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Abstract. In this paper, a numerical simulation based on a tensorial elastoviscoplastic model is compared
to experimental measurements on liquid foams for a bidimensional Couette flow, both in stationary and
transient cases. The main features of of the model are elasticity up to a plastic yield stress and viscoelasticity
above. The numerical modelling bases on a small set of standard material parameters that could be fully
characterised. Shear localisation as well as fine transient observations are reproduced and are found to
be in good agreement with experimental measurements. The effect of the friction of plates is taken into
account. The plasticity appears to be the fundamental mechanism of the localisation of the flow. Finally,
the present approach could be extended from liquid foams to similar materials such as emulsions, colloids
or wet granular materials, that exhibits localisations.

PACS. 47.57.Bc Foams and emulsions – 83.60.La Viscoplasticity; yield stress – 83.60.Df Nonlinear vis-
coelasticity – 02.60.Cb Numerical simulation; solution of equations – 07.05.Tp Computer modelling and
simulation

Introduction

The bidimensional Couette flow of a foam has been widely
studied, from experimental, theoretical and numerical
point of view. Many studies focus on the velocity pro-
file that could localise near the moving walls [1–3]: the
measurements exhibits the coexistence between a flowing
state and a solid state, similar to that observed for bi- or
tridimensional shear flows of emulsions [4], colloids [5] or
wet granular materials [6–9].

Most of these studies reveal either a continuous [6–8,1] or
discontinuous [4,5,2] transition between the flowing and
solid state. These differences haven’t been understood yet
and continue to excite debate [2,10]. A scalar elastovis-
coplastic model including viscous drag was presented [11,
12]; it successfully reproduced the exponential decay of
velocity that was observed in the bidimensional plane [10]
and cylindrical [1] Couette flow of a foam between two
glass plates. In both cases, the localisation was interpreted
as the competition between the internal viscosity of the
foam and the external friction from the glass plates. Re-
cently, the data presented in [1] were re-analysed in [13]
and, in addition to the velocity field, two tensorial infor-
mations were extracted both in stationary and transient
regimes: the statistical elastic strain tensor and the plastic
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rearrangements rate tensor which measures the plasticity.
Up to now, these measurements haven’t been compared
to a numerical model.

The aim of this paper is to compare the measurements
on a bidimensional Couette flow of a liquid foam between
two glass plates presented in [1,13] with the present nu-
merical simulations based on a recent general tensorial and
tridimensional elastoviscoplastic model [14] that combines
viscoelasticity and viscoplasticity in the same framework.
This model, which obeys by construction to the second
principle of thermodynamics, leads to numerically stable
equations and robust resolution algorithms. It is general
enough to apply to both bi- and tridimensional geome-
tries and to several materials. Here, it is applied to bidi-
mensional foams using three parameters found in the lit-
erature (with only minor adjustments) and find a good
agreement with the published experiments. This implies
we can also use it to predict flows in several geometries
and conditions, including transient, steady and oscillatory
flows, even if no experiment is available.

The bidimensional Couette flow experimental set-up is
briefly recalled in the first section. The second section
presents the numerical modelling. The numerical results
are then analysed and compared with data measurements
in the third section for the transient case and in the fourth
section for the stationary case. Finally, the last section ex-
plores the mechanism of localisation.
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1 Presentation of the experimental set-up
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Fig. 1. Experimental set-up: (a) definition of the geometrical
and kinematic parameters ; (b) picture of the confined bidi-
mensional liquid foam (from [1]).

The experimental set-up is represented on Fig. 1. It
consists of an inner shearing wheel of radius r0 and an
outer fixed one of radius re. Let ∆r = re−r0 denote the
cylinder gap. The cylinder boundaries are tooth shaped
and there is no slip. The liquid fraction of the foam is
5.2% and the bubble size is of the order 2 mm. The foam
is confined between two transparent glass plates sepa-
rated by an interval h=2 mm. The inner wheel rotates
at V =0.25 mm · s−1.

