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ity of hydroxyapatite (HAp) to remove lead from aqueous solution was investigated under different conditions, namely initial metal
ation and reaction time. The sorption of lead from solutions containing initial concentrations from 0 to 8000 mg/L was studied for three
p powders. Soluble Pb and Ca monitoring during the experiment allows characterizing the mechanism of lead uptake. Dissolution of
llowed by the formation of a solid solution, Pb Ca (PO ) (OH) , with a Ca/P ratio decreasing continuously. Langmuir–Freundlich
x 10−x 4 6 2

orption isotherms modeled adsorption data. The adsorption capacities calculated from this equation vary from 330 to 450 mg Pb/g
 different solids. Modeling of the sorption process allows to determine theoretical saturation times and residual lead concentrations at
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hydroxyapatite (HAp), Ca10(PO4)6(OH)2, is used
oval of heavy metals from contaminated soils,

and fly ashes [1–7]. Among heavy metals, lead was
studied with an aim to establish the mechanisms of

e by HAp. An ion exchange mechanism was pro-
akeuchi et al. [8] in which lead ions are first adsorbed
surface and substitution with Ca occurs as described
wing equation:
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the weight of HAp (g), q the amount of lead removed
eight of HAp (mg Pb/g HAp), V the volume of lead

, C0 the initial lead concentration of solution (mg Pb/l)
concentration of lead at the time t of adsorption (mg

r a long time, C and q will reach equilibrium value
As the exchange reaction between Pb2+ and Ca2+

y Eq. (1) is very fast and seems to take place at the
HAp particles, the following rate equation can be

p(C − Cs) (3)

is the Takeushi constant and ap is the specific sur-
f the particles. The initial conditions and equilibrium

be written as:
nd q = 0 at t = 0, and qe = constant (4)

Cs (5)
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ed in Figs. 1 and 2 for the first few minutes can be
ned by surface complexation. In fact, Mavropoulos et al.

Fig. 1. Batch sorption kinetic measurements for HAp2.
raction of HAp with heavy metals may form rela-
uble metal phosphates and/or result in the sorption
etal on HAp, thus significantly reducing aqueous

entrations. The study of the equilibrium will help to
the adsorption capacity of the hydroxyapatite pow-
This capacity is an important parameter to design a
which could be used for wastewater treatment.
ion isotherms are used to determine the affinity of
ad. The lead concentration at equilibrium (Ce) helps

the amount of lead (qe) removed by unit weight of
end of the experiment. This quantity is defined as
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erm model such as the Freundlich–Langmuir model
y used to describe the sorption of heavy metals by
orbents [9–12]
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s lead concentration on solid surface in equilibrium
itial liquid concentration (mg Pb2+/g HAp), kFL is
he kinetics of adsorption (mg Pb2+/g HAp) and Ce is
rium concentration of lead (mg/l).

ls and methods

ies of experimental measurements were carried out:
orption measurements to determine kinetic param-
he effect of pH on lead removal and (2) adsorption
nts to define the adsorption efficiency of HAp for
periments were carried out with three different HAps
at room temperature by precipitation from solution

olids obtained were dried at 105 ◦C during 1 day and
btain monomodal powders.
owder diffraction measurements (XRD), were car-
th Cu K� radiation from 20 to 50◦ (Siemens D5000).
present were determined by comparing the patterns

S standards. The XRD pattern of powder calcined at
ring 15 h shows that HAp1 is composed of hydrox-
tricalcium phosphate (TCP) with a Ca/P ratio of

p2 is a stoichiometric HAp, Ca10(PO4)6(OH)2 with
of 1.6669. HAp3 is composed of hydroxyapatite and
with a Ca/P ratio of 1.7275. The specific surface area
cles was determined by nitrogen adsorption using a
od (MICROMERITICS Gemini Vacprep 061). The
y of the powder was measured by helium pycnome-
OMERITICS Accupyc 1330). The powder particles
ution was determined with a MALVERN Laser Mas-
dro 2000. The particles were placed in an ethanol
shaken by ultrasound. This characterization of the

powders gave the following results (Table 1).
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s of HAp were introduced in a stirred-tank reactor
400 ml of the prepared solution after 10 min of equi-
me. The stirring speed of the agitator was 400 rpm.
rature of the suspension was maintained at 25 ◦C.

and calcium concentrations in the solution during
re determined by an atomic absorption photometer
Spectra AA 400). After 24 h of reaction, the sample
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and discussion
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