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INTRODUCTION

With the advent of computing technology and numerical methods, investigation of computer code experiments remains an important challenge. Complex computer models calculate several output values (scalars or functions) which can depend on a high number of input parameters and physical variables. These computer models are used to make simulations as well as predictions or sensitivity studies. Importance measures of each uncertain input variable on the response variability provide guidance to a better understanding of the modeling in order to reduce the response uncertainties most effectively (Saltelli et al. (2000), [START_REF] Kleijnen | Sensitivity analysis and related analyses: a review of some statistical techniques[END_REF], [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF]).

However, complex computer codes are often too time expensive to be directly used to conduct uncertainty propagation studies or global sensitivity analysis based on Monte Carlo methods. To avoid the problem of huge calculation time, it can be useful to replace the complex computer code by a mathematical approximation, called a response surface or a surrogate model or also a metamodel. The response surface method [START_REF] Box | Empirical model building and response surfaces[END_REF]) consists in constructing a function that simulates the behavior of real phenomena in the variation range of the influential parameters, starting from a certain number of experiments. Similarly to this theory, some methods have been developed to build surrogates for long running computer codes [START_REF] Sacks | Design and analysis of computer experiments[END_REF], [START_REF] Osio | An engineering design methodology with multistage bayesian surrogates and optimal sampling[END_REF], [START_REF] Kleijnen | A methodology for fitting and validating metamodels in simulation[END_REF], [START_REF] Fang | Design and modeling for computer experiments[END_REF]). Several metamodels are classically used: polynomials, splines, generalized linear models, or learning statistical models such as neural networks, support vector machines, . . . [START_REF] Hastie | The elements of statistical learning[END_REF], [START_REF] Fang | Design and modeling for computer experiments[END_REF]).

For sensitivity analysis and uncertainty propagation, it would be useful to obtain an analytic predictor formula for a metamodel. Indeed, an analytical formula often allows the direct calculation of sensitivity indices or output uncertainties. Moreover, engineers and physicists prefer interpretable models that give some understanding of the simulated physical phenomena and parameter interactions. Some metamodels, such as polynomials [START_REF] Jourdan | Response surface designs for scenario mangement and uncertainty quantification in reservoir production[END_REF], [START_REF] Kleijnen | An overview of the design and analysis of simulation experiments for sensitivity analysis[END_REF], [START_REF] Iooss | Response surfaces and sensitivity analyses for an environmental model of dose calculations[END_REF]), are easily interpretable but not always very efficient. Others, for instance neural networks [START_REF] Alam | A comparison of experimental designs in the development of a neural network simulation metamodel[END_REF], [START_REF] Fang | Design and modeling for computer experiments[END_REF]), are more efficient but do not provide an analytic predictor formula.

The kriging method [START_REF] Matheron | La Théorie des Variables Régionalisées, et ses Applications[END_REF], [START_REF] Cressie | Statistics for spatial data[END_REF]) has been developed for spatial interpolation problems; it takes into account spatial statistical structure of the estimated variable. [START_REF] Sacks | Design and analysis of computer experiments[END_REF] have extended the kriging principles to computer experiments by considering the correlation between two responses of a computer code depending on the distance between input variables. The kriging model (also called Gaussian process model), characterized by its mean and covariance functions, presents several advantages, especially the interpolation and interpretability properties. Moreover, numerous authors (for example, [START_REF] Currin | Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments[END_REF], [START_REF] Santner | The design and analysis of computer experiments[END_REF] and [START_REF] Vazquez | Intrinsic kriging and prior information[END_REF]) show that this model can provide a statistical framework to compute an efficient predictor of code response.

