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Introduction

The subject of this presentation is turbulence
modelling and applications to Computational Fluid
Dynamics (CFD). A special attention is paid to the
spectral models of turbulence, also called statistical
two-point closures. The main ideas underlying the
derivation of the usual two-point closures are reviewed.
The Direct Interaction Approximation (DIA) and related
closures, such as the Eddy-Damped Quasi Normal
Markovian (EDQNM) model or the Closure Based on
Fluid Particle Displacements (CBFPD), are briefly
presented. Particular emphasis is given to the application
of closures to high Reynolds number turbulence. The
relations between two-point closures and other types of
turbulence models, in particular subgrid models for
Large-Eddy Simulations (LES), are discussed. It is
stressed that two-point closures constitute useful tools to
understand the interaction between large and small scales
that is essential for the problem of subgrid modeling in
LES.

General overview of the two-point closure approach

Two-point closures, also called spectral models or
analytical theories of turbulence, are statistical
approaches. They are based on ensemble averages and
the Reynolds decomposition. In this respect, they can be
considered to belong to the family of RANS models
(Reynolds Averaged Navier Stokes). One might further
categorize them as "sophisticated" RANS models. On the
other hand, two-point closures can also claim the status
of "theories" in the sense that they are self-consistent
approaches free of ad hoc parameters or empirical
constants that must be determined by comparing to
experiments. They are based on the Navier Stokes
equations and an acceptable number of reasonable
assumptions. They can be regarded as expansions about
Gaussianity of the probability density function of the
velocity fluctuation (Kraichnan!').

Two-point closures were proposed as early as in the
late 50's. As far as isotropic turbulence is concerned,
most of the results of closures were obtained in the 60's
or 70's (see for example Lesieur and Schertzer'®). From
the theoretical point of view, the LHDIA (Kraichnan®)
appears as the major achievement in the closure strategy
and the limitations of closures are well identified: they
fail to take internal intermittency into account. It has to
be stressed that closures have nevertheless contributed
considerably, even recently, to our understanding of

turbulence. This is particularly true in the case of high
Reynolds number turbulence or in the case of anisotropic
turbulence and its interaction with "external" effects such
as the presence of a mean shear or a solid body rotation.
The oral presentation will illustrate this aspect of
closures.

Basic quantities and guidelines for closure derivation

One characteristic of two-point closures is that their
precise formulation generally requires rather heavy and
intricate equations. It is beyond the scope of the present
paper to reproduce equations that can nowadays be found
readily in textbooks (Leslie!), (Lesieur'™), (Mathieu and
Scott!®).

The basic object in the two-point description of
turbulence is the velocity correlation at two points. In the
case of single-time closures like EDQNM (Orszag!”),
this correlation involves only velocity fluctuations at one
time, whereas for two-time theories such as DIA, the
correlation has to be defined at two times. In the case of
homogeneous turbulence, two-point correlations are
functions of a single vector: the separation between the
two points. It is then convenient to work in the spectral
space, Fourier transforming the equations.

In the Direct Interaction Approximation (Kraichnan™),
a second important quantity is introduced: the response
function, defined as the response at time t to a
perturbation introduced at t'. The closed set of equations
is not reproduced here. It is a set of integro-differential
equations for the two-point two-time correlations and the
response function.

It is known that the DIA equations are not invariant
under a random Galilean transformation, and that, as a
consequence, they do not predict the K Kolmogorov
scaling for the turbulent kinetic energy spectrum in the
inertial range. They lead to a spurious K™* spectrum
instead. It is beyond the scope of the present paper to go
into the details of the Lagrangian History version of the
Direct Interaction Approximation (LHDIA), but it must
be stressed that recasting the theory in a properly
Galilean invariant framework led Kraichnan'®' to propose
a theory that has the advantage of predicting both the
K™? inertial range and an acceptable value of the
associated Kolmogorov constant.

One-time two-point theories are simpler and require
less computational effort to be numerically integrated.
They most popular one-time closure is the Eddy Damped
Quasi-Normal Markovian model (EDQNM, Orszagm).



There are two different ways to derive the EDQNM
model. It can be presented as a simplification of a
two-time DIA formalism in which one simply assumes
the two-time correlation to be an exponentially
decreasing function of the time separation. It can also be
obtained directly; by working with one-time quantities
only.