Two experimental runs are available:
• Run 1 is related to the transient case and mea-
surements are available in [13]. The internal radius is
r0 =71 mm and the external radius is re =112 mm. To
prepare the foam, the inner disk is rotated counterclock-
wise, until a stationary regime is reached; then, at an ar-
bitrary time chosen as the origin (t = 0), the shear di-
rection is switched to clockwise, the experiment begins
and measurements are made using image analysis. In [13],
the measured quantities are averaged over eight equi-
spaced orthoradial circular boxes corresponding to posi-
tions rj = r0 + 1.7 10−3 × (0.4 + 2.7 × (j − 0.5)) for j =1
to 8.
• Run 2 focuses on the stationary case and measure-
ments are presented in [1,13,15]. The internal radius is
r0=71 mm, as for the previous run, and the external ra-
dius is re=122 mm, which differs from the previous run.
The preparatory rotation is clockwise. Then, at an arbi-
trary time, it is switched to counterclockwise. Pictures are
recorded only after a full 2π turn.

2 The numerical modelling

The strain tensor ǫ is supposed to split into two contribu-
tions:

ǫ = ǫ
(p) + ǫ

(e), (1)

where ǫ
(p) and ǫ

(e) denote respectively the plastic and the
elastic strain tensors. The model considered in this pa-
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Fig. 2. The elastoviscoplastic model.

per is presented on Fig. 2. The total Cauchy stress tensor
writes:

σ = −p.I + τ ,

where p is the pressure, I is the identity tensor in two
dimensions, τ = 2µǫ

(e) is the elastic stress tensor, and µ
is the elastic modulus of the foam. When the stress is lower
than a yield value, the material behaves as an elastic solid:
the plastic strain ǫ

(p) is equal to zero and the stress is 2µǫ.
Otherwise, the foam is supposed to behaves as a Maxwell
viscoelastic fluid with a relaxation time λ = η/µ, where
η is the viscosity. This model is a simplified version of
the model introduced in [14]: the second solvent viscosity
of the original model is here taken to zero. This choice
is coherent with experimental observations [13,3]: at slow
rates of strain, when no plasticity occurs, the foam behaves
as a solid elastic body while the model considered in [14]
describes a more general Kelvin-Voigt viscoelastic solid.
This choice in the modelling is also justified a posteriori
in the present paper by comparisons between numerical
simulations and experimental measurements. The tensor
τ satisfies the following nonlinear differential constitutive
equation:

λ
Dτ

Dt
+ max

(

0, 1 − τY

|τ d|

)

τ = 2ηD(v), (2)

where v is the velocity field, D(v) = (∇v + ∇vT )/2 is
the rate of strain tensor and τY > 0 is the yield stress
constant. We denotes also τ d = τ − (1/2) tr(τ ) I the de-
viatoric part of τ and |τ d| its matrix norm. The upper
convected derivative of tensors writes :

Dτ

Dt
=

∂τ

∂t
+ (v.∇)τ − τ ∇vT −∇v τ

The problem is completed by the conservation of momen-
tum:

ρ

(

∂v

∂t
+ v.∇v

)

− divσ = −β

h
v, (3)

where ρ denotes the constant density. The right-hand side
expresses the external force due to the friction of the
plates: β ≥ 0 is a friction coefficient and h the distance
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between the two plates. Following [11], a linear friction
model is assumed. Finally, since the density is supposed
to be constant, the mass conservation reduces to :

divv = 0. (4)

The three unknowns of the problem are (τ ,v, p) and the
corresponding equations are (2), (3) and (4). The problem
is closed by some boundary conditions for v at r = r0 and
re for any t > 0 and some initial conditions for τ and v. In
the bidimensional polar coordinate system (r, θ), the solu-
tion is assumed to be independent of θ: the radial compo-
nent velocity vr is zero and vθ is simply written as v. The
problem reduces to a time-dependant one-dimensional sys-
tem of partial derivative equation with four unknowns v,
τrr, τrθ, τθθ that depend upon t and r. The problem is
then solved using an operator splitting algorithm and a
finite element method that are similar to those used for
viscoelastic fluid flow problems [16]. The details of the
numerical algorithms will be detailed in a separate paper.

In order to perform computations and compare it to the
experimental data, in addition to the numerical values of
the kinematic and geometric parameters (V, ∆r, h) of the
experimental set-up, the quantification of the material pa-
rameters (µ, η, τY , β) of the model is also required. Let
∆r, V , ∆r/V and ηV/∆r be respectively the characteris-
tic length, velocity, time and stress. The problem involves
only three dimensionless numbers, the Bingham, the Weis-
senberg and a friction numbers, defined by:

Bi =
τY ∆r

η V
, We =

η V

µ∆r
and CF =

β∆r2

ηh
(5)

