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TWO-POINT CLOSURES AND TURBULENCE MODELING

Jean-Pierre Bertoglio
Laboratoire de Mécanique des Fluides et d'Acoustique,
UMR 5509 CNRS Ecole Centrale de Lyon
36 av. G. de Collongue, Ecully 69130, France
berto@mecaflu.ec-lyon.fr

ABSTRACT

The main ideas underlying the derivation of the usual
two-point closures are reviewed. The Direct Interaction
Approximation (DIA) and related closures, and the Eddy-
Damped Quasi Normal Markovian (EDQNM) model are
briefly presented. Particular emphasis is given to the ap-
plication of closures to homogeneous anisotropic turbulence.
The relations between two-point closures and other types of
turbulence models, in particular subgrid models for Large-
Eddy Simulations, are briefly presented. Finally, the pos-
sible extensions of two-point models to inhomogeneous tur-
bulence are discussed and some representative results are
given.

INTRODUCTION

Two-point closures, also called spectral models or an-
alytical theories of turbulence, are statistical approaches.
They are based on ensemble averages and the Reynolds
decomposition. In this respect, they can be considered to
belong to what is nowadays referred to as RANS modeling
(for Reynolds Averaged Navier Stokes). One might further
categorize them as ”sophisticated” RANS models. On the
other hand, two-point closures can also claim the status
of ”theories” in the sense that at least some of them are
self-consistent approaches free of ad hoc parameters or em-
pirical constants that must be determined by comparing to
experiments!. They are based on the Navier Stokes equa-
tions and an acceptable number of reasonable assumptions.
They can be regarded as expansions about Gaussianity of
the probability density function of the velocity fluctuation
u;2(Kraichnan, 1977).

Two-point closures were proposed and applied in the late
50’s and in the 60’s (1970 for the EDQNM model). As far
as isotropic turbulence is concerned, most of the results of
closures were obtained in the 60’s or 70’s (see for example
Lesieur and Schertzer, 1978). From the theoretical point of
view, the LHDIA (Kraichnan, 1965) appears as the major
achievement in the closure strategy and the limitations of
closures are well identified : they fail to take internal inter-
mittency into account. It is the author’s belief that closures
have nevertheless contributed considerably, even recently, to
our understanding of anisotropic turbulence and of its inter-

1t is not the claim of the author that this statement should in
any sense be regarded as a definition of what could be considered
a real theory of turbulence, the existence of which can still be
debated

21t should be noted that Gaussianity is not mandatory and
that one could imagine closures derived as expansions about
other types of statistical distributions, although the author is
not aware of any such extensions of closures.

action with ”external” effects such as mean shear or solid
body rotation. The oral presentation will try to illustrate
this particular aspect of closures. The possible extensions of
two-point modelling to inhomogeneous turbulence will also
be discussed (see the last section of the present paper).

BASIC QUANTITIES AND EQUATIONS

One characteristic of two-point closures is that their pre-
cise formulation generally requires rather heavy and intricate
equations. It is beyond the scope of the present paper to
reproduce equations that can nowadays be found readily
in textbooks (Leslie, 1973), (Lesieur, 1990), (Mathieu and
Scott, 2000).

The basic object in the two-point description of turbu-
lence is the velocity correlation at two points @ and =

<ui(B)u; (@) > (1)

in which <> denotes an ensemble average.

In the case of single time closures like EDQNM (Orszag,
1970), the correlation involves only velocity fluctuations at
one time ¢, whereas for two-time theories such as DIA, the
correlation is defined at ¢ and ¢ :

<ui(@, s (@, ¢) > @)
In the case of homogeneous turbulence, the correlation

7-z

2

is a function of the separation vector 7 = only :

<ui (Tt (@, 1) >= fi; (7, 4,t) (3)

Fourier transformation of the two-point correlation leads
to the spectral tensor :

®;;(R,t,t') (4)

In the Direct Interaction Approximation (Kraichnan,
1959), a second important quantity is introduced : the re-
sponse function or propagator Gij(?,t,t’). It is defined as
the response du; at time t to a perturbation Jf; introduced
at t'. The closed set of equations is not reproduced here. It
is a set of integro-differential equations for ®;; and G;;.