The equations of the EDQNM model are here recalled
in the case of isotropic turbulence where their
formulation remains simple. Isotropy leads to a
description in terms of the turbulent kinetic energy
spectrum as a function of wave-number alone: E(K).
E(K) is the well known turbulent kinetic energy spectrum,
which is governed by the Lin equation:

OB(KY) _ 5y K2 B(K,) + T(K,Y)
at (1)
in which T is the non linear transfer term whose
expression depends on the closure. In the case of the
EDQNM model, T is given by:

3
T(K,1) = [\ 4 OcPa %E(Q,t){K?E(P, 1)
—P2E(K,t)} dPdQ
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in which the integral is over all the triads such as K P Q
can form a triangle. x, y and z are coefficients depending
on the geometry of the triad.
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is a spectral time scale inversely proportional to the
damping term L.

The EDQNM model requires the heuristic
specification the spectral time scale, or of the damping
term. The damping is specified to be compatible with the
existence of a Kolmogorov inertial range in the energy
spectrum. It has the signification of a damping of the
triple correlation in the direct derivation of EDQNM,
whereas, when deducing EDQNM from DIA, it appears
as the inverse of the time scale associated with the
two-time correlation. Different formulations of the
damping coefficient compatible with the Kolmogorov
scaling can be used, but in any case, the prefactor in the
damping formulation remains an adjustable constant. It
has to be expressed heuristically in order to lead to a
satisfactory value of the Kolmogorov constant. In that
respect, EDQNM is not a self-consistent theory: the
existence of a K™? inertial range and the value of the
Kolmogorov constant are not predicted by EDQMN.
They are injected as assumptions in the model instead.

Recently Bos and Bertoglio!” have proposed a new
single-time two-point closure that is no longer relying on
the introduction of heuristic assumptions. This new
theory, Closure Based on Fluid Particle Displacement
(CBFPD), leads to equations that are very similar to the
ones corresponding to the EDQNM model (equations (1)
and (2) are still obtained). Only the specification of the
damping coefficient, p, differs. The CBFPD derivation
takes advantage of the analogy between particle
displacement and scalar fluctuation in isotropic

turbulence subjected to a mean scalar gradient. Then,
extending the closure treatment to this auxiliary scalar
field, a Lagrangian time-scale can be evaluated and used
to specify  (see Bos and Bertoglio'™).

Examples of results for isotropic turbulence
An example of results obtained with the CBFPD
closure in the case of decaying isotropic turbulence is

given in Figs. 1 and 2. Spectra are shown at Re;=150,
500 and 1500. The results in Fig. 1 show that a K"
inertial range is obtained for the energy spectrum. The
resulting value of the Kolmogorov constant is 1.73, as
can be observed in Fig. 2 where the spectra are shown in
compensated form. It has to be reminded that in the case
of the EDQNM closure, this value is not a prediction of
the model but has to be specified by a proper choice of
an ad-hoc constant.
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Fig. 1 Energy spectra obtained with the CBFPD closure, for different
Reynolds numbers.

Reynolds number effects: closures and scalings
When closures were first proposed and applied, in the
50's and 60's, there was no alternative to predict the
details of the behavior of turbulence, and in particular of
the turbulent spectrum. Obviously the situation has
drastically changed, and today most of the situations to
which closures can be applied (homogeneous turbulence
for example) can easily be treated with Direct Numerical
Simulation. Coding the equations requires less effort for
the Navier Stokes equation than for the
integro-differential set of equations resulting from
theories like DIA, and the results can also be considered
free of any uncertainty since no approximations are made.
The interest of closures nowadays is related to the fact
that they can be applied to high Reynolds number
turbulence, which is not the case for DNS. The strategy is
then to apply a closure to a given situation, validate the
results of the closure at small or moderate Reynolds
numbers by comparisons with DNS, and then use the

closure to explore the high Reynolds number domain.
One has also to mention that closures can be helpful
in suggesting the relevant parameters on which to build
theoretical scaling. Often, the analytical formulations of
closures naturally provide a route to identifying the



relevant parameters.
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Fig. 2 Compensated energy spectra obtained with the CBFPD closure,
for different Reynolds numbers; the position of the horizontal line
corresponds to the predicted value of the Kolmogorov constant.

An example of how closures can be used to explore
the effect of the Reynolds number is provided by the
recent study of Bos et al'”. In this study, the problem
that is addressed is the behavior of the so-called
normalized dissipation rate of turbulence as a function of
the Reynolds number, and whether or not this quantity
tends to a universal value in the limit of very high
Reynolds number. The normalized dissipation rate is
defined as: el

U
in which ¢ is the viscous dissipation of turbulent kinetic
energy, L is the integral length-scale and U stands for the
root-mean-square velocity.
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Fig. 3 Normalized dissipation rate as a function of the Reynolds number.
Comparison between decaying isotropic turbulence and turbulence
maintained satistically stationary by a forcing (EDQMN closure).