Notice that this choice of dimensionless numbers cor-
responds to a description of the foam as a fluid: the
characteristic stress is a viscous stress. An alternative
choice would be to choose the elastic modulus µ as
the characteristic stress in order to emphasise the
solid-like behaviour of the foam; the corresponding
dimensionless numbers would be the yield deformation

ε
(e)
Y = Bi We = τY

µ instead of the Bingham number,

the ratio βV ∆r

µh = CF We of the friction of the plates

with the elastic modulus instead of CF , and the same
Weissenberg number. However, with this choice, we
cannot reach the viscoplastic limit. Thus, the first choice
(Bi, We, CF ) is more general and we will present the
numerical results as a function of these parameters.
From [15], the bidimensional elastic modulus in N · m−1

expresses µ̄=µ/h ≈ 2 10−2. The estimation of the elastic
modulus µ in N · m−2 is µ ≈ 10 N · m−2. From [3] the
relaxation time λ=η/µ of the foam on this experiment
should be of the order of 1 s and then η ≈ 10 Pois. The

dimensionless quantity ǫ
(e)
Y is evaluated from the experi-

ments as the maximal value of
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
and then ǫ

(e)
Y ≈ 0.26.

It should be pointed out that, in the model, ǫ
(e)
Y is the

value of
∣

∣ǫ
(e)

∣

∣ at which plasticity occurs and thus
∣

∣

∣
ǫ
(e)
d

∣

∣

∣

can exceed ǫ
(e)
Y . Thus τY ≈ 5.2 N · m−2. Also from [15],

the friction force at the plates is estimated in N · m−2

for any velocity v as f =31 v0.64. Since the maximum
value of the velocity is V =0.25 mm/s, the maximum

value of the friction force is 31 ×
(

0.25 · 10−3
)0.64

.
Following [11], a linear friction model is assumed:

f̃ =βv/h, where β is chosen such that the maximal value
of the friction is the same with the two expressions:

β ≈ 31 ×
(

0.25 · 10−3
)0.64

/(0.25 · 10−3)=613 Pois · m−1.
After a first computation based on this set of parameters,
a little adjustment was necessary to compare better with
the experimental data. The following set of parameters
leads to a good agreement of the model with both tran-
sient and stationary cases: µ=10.9 N ·m−2, η=13.1 Pois,
τY = 5.47. β = 613 Pois · m−1. All the comparisons
between numerical computations and experimental
measurements presented in this paper are performed
with this set of parameters. This adjustment leads to
the set of dimensionless numbers presented in Table 1,
as defined in (5). Since the nonlinear inertia term v.∇v

run Bi We CF

1. transient 68.3 7.31 × 10−3 39.2

2. stationary 85.0 5.88 × 10−3 60.7

Table 1. The choice of dimensionless numbers as defined
in (5). The material parameters of the foam are identical. Since
the cylinder gap differs between the two runs, the dimension-
less numbers are slightly different between the two runs.

in (3) vanishes for simple shear flows such as the Couette
flow, the Reynolds number Re = ρV ∆r/η ≈ 5 × 10−5 has
a negligible influence on the transient problem and no
influence on the stationary one. Thus, Re is taken as zero
for the simulations. For the comparison with experiments,
the results at time t and radius r is be expressed in a
dimensionless form, respectively, as the total applied
shear γ =V t/∆r and as the distance to the inner cylinder
normalised by the size of the gap (r − r0)/∆r.

3 The transient flow simulation

The transient numerical simulation is performed in the
following way: first, the simulation is done with the foam
initially at the rest and, for t > 0, with v(r0) = V
and v(re) = 0. When a stationary regime is reached,
the boundary conditions are changed to v(r0) = −V and
v(re) = 0 and computations are stored at each time.

Fig. 3.a plots the velocity profile versus r at different
fixed times. Conversely, the velocity is represented on
Fig. 3.b versus the times at different fixed radius, from
r = r1 to r8. At the beginning of the transient, when
γ = 0.01, the shear direction has just switched and the
velocity profile is roughly exponential. After a short tran-
sition, 0 ≤ γ ≤ 0.1, the velocity profile becomes quasi lin-
ear up to γ ≈ 0.3. Then, at γ =0.3 and r=r1, i.e. near the
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Fig. 3. Transient case: (a) velocity profile versus r at different times ; (b) velocity profile versus t for r = r1 to r8.

moving disk, it starts to decrease rather abruptly. Far from
the moving disk, the decrease starts later, at γ =0.35. At
γ =1, the foam has reached a stationary regime in which
the flow is strongly localised near the moving disk.