It is known that the DIA equations are not invariant
under a random Galilean transformation, and that, as a
consequence, they do not predict the K—3/3 Kolmogorov
scaling for the turbulent kinetic energy spectrum in the iner-
tial range. They lead to a spurious K—3/2 spectrum instead.
It is beyond the scope of the present paper to go into the
details of the Lagrangian History version of the Direct Inter-
action Approximation (LHDIA), but it must be stressed that



recasting the theory in a properly Galilean invariant frame-
work led Kraichnan (1965) to propose a theory that has the
advantage of predicting both the K —5/3 inertial range and
an acceptable value of the associated Kolmogorov constant.
An alternative procedure was proposed by Kaneda (1981),
who introduced an auxiliary Lagrangian position function.

One-time two-point theories are simpler and require less
computational effort to be numerically integrated. They are
also less complete in the sense that they generally require the
specification a spectral time scale, or of a spectral damp-
ing term in the case of the Eddy Damped Quasi-Normal
Markovian model (EDQNM, Orszag, 1970). There are two
different ways to derive the EDQNM model. It can be pre-
sented as a simplification of a two-time DIA formalism in
which one simply assumes the two-time correlation to be
an exponentially decreasing function of the time separation
with a damping time scale compatible with the existence of
a Kolmogorov inertial range (see equation (11) below). It
can also be presented directly; by working with one-time
quantities only. In this case, the damping coefficient is in-
troduced as the inverse of a relaxation time for the triple
velocity correlation (Orszag 1970).

The equations of the EDQNM model are here recalled
in the case of isotropic turbulence where their formulation
remains simple. Isotropy leads to a description in terms of
the turbulent kinetic energy spectrum as a function of wave-
number alone:

1
E(K) = / ®;i(K)ds (5)
in which ¥ denotes integration over a spherical shell of ra-
dius K. E(K) is the well known turbulent kinetic energy
spectrum, which is governed by the Lin equation :

OE(K, 1)

ot

in which 7" is the non linear transfer term whose expression
depends on the closure. In the case of the EDQNM model,
T is given by

= —2v K? E(K,t) + T(K,1) (6)

3
T ) = [ 4 Oxre ™5 - E@ UK B,
—~P2E(K,t)} dPdQ

(7

in which the integral is over all the triads such as ?, P
and 6 can form a triangle. z, y and z are respectively
the cosines of the angles opposite to ?, and in this
triangle. 0k pq is the triadic time scale defined as :

1
V(K2 + P? + Q?) + n(K) + n(P) + n(Q)

The quantity n(K) is the damping coefficient. As stated
above, it is introduced as a damping of the triple correlation
in the direct derivation of EDQNM, whereas when deducing
EDQNM from DIA, it appears as the inverse of the time
scale associated with the two-time correlation ;

(8)

Oxkpq =

& (R, t,t') = & (K, t,t) exp(—n(K)(t —t'))  (9)

Compatibility of the model with a Kolmogorov inertial
range :
E(K) x /3K ~5/3 (10)

requires the scaling:

n(K) « e /3K?/3 (11)

Different formulations of n compatible with (11) in the
inertial range can be used, the prefactor (the only adjustable
constant in the model) being expressed as a function of the
Kolmogorov constant (by assuming that the energy flux in
the cascade must be equal to the turbulent dissipation).
Other two-point one-time closures exist. Among them, the
Test Field Model (TFM) has to be mentioned (Kraichnan,
1971). The TFM leads to the same expression for the
transfer term T'(K) than EDQNM (equation (7)). The two
models only differ in the specification of the coefficient 7(K)
which is less heuristic for the TFM.