In Fig. 3 C¢is plotted as a function of the Reynolds
number for the case of decaying isotropic turbulence and
for the case of turbulence maintained statistically
stationary by injecting energy in the large scales (forced
turbulence). It can clearly be seen that there is a large

difference between the values of C obtained in the two
cases, and that this difference persists at high Reynolds
number. In Fig. 4, the results of the EDQNM closure are
compared with DNS and LES data. It is seen that the
agreement with DNS is satisfactory at small Reynolds
and that the closure accounts for the Reynolds number
effects. It also appears that the closure permits to explore
a much larger range of parameters than the DNS.

Other illustrations of the interest of two-point
closures to explore high Reynolds number turbulence can

be mentioned (see for example Bos et al''!! for the case of
isotropic turbulence with a mean scalar gradient, or
Fauchet and Bertoglio“z] for compressible turbulence).
Some significant results will be discussed during the oral
presentation.

Fig. 4 Normalized dissipation rate as a function of the Reynolds number,
for decaying isotropic turbulence and satistically stationary turbulence.
Comparisons between results of the EDQMN closure, LES and DNS.

Homogeneous anisotropic turbulence is simple
enough to be treated with two-point closures. It is
however much richer than isotropic turbulence, since
interesting practical effects, like turbulence production
by mean shear, can be studied. Homogeneous anisotropic
turbulence might well be the situation in which two-point
closures have revealed the most useful results. Models
like EDQNM have proven to lead to valuable insights on
the interaction of turbulence with the mean flow. They
also provide interesting information on terms that must
be modeled at the level of simple engineering models,
like the rapid part of the pressure strain correlation.
Closures, such as EDQNM, combine the advantage of
exactly accounting for the rapid terms, as Rapid
Distortion Theory does, with taking into account the
non-linear transfer of energy to the small scales in a quite
realistic way. Since the energy transfer is present in the
theory, there is no need to introduce an arbitrary equation
for the dissipation rate as in one-point models. The
advantage of two-point closures is clear : once the triple
correlations are modeled, no other assumptions have to
be made. The first attempts to extend the EDQNM
closure to turbulence in the presence of a mean shear
were made by Cambon et al''* and Bertoglio!'*!. Later,
the EDQNM closure was revealed to be very helpful in
the prediction and understanding of homogeneous
turbulence subjected to solid body rotation (Cambon and
Jacquin™) and stable stratification (Staquet and
Godeferd"®). Finally, the extensions of two-point models
to inhomogeneous turbulence were addressed (see for
example Parpais et al!'”).

Application to subgrid models for Large-Eddy
Simulation

Since two-point closures reproduce the cascade of
energy to the small scale dissipative range of the
spectrum that is missing in Large-Eddy Simulations, they
were among the first tools used to model the subgrid
terms. Kraichnan'"™ was the first to derive a subgrid
model based on a two-point closure and to propose an



expression for a subgrid eddy viscosity. The most
popular subgrid model deduced from a closure is
certainly that of Chollet and Lesieur™, in which the
subgrid viscosity is expressed as a function of the energy
spectrum at the filter cut-off wave-number K:

e ngc) )
C

in which C is a constant. The EDQNM closure shows
that the subgrid viscosity is indeed a function of the
wave-number:

0__0
v, =V, f(K/KC) ©

but that f is approximatively constant and equal to unity
over a large range of wave-numbers ("plateau"). Only in
the vicinity of the cut-off does f increase ("cusp" effect)
(an example of the spectral dependence of the subgrid
viscosity is given in Kida and Goto™). When applied to
subgrid modeling, two-point theories also suggest the
presence of "backscatter" from small scales to large
scales. Using a stochastic model for EDQNM,
Bertoglio™™! proposed modeling the subgrid backscatter
by adding a random force term to the classical subgrid

viscosity term.
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Fig. 5 Turbulent intensity profiles at Re. = 395. Comparison between
the new subgrid model and DNS and LES data obtained with the
dynamic Smagorinsky model.

When a strong mean shear is present, as is the case
near a wall, two-point closures show that the transfer of
energy to the small scales results from two different and
well identified mechanisms. The first one is the classical
non-linear cascade, whereas the second one is a rapid
contribution, directly related to the presence of mean
velocity gradients. This observation suggests that the
mean shear, S, must be present in the formulation of the
subgrid viscosity in LES. A model along these lines was
recently proposed by Lévéque et al®?. This model is an
extension of the Smagorinsky model:

vr =(C;A)([S|—[(S)]) 7)
When applied to the LES of a channel flow, it leads to
satisfactory results, as appears in Fig. 5.