Fig 4 shows the cross component of ǫ
(e)
rθ =τrθ/(2µ) versus

time at fixed radius r = r1 to r8. After a short transition

of about 0.05, ǫ
(e)
rθ reaches a first regime where it varies

linearly (0.05 ≤ γ ≤ 0.3 for r = r1 and 0.2 ≤ γ ≤ 0.4 for
r = r8). Notices that the dimensionless time γ interprets
also as the applied strain. Thus, the stress τ depends lin-
early upon γ i.e. the material behaves as an elastic solid
in this regime. Then, after a second transition, the flow
reaches a second regime that is the stationary one. For a
fixed radius r, the characteristic value of γ associated to
this second transition is denoted by γc(r). It is defined by
the intersection between the first linear regimes and the
second asymptotic one, as shown in the inset of Fig. 4.

Then, γc is represented versus the radius and compared
to experimental data from [13] on Fig. 5.a. Remarks that
all the values predicted by the numerical modelling are in
the error margin of the experiment. Both for the exper-
iment and the numerical simulation, the value of γc in-
creases gradually with r and this variation is linear. A lin-

ear regression procedure leads to γc(r) ≈ α r−r0

∆r + γ
(0)
c

with α=0.49. Here, γ
(0)
c is associated to the first transition

regime and depends upon the initial conditions. Recall
that when the slope α is not vanishing, the region close
to the moving disk saturates earlier than the region far
from it. Let us study how the slope α is influenced by the
values of the parameters. As the foam behaves like an elas-
tic solid during transient, we find more adequate to study
this dependency with respect to (Bi We, CF We, We) as
has been already discussed in section 2. On the one hand,
when either Bi varies in the range [0 : 137] or We in the

increasing r

r = r2

r = r1

ǫ
(e)
Y = 0.25

˛

˛

˛
ǫ
(e)
d

˛

˛

˛

γ =
V t

∆r

0.70.60.50.40.30.20.10

0.30

0.20

0.10

0

Fig. 6. Transient case:
˛

˛

˛
ǫ
(e)
d

˛

˛

˛
versus t for different values of r

from r=r1 to r8.

range [0 : 0.25] and the product CF We = 0.287 is main-
tained constant, the relative variation of α is less than 6%.
On the other hand, when both Bi and We are fixed as in
Table (1), and only the product CF We alone varies from
0 to 0.6 then the slope varies linearly as α = 1.42 CF We,
as shown on Fig. 5.b. Clearly, the slope α is governed by
the product CF We = βV ∆r

µh : it is proportional to the drag

coefficient β and inversely proportional to the elastic mod-
ulus µ. Finally:

γc(r) ≈ 1.42 CF We

(

r − r0

∆r

)

+ γ(0)
c
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(e)
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the cross-over γc between the transient and the stationary regimes, defined by the intersection of the asymptotic value of ǫ
(e)
rθ

and the linear regression of ǫ
(e)
rθ in the first regime.

Fig. 6 plots the norm of the deviatoric part of the elastic
strain tensor

∣

∣

∣
ǫ
(e)
d

∣

∣

∣
=

(

2
(

ǫ
(e)
rθ

)2

+
1

2

(

ǫ(e)rr − ǫ
(e)
θθ

)2
)

1

2

.

Recall that ǫ
(e) = τ/(2µ) and that the plasticity occurs

when |τ d| ≥ τY . Thus the plasticity occurs when
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
is

above ǫ
(e)
Y = τY /(2µ) = Bi We/2 = 0.25. Fig. 6 shows

that is situation appears only close to the moving cylin-
der, for r = r1, and only for small times, during the first
transition regime, and for large time, during the station-

ary regime. At initial time,
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
is above ǫ

(e)
Y near the

moving disk. As the disk moves, the velocity and its gra-

dient change of sign and
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
decreases rapidly until

∣

∣

∣
ǫ
(e)
d

∣

∣

∣
< ǫ

(e)
Y everywhere in the foam. Therefore there is

no plasticity in the foam and the constitutive equation

writes also:
Dǫ

(e)

Dt
= D(v). This relation expresses that

all the velocity gradient is loaded into ǫ
(e). The foam be-

haves like an elastic body and ǫ
(e)
rθ increases linearly with

the applied strain γ. Because of the cylindric geometry
and the friction of the plates, ǫ

(e) is higher near the inner

moving disk. When
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
reaches ǫ

(e)
Y near the inner disk,

plasticity occurs and the foam starts to flow. Then ǫ
(e)

saturates everywhere in the gap even though it is above
the yield deformation only in a region near the moving
disk. Inside this region, the foam is flowing while outside,
there is no flow and the foam is at the rest.