Figure 1 shows an example of time evolution of the tur-
bulent kinetic energy spectrum in the case of homogeneous
isotropic turbulence. In this case the EDQNM closure is
used. It can be observed that a K ~5/3 inertial range devel-
ops in the spectrum.
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Figure 1: Turbulent kinetic energy spectrum for isotropic
turbulence. EDQNM model. Results plotted at different
times.
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Figure 2: Energy transfer and dissipation spectra at mod-
erate (top) and small (bottom) Reynolds number (isotropic
turbulence; EDQNM model).



Figure 2 shows the shape of the non linear transfer term
corresponding to expression (7), in the case of decaying
isotropic turbulence. Also plotted in the figure is the dissi-
pation spectrum 2vK2E(K). In the upper part of the figure,
it can be observed that at sufficiently high Reynolds number
(Rex = 330) there is a balance between transfer and dissipa-
tion at large wave-numbers. For a smaller Reynolds number
(Rey = 50), it can be observed that the transfer remains
smaller than the dissipative contribution. This Reynlods
number effect can be characterized by evaluating the ratio
between the energy flux £ in the cascade and the dissipa-
tion e. This ratio is plotted as a function of Re) in Figure
3.

CLOSURES FOR HOMOGENEOUS ANISOTROPIC TUR-
BULENCE

Homogeneous anisotropic turbulence is simple enough to
be treated using two-point closures. It is however much
richer than simple isotropic turbulence since interesting
practical effects, like turbulence production by mean shear,
can be studied. Homogeneous anisotropic turbulence might
well be the situation in which two-point closures have re-
vealed the most useful results. It must be pointed out that
Rapid Distortion Theory (RDT) can be considered as the
simplest two-point closure, in which the unknown non lin-
ear terms are modeled simply by replacing them by zero.
Indeed, in the particular case of isotropic turbulence, RDT
leads to a trivial model in which the turbulent kinetic energy
will simply remain constant and turbulence will never decay
in time (or will decay at an unrealistic viscous rate). Once
one considers turbulence in the presence of a mean veloc-
ity gradient, the situation is drastically different and RDT
is known to lead to valuable insights on the interaction of
turbulence with the mean flow. It also provides interesting
information on terms that must be modeled at the level of
a single point description, like the rapid part of the pressure
strain correlation.
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Figure 3: Ratio of the energy flux to the turbulent dissipa-
tion as a function of the Reynolds number.

More realistic closures, such as EDQNM, combine the ad-
vantage of exactly accounting for the rapid terms, as RDT
does, with taking into account the non linear transfer of en-
ergy to the small scales (and the associated slow part of the
pressure strain term) in a modeled but quite realistic way.
Since the energy transfer is present in the theory, there is
no need to introduce an arbitrary € equation as in one-point
models. The advantage of two-point closures is clear : once
the triple correlations are modeled, no other assumptions
have to be made. One could say that the closure problem is
then well formulated, in the sense that the only assumptions

required pertain to the triple correlations.

The first attempts to extend the EDQNM two-point clo-
sure to turbulence in the presence of a mean shear were made
by Cambon et al (1981) and Bertoglio (1981). Later, the
EDQNM closure was revealed to be very helpful in the pre-
diction and understanding of homogeneous turbulence sub-
jected to solid body rotation (Cambon and Jacquin, 1989)
and stable stratification (Staquet and Godeferd, 1998). In
both cases, the dynamics of the flow is characterized by the
interaction between waves and the turbulent motion. An-
other situation in which waves are present that was studied
using EDQNM (Bertoglio et al., 2001) (or a modified ver-
sion of EDQNM, Fauchet et al., 1999) is the case of weakly
compressible turbulence. It has to be pointed out that when
waves are present, the EDQNM model shows strong simi-
larities with weak turbulence theories (see Zakharov et al,
1992).

