure and, moreover, the Carleson constants C ν of such measures (see (4.1)) are uniformly bounded with respect to z n . Here [λ n , z n ] is the straight line interval with the endpoints λ n and z n , and δ [λn,zn] is the Lebesgue measure on the interval.

1 k b λn 2 b. 2 . 2 L 2

 12222 Riesz basis in H(b)and let p ∈[START_REF] Ahern | Radial limits and invariant subspaces[END_REF][START_REF] Ahern | Radial nth derivatives of Blaschke products[END_REF]. Then for any set G = n G n satisfying (i) and (ii), there is ε > 0 such that the system of reproducing kernels (κ b µn ) n≥1 is a Riesz basis whenever µ n ∈ G n andsup n≥1 [λn,µn] w p (z) -2 |dz| < ε. (7.1) Proof. Since µ n ∈ G n , the condition (i) implies that k b µn b ≍ k b λnb and thus (κ b µn ) n≥1 is a Riesz basis if and only if ( κ b µn ) n≥1 is a Riesz basis where In view of [7, Lemma 2.3], it suffices to check the estimate∞ n=1 | f, κ b λnκ b µn b | 2 ≤ ε f 2 b , f ∈ H(b), (7.2)for sufficiently small ε > 0. Now it follows from (7.1) and Corollary 5.4 (a) that anyf in H(b) is differentiable in ]λ n , µ n [.Moreover, the set of functions in H(b) which are continuous on [λ n , µ n ] is dense in H(b) (take the set of reproducing kernels). Therefore, we can prove (7.2) only for functionsf ∈ H(b) continuous on [λ n , µ n ]. Then | f, κ b λnκ b µn b | 2 = |f (λ n )f (µ n )| 2By the Cauchy-Schwartz inequality and (7.1), we get| f, κ b λnκ b µn b | 2 ≤ ε [λn,µn] |f ′ (z)w p (z)| 2 |dz|.It follows from assumption (ii) that ν := n δ [λn,µn] is a Carleson measure with a constant C ν which does not exceed some absolute constant depending only on G. Hence, according to Theorem 4.1, we have∞ n=1 | f, κ b λnκ b µn b | 2 ≤ ε ∞ n=1 [λn,µn] |f ′ (z)w p (z)| 2 |dz| = ε f ′ w p (ν) ≤ C ε f 2 b ,for a constant C which depends on G, (λ n ) and p. Then Lemma 2.3 of[START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF] implies that we can choose a sufficiently small ε > 0 such that ( κ b µn ) n≥1 is a Riesz basis in H(b).

Lemma 7 . 3 . 1 ≤ 1 -

 7311 Let b ∈ H ∞ (C + ) with b ∞ ≤ 1 and ε 0 ∈ (0, 1). Then there exist constants C 1 , C 2 > 0 (depending only on ε 0 ) such that for any z, ω ∈ C + satisfying ρ(z, ω) < ε 0 , we haveC |b(z)| 1 -|b(ω)| ≤ C 2 . (7.3)Proof. For the case of an inner function, the proof can be found, e.g., in[START_REF] Baranov | Stability of bases and frames of reproducing kernels in model subspaces[END_REF] Lemma 4.1].

s 2 ,R

 2 the inner and outer factors of b can be treated separately and we can assume that b is outer. It follows easily from ρ(z, ω) < εlog |b(t)| |t -ω| 2 dt. Since b is outer, we have log |b(z)| = -Im z π R log |b(t)| |t -z| 2 dt ≍ log |b(ω)|, (7.5) which implies 1 -|b(z)| ≍ 1 -|b(ω)|. Corollary 7.4. Let (λ n ) ⊂ C + , let (κ bλn ) n≥1 be a Riesz basis in H(b), and let γ > 1/3. Then there is ε > 0 such that the system (κ b µn ) n≥1 is a Riesz basis wheneverλ nµ n λ nµ n ≤ ε(1 -|b(λ n )|) γ . (7.6)Proof. By Remark 7.1, for sufficiently small r > 0, the sets G n = {z : |zλ n | ≤ r Im λ n } satisfy the conditions (i) and (ii). Let (µ n ) n≥1 satisfy (7.6). Then, by (7.4), we have|λ nµ n | ≤ 2ε 1ε (1 -|b(λ n )|) γ Im λ n . (7.7)

C 1 ( 1 k b λn 2 b 2 and

 1122 -|b(λ n )|) 1-γ (Im λ n ) 2 for z ∈ [λ n , µ n ]. Hence, 1 [λn,µn] w p (z) -2 |dz| ≤ C 2 Im λ n 1 -|b(λ n )| |λ nµ n | (1 -|b(λ n )|) 1-γ (Im λ n )

Remark 7 . 5 .Remark 7 . 6 .

 7576 It should be noted that all the statements remain valid if we are interested in the stability of Riesz sequences of reproducing kernels, that is, of systems of reproducing kernels which constitute Riesz bases in their closed linear spans. In the case where sup n≥1 |b(λ n )| < 1, (7.8) the stability condition (7.6) is equivalent to

  with the lower side on the real axis. We denote the class of Carleson measures by C. Recall that, according to a classical theorem of Carleson, µ ∈ C if and only if H p (C + ) ⊂ L p (µ) for some (all) p > 0.One of our main results in this paper is the following Bernstein-type inequality.

Theorem 4.1. Let µ ∈ C, let n ∈ N, let 1 < p ≤ 2, and let

  we may apply[START_REF] Baranov | Bernstein-type inequalities for the shift-coinvariant subspaces and their applications to Carleson embeddings[END_REF] Theorem 3.2]. Therefore, the operator I 2 is of weak type (2, 2) as an operator from L 2 (R) to L 2 (µ) if p = 2 and it is a bounded operator from L 2 (R) to L 2 (µ) if 1 < p < 2. To estimate the integral I 4 g, we use the same technique and put

  [t, z] with |t -x| ≤ dε (x)/2 (by [t, z] we denote the straight line segment with the endpoints t and z). Note that for such u we have |Re u -x| ≤ dε (x)/2. By Lemma 5.2, |b ′ (u)| ≤ |b ′ (Re u)|, and hence,

	|t-x|≤ dε(x)/2
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