Let us summarise the situation for the transient case.
After a brief transition, the material behaves as an elas-
tic solid: there is no plasticity yet and the velocity profile
is quasi linear. The deformation saturates first near the
moving disk, and then gradually throughout the gap. The
friction of the plates is responsible for this gradual satu-
ration. Finally, after this second transition, the stationary
regime is reached: the material is flowing and the flow is
strongly localised near the moving disk.

4 The stationary flow simulation

The stationary numerical simulation is performed in the
following way: at t = 0, the foam is at rest, all variables
are set to zero. For t > 0 the inner cylinder moves and
the boundary conditions are v(r0)=V and v(re)=0. The
computation is performed until the stationary regime is
reached.

Fig. 7.a compares the numerical results to measurements
made in [1]. The velocity is strongly localised near the
moving disk, as it was already observed in the transient
case on Fig. 3.b. Both the computed and the experimen-
tal velocities have the same initial slope, but the transition
to zero is more abrupt in the case of the numerical res-
olution. Let us denote rc the radius where the velocity
drops to zero. The computation gives rc =77.6 mm while
rc =84.0 mm for the experimental data. The rc prediction
error is of about 12 % of the gap size.
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Fig. 7.b represent the total shear strain rate ǫ̇rθ. How-
ever, the computed rate of strain exhibits an interesting
feature: it strongly localised near the moving disk and also
discontinuous at the transition between the flowing state
at the jammed state. There is no experimental data avail-
able for the comparison.

Finally, the stationary elastic strain ǫ
(e) is compared to

experimental measurements from [17] for both the shear

component ǫ
(e)
rθ (Fig. 8.a) and the difference of normal

components ǫ
(e)
rr − ǫ

(e)
θθ (Fig. 8.b). The computed ǫ

(e)
rθ is

slightly overestimated. Nevertheless, it presents qualita-
tively the same behaviour as the experimental one: it does
not localise near the moving disk and it varies smoothly
with r. The computed difference of the normal compo-

nents ǫ
(e)
rr − ǫ

(e)
θθ presents a discontinuity at the point at

r = rc, where the computed velocity and plasticity drop
to zero. The sign of the experimental data changes in the
middle of the gap. Experimental data could display mea-
surement artefacts [13], but anyway it is not surprising
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that the two data sets could not be compared quantita-

tively: since ǫ
(e)
rr − ǫ

(e)
θθ is not so geometrically constrained

as is ǫ
(e)
rθ , this quantity depends on the initial condi-

tions, especially in the unshaked solid region. Actually
anisotropic trapped elasticity may be initially present in
the experimental setup [18], which is not considered in the
model.

Compared to experimental measurements, the computed
data exhibit a rather discontinuous transition from flowing
to jammed behaviour, in particular a discontinuity in the
rate of strain and in the difference of the normal stress
components. The origin of this abrupt predicted behaviour
is also not yet clearly elucidated. We recall that such an
abrupt transition has been observed on bubble rafts [2]
and various experimental systems [4,5]. This problem will
be addressed in future works.

5 The mechanism of localisation

In order to probe the effect of the friction of the plates
on the localisation in the stationary regime, a station-
ary numerical resolution with both Bi = 85.0 and We =
5.88× 10−3 unchanged, and CF set to zero, is performed.
The result is compared on Fig. 9.a to the numerical solu-
tion with the reference set of parameters CF = 60.7 from
Table (1). Observe that the velocity profile is almost the
same: the friction of the plates doesn’t seem to be respon-
sible of the localisation in this experiment. The depen-
dence of the localisation point rc upon We was found to
be negligible. More precisely, for any fixed value of Bi in
the range [0 : 153], the variation of rc/∆r upon We in the
range [0 : 1.96 × 10−2] was found to be less than 3%. Thus,

the localisation point rc could be approximated by using
the Bingham model. Fig. 9.b plots the localisation point
versus Bi for the Bingham model (We=CF =0). Observe
that rc − r0 behaves as Bi−1/2. An explicit computation
for the Couette flow of a Bingham fluid (see e.g. [19] or [20,
p. 241]) expresses the ratio rc/r0 as the solution of:

(

rc

r0

)2

− 2 ln

(

rc

r0

)

= 1 + 2
√

2

(

∆r

r0

)

Bi−1

A Taylor expansion for small rc − r0 leads to:

rc − r0

∆r
≈ 21/4

( r0

∆r

)1/2

Bi−1/2. (6)

This explicit approximate formulæ is of practical interest
for the prediction on the localisation point, as shown on
Fig. 9.b.