Acknowledgements
The author would like to thank W. Bos and H. Touil
for their works and ideas. Most of the results presented in

this paper would not have been obtained without their
help. The author would like to acknowledge close and
fruitful collaborations with L. Shao and E. Lévéque.

References
[1] Kraichnan, R., Eulerian and Lagrangian Renormalization in
Turbulence Theory, Journ. Fluid Mech., 83, (1977), 349-374.
[2] Lesieur, M., and Schertzer, D., 1978, Amortissement
Autosimilaire d'une Turbulence a Grand Nombre de Reynolds,
Journ. de Mécanique, 17(4), (1978), 609-646.
[3] Kraichnan, R., Lagrangian-History Closure Approximation
for Turbulence, Physics of Fluids, 8(4), (1965), 575-598.
[4] Leslie, D. C., Developments in the Theory of Turbulence,
Clarendon Press (1973).
[5] Lesieur, M., Turbulence in Fluids, Kluwer Academic
(1990).
[6] Mathieu, J., and Scott, J., An Introduction to Turbulent Flow,
Cambridge University Press (2000).
[7] Orszag, S. A., Analytical Theories of Turbulence, Journ.
Fluid Mech., 41(2), (1970), 363-386.
[8] Kraichnan, R., The Structure of Isotropic Turbulence at very
High Reynolds Numbers, Journ. Fluid Mech., 5(4), (1959),
497-543.
[9] Bos, W., and Bertoglio, J.P., A single-time two-point closure
based on fluid particle displacement, Physics of Fluids, 18,
(2006), 031706.
[10] Bos, W., Shao, L., and Bertoglio, J.P., Spectral imbalance
and the normalized dissipation rate of turbulence, Physics of
Fluids, 19(4), (2007), 045101.
[11] Bos, W., Touil, H., and Bertoglio, J.P., Reynolds number
dependency of the scalar flux spectrum in isotropic turbulence
with a uniform scalar gradient, Physics of Fluids, 17(12),
(2005), 1-8.
[12] Fauchet G, and Bertoglio, J.P., Régimes pseudo-son et
acoustique en turbulence compressible, Compte Rendu Acad.
Sci., 327, b, (1999), 665-671.
[13] Cambon, C., Jeandel, D., and Mathieu, J., Spectral
Modelling of Homogeneous Non isotropic Turbulence, Journ.
Fluid Mech., 104, (1981), 247-262.
[14] Bertoglio, J.-P., A Model of Three-dimensional Transfer in
Non-isotropic Homogeneous Turbulence, Turbulent Shear Flow,
Davis, Springer-Verlag (1981).
[15] Cambon, C., and Jacquin, L., Spectral Approach to
Non-isotropic Turbulence Subjected to Rotation, Journ. Fluid
Mech., 202, (1989), 295-317.
[16] Staquet, C., and Godeferd, F. S., Statistical Modelling and
Direct Simulations of Decaying Stably Stratified Turbulence.
Part 1. Flow energetics, Journ. Fluid Mech., 360, (1998),
295-340.
[17] Parpais, S., Laporta A., and Bertoglio J.-P., An E.D.Q.N.M.
model for Inhomogeneous Turbulence applied to Diffusive
Turbulence Generated by an Oscillating Grid, Twelfth
Australasian Fluid Mech. Conference, (1995), 759-762.
[18] Kraichnan, R., Eddy Viscosity in Two and Three
Dimensions, Journ. Atmos. Sci., 33, (1976), 1521-1536.
[19] Chollet, J.-P., and Lesieur, M., Parameterization of Small
Scales of Three-dimensional Isotropic Turbulence utilizing
Spectral Closures, Journ. Atmos. Sci., 38, (1981), 2747-2757.
[20] Kida, S., and Goto, S., A Lagrangian direct-interaction
approximation for homogeneous isotropic turbulence, Journ.
Fluid Mech., 345, (1997), 307-345.
[21] Bertoglio, J.-P., A Stochastic Subgrid Model for Sheared
Turbulence, Lecture Notes in Physics, 230, (1985), 100-119.
[22] Léveque, E., Toschi, F., Shao, L., and Bertoglio, J.P., Shear
improved Smagorinsky model for Large-Eddy Simulation of
wall-bounded flows, Journ. Fluid Mech., 570, (2007), 491-502.