REYNOLDS NUMBER EFFECTS : CLOSURES AND SCAL-
INGS

When closures were first proposed and applied, in the
50’s and 60’s, there was no alternative to predict the details
of the behavior of turbulence, and in particular of the tur-
bulent spectrum. Obviously the situation has drastically
changed, and today most of the situations to which clo-
sures can be applied (homogeneous turbulence for example)
can very easily be treated with Direct Numerical Simula-
tion. Coding the equations requires less effort for the Navier
Stokes equation than for the integro-differential set of equa-
tions resulting from theories like DIA, and the results can
also be considered free of any uncertainty since no approx-
imations are made. The interest of closures nowadays is
related to the fact that they can be applied to high Reynolds
number turbulence which is not the case for DNS. The strat-
egy is then to apply a closure to a given situation, validate
the results of the closure at small or moderate Reynolds
numbers by comparisons with DNS, and then use the clo-
sure to explore the high Reynolds number domain.

One has also to mention that closure can be helpful in
suggesting the relevant parameters on which to build theo-
retical scaling. Often, the analytical formulations of closures
naturally provide a route to identifying the relevant param-
eters.

An example of comparison of closure with DNS is given
in Figure 4 in which the equivalent of the Ces parameter in
the € equation. It is seen that the agreement with DNS is
satisfactory at small Rey and that the closure accounts for
the Reynolds number effects.

Figure 5 illustrates another case of comparisons between
closures and DNS (and in this case LES results are also
plotted). In this case, the decay of isotropic turbulence in
a bounded domain is investigated (Touil et al. 2002). The
turbulent kinetic energy first decay with a classical (n =
—10/7) exponent, until the integral length scale reaches the
size of the domain (the length scale saturation in the Helium
experiment of Skrbek and Stalp (2000)). Later, the decay
exponent is found to be -2. The symbols in the plot are DNS
and LES data, and the solid line represents the EDQNM
computation. It appears that the observed behaviors are
in agreement. It also appears that the closure permits to
explore a much larger range of parameters than the DNS
(and even than LES).
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Figure 4: Variation of C.2 with the Reynolds number.
EDQNM predictions compared to DNS data.
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Figure 5: Decay of turbulence in a bounded domain. Ex-
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(EDQNM).

CLOSURES AND SUBGRID MODELS FOR LES

Since two-point closures reproduce the cascade of energy
to the small scale dissipative range of the spectrum that is
missing in Large-Eddy Simulations, they were among the
first tools used to model the subgrid terms. Kraichnan
(1976) was the first to derive a subgrid model based on a
two-point closure and to propose an expression for a subgrid
eddy viscosity. Further investigations of the subgrid prob-
lem based on two-point closures were performed by Leslie
and Quarini (1979). The most popular subgrid model de-
duced from a closure is certainly that of Chollet and Lesieur
(1981), in which the subgrid viscosity is expressed as a func-
tion of the energy spectrum at the filter cut-off wave-number
Ko :

E(KC))1/2

v = Ko

(12)
in which C is a constant (C = 0.267). The EDQNM closure
shows that v; is indeed a function of the wave-number :

ve = v f(K/Kc) (13)

but that f is approximatively constant and equal to unity
over a large range of wave-numbers (”plateau”). Only in the
vicinity of the cut-off does f increase (”cusp” effect).

When applied to subgrid modelling, two-point theories
also suggest the presence of ”backscatter” from small scales
to large scales. Using a stochastic model for EDQNM,
Bertoglio (1984) proposed modeling the subgrid backscat-
ter by adding a random force term to the classical subgrid
viscosity term (see also Chasnov, 1991). A formulation in
physical space for the subgrid backscatter was later derived
by Leith (1990).