In [10], the authors shear a bubble raft in a plane Cou-
ette geometry and see no localisation at all. Adding a
plate on the top, a localisation is observed. The authors
conclude that the plate is responsible for the localisation.
This result seems to be in contradiction with the previous
conclusion, where the friction was found to have a mi-
nor influence on the localisation. However, the geometry
is not the same. We performed the numerical resolution
of our model in the case of a plane Couette flow in order
to check if our model was able to reproduce the behaviour
observed in [10]. A gap width of 40 mm and a moving
boundary with a velocity of 0.25 mm/s were used for the
numerical resolution, so that we have geometrical param-
eters similar to [10]. The dimensionless numbers Bi = 85
and We = 5.88 × 10−3 are fixed and only CF is varying.
Fig. 10 shows the results for of CF =0, 6.07 and 60.7. For
CF = 0, all the foam is flowing and the velocity profile is
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Fig. 9. Stationary case: (a) velocity profile for Bi=85, We=5.88× 10−3 and both CF =0 (solid curve) and CF =60.7 (dashed
curve). (b) Localisation point vs Bi for the stationary Bingham fluid (We = CF = 0): points 2 are obtained by an exact
computation while the solid line represents the approximate formulae (6).
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Fig. 10. Stationary plane Couette case with Bi=85, We=5.88× 10−3 and CF varying: (a) velocity profile ; (b)
˛
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(e)
d

˛

˛

˛
.

linear (Fig. 10.a) while
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
is constant and above ǫ

(e)
Y

(Fig. 10.b). For CF =6.07, all the foam is flowing but the

velocity profile is no more linear while
∣

∣

∣
ǫ
(e)
d

∣

∣

∣
is non uni-

form but above ǫ
(e)
Y throughout the gap. For CF = 60.7,

the velocity is localised in the 42 % left region of the gap

while |ǫ(e)d | is not uniform: it is above ǫ
(e)
Y in the region

adjacent to the moving plane and under ǫ
(e)
Y otherwise.

As a main conclusion of this paragraph, we do not explain
the localisation by the competition between an internal
viscosity and an external friction as in [12], but rather by
the non uniform stress and the simple picture that part
of the system is above the yield stress and part of the
system is below the yield stress. In the case of the plane

Couette flow, the friction of the plates is responsible for
the non uniform stress, whereas in the case of the cylin-
drical Couette flow, it is mostly the geometry. In addition,
in this case, the localisation position is mainly governed
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by the Bingham number while both the friction and the
Weissenberg number have only a minor influence.

Conclusion

For the first time, comparisons between an elastoviscoplas-
tic model and measurements both in stationary and tran-
sient cases are performed and found to be in good agree-
ment. The direct numerical resolution allows a full com-
parison with all available data from measurement. The
comparison was performed with only one set of material
parameters: it confirms the predictive character of the pro-
posed model. This model is fully parametrised by only
three standard dimensionless numbers. These numbers de-
pend on a limited set of material parameters that could
be quantified by some measurements.

The transition to the shear banding was analysed both
in the transient and stationary cases: an elastic behaviour
during the transient flow is exhibited. The effect of the
friction of plates on the propagation of the plastic rear-
rangements throughout the gap is also analysed in de-
tails. In the stationary case, a non uniform stress through-
out the gap leads to a flowing part above the yield stress
and a jammed part under the yield stress. It appears to
be the fundamental mechanism for the localisation of the
flow. The mechanism of localisation is analysed with de-
tails from two points of view: the effect of friction on the
plates and the plasticity. Finally, the plasticity appears to
be the fundamental mechanism of the localisation of the
flow.

In the future, we plan to compare the numerical resolu-
tion of our model with more complex liquid foam flows
like Stokes flows and flows around an obstacle [21,22]. We
will also try to have a better understanding of the abrupt
jamming transition. Finally, we point out the fact that
our approach is not specific to liquid foams: it could well
describe emulsions, colloids or wet granular materials that
are known to develop a similar behaviour.
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