TWO-POINT MODELING AND INHOMOGENEOUS TUR-
BULENCE

There is no theoretical difficulty in extending two-point
closures to non homogeneous turbulence. Indeed, the two-
point closure formulations were written for inhomogeneous
fields several decades ago (see for example Kraichnan, 1972
in the case of the Test Field Model), but due to the com-
plexity of the resulting set of equations they could hardly be
used directly or numerically integrated. Only a few attempts
have to be mentioned (see for example Dannevik 1984, in the
particular case of axisymmetric turbulence with only one di-
rection of inhomogeneity). The major difficulty originates
from the fact that relation (3) is no longer valid for inho-
mogeneous turbulence and that the two-point correlation,
instead of being a function of the separation vector only, re-
mains a function of two vectors 7 and a position vector,

for example the midpoint position vector X = 7% Af-
ter Fourier transformation with respect to 7, the spectral
tensor is then

®;; = ®;;(K,X) (14)

showing that one has to work with a tensor in a space whose
dimension is 6 (7 for a time evolving problem and even 8 for
a two-time description of a time evolving problem).

When a weak inhomogeneity assumption is introduced,
the equations can be simplified. This is the route followed by
several authors (Burden 1991, Laporta 1995). An alterna-
tive is to introduce a two scale expansion (Yoshizawa 1990)
(Rubinstein and Erlebacher, 1997). This type of approach
usually introduces very few new adjustable parameters, but
generally can be applied only to rather simple situations. For
example, in the model of Laporta (1995), only the classical
EDQNM constant for isotropic turbulence is involved and
the model could reproduced the time evolution of a shearless
turbulence mixing layer (corresponding to the experiment of
Veeravalli and Warhaft 1989). Another example of the ap-
plication of the model of Laporta is described in Parpais et
al. (1995), where the model is applied to diffusive turbulence
generated by oscillating a grid in a tank (see the sketch in
Figure 6). The model leads to a power law decay of the tur-
bulent kinetic energy as a function of the distance from the
grid with an exponent close to -3, as appears in Figure 7, in
agreement with DNS data.

When considering applications to more complex geome-
tries, one can hardly imagine that they could be treated
without having to introduce more drastic simplifying as-
sumptions. This is the route followed by Besnard et al (1990)
or Parpais (1997) and Touil (2002). In both the model of
Besnard et al. and the model of Touil, the basic quantity
is the spectral tensor integrated over the directions of the
wave-vector :

0ij (K, X) = /cbij(?,?)dz (15)

in which ¥ is the spherical shell of radius K (see also Cambon
et al. 1981). There is a price to pay for this simplification :
the pressure velocity correlation term becomes an unknown
term requiring modeling, as in the classical one point ap-
proach.

The transport of turbulent kinetic energy by triple corre-
lations in this type of simplified approach is usually treated
heuristically by a diffusive modeled form. After all of these
simplifications, the resulting models can hardly be called
two-point closures. For example, the model of Touil (2002)
shares many assumptions with the Launder Reece and Rodi



Figure 6: Scheme of a diffusive turbulence experiment - tur-
bulence generated by oscillating a grid in a tank.
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Figure 7: Spatial decay of the turbulent kinetic energy as
a function of the distance from the grid. Results of the
EDQNM model of Laporta (1995) compared with decay
power laws.

(1975) type of one point model. However, it must be pointed
out that for isotropic turbulence, the model is identical to
the EDQNM closure. An example of the application of the
model of Touil is given in Figures 6 and 7. In this case
the flow around an airfoil at an angle of attack of 13 de-
grees is computed. At each point of the physical domain,
the transport equation for ¢;; is solved. In Figure 7 the en-
ergy spectra are plotted along a mean streamline that passes
near the airfoil and goes downstream in the wake. In Fig-
ure 6, the ratio between the spectral energy flux € and the
turbulent dissipation ¢ is plotted. It must be stressed that
when applied to inhomogeneous turbulence, the two-point
correlation approach could also be used without Fourier
transformation, directly in the physical space. This is the
route followed by Oberlack (1997).
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