From a practical standpoint, constructing a Gaussian process model implies estimation of several hyperparameters included in the covariance function. This optimization problem is particularly difficult for a model with many inputs and inadequate sampling designs [START_REF] Fang | Design and modeling for computer experiments[END_REF], [START_REF] O'hagan | Bayesian analysis of computer code outputs: A tutorial[END_REF]). In this paper, a special estimation procedure is developed to fit a Gaussian process model in complex cases (non linear relations, highly dispersed output, high dimensional input, inadequate sampling designs). Our purpose includes developing a procedure for parameter estimation via an essential step of input parameter selection. Note that we do not deal with the design of experiments in computer code simulations (i.e. choosing values of input parameters). Indeed, we work on data obtained in a previous study (the hydrogeological model of [START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site[END_REF]) and try to adapt a Gaussian process model as well as possible to a non-optimal sampling design. In summary, this study presents two main objectives: developing a methodology to implement and adapt a Gaussian process model to complex data while studying its prediction capabilities.

The next section briefly explains the Gaussian process modeling from theoretical expression to predictor formulation and model parameterization. In section 3, a parameter estimation procedure is introduced from the numerical standpoint and a global methodology of Gaussian process modeling implementation is presented.

Section 4 is devoted to applications. First, the algorithm efficiency is compared to other algorithms for the example of an analytical test case. Secondly, the algorithm is applied to the data set (20 inputs and 20 outputs) coming from a hydrogeological transport model based on waterflow and diffusion dispersion equations. The last section provides some possible extensions and concluding remarks.

GAUSSIAN PROCESS MODELING

Theoretical model

Let us consider n realizations of a computer code. Each realization y(x) of the computer code output corresponds to a d-dimensional input vector x = (x 1 , ..., x d ). The n points corresponding to the code runs are called an experimental design and are denoted as X s = (x (1) , ..., x (n) ). The outputs will be denoted as Y s = (y (1) , ..., y (n) ) with y (i) = y(x (i) ), i = 1, ..., n. Gaussian process (Gp) modeling treats the deterministic response y(x) as a realization of a random function Y (x), including a regression part and a centered stochastic process. This model can be written as:

Y (x) = f (x) + Z(x).
(1)

The deterministic function f (x) provides the mean approximation of the computer code. Our study is limited to the parametric case where the function f is a linear combination of elementary functions. Under this assumption, f (x) can be written as follows:

f (x) = k j=0 β j f j (x) = F (x)β,
where β = [β 0 , . . . , β k ] t is the regression parameter vector and

F (x) = [f 0 (x), . . . , f k (x)]
is the regression matrix, with each f j (j = 0, . . . , k) an elementary function. In the case of the one-degree polynomial regression, (d + 1) elementary functions are used:

   f 0 (x) = 1, f i (x) = x i for i = 1, . . . , d.
In the following, we use this one-degree polynomial for the regression part, while our methodology can be extended to other bases of regression functions. The regression part allows the addition of an external drift. Without prior information on the relation between the model output and the input variables, this quite simple choice appears reasonable. Indeed, adding this simple external drift allows for a nonstation-ary global model even if the stochastic part Z is a stationary process. Moreover, on our tests of section 4, this simple model does not affect our prediction performance.

This simplification is also reported by [START_REF] Sacks | Design and analysis of computer experiments[END_REF].

The stochastic part Z(x) is a Gaussian centered process fully characterized by its covariance function: Cov(Z(x), Z(u)) = σ 2 R(x, u), where σ 2 denotes the variance of Z and R is the correlation function that provides interpolation and spatial correlation properties. To simplify, a stationary process Z(x) is considered, which means that correlation between Z(x) and Z(u) is a function of the difference between x and u. Our study is focused on a particular family of correlation functions that can be written as a product of one-dimensional correlation functions:

Cov(Z(x), Z(u)) = σ 2 R(x -u) = σ 2 d l=1 R l (x l -u l ).
Abrahamsen (1994), [START_REF] Sacks | Design and analysis of computer experiments[END_REF], [START_REF] Chilès | Geostatistics: Modeling spatial uncertainty[END_REF] and [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF] give lists of correlation functions with their advantages and drawbacks. Among all these functions, we choose to use the generalized exponential correlation function: Even for deterministic computational codes (i.e. outputs corresponding to the same inputs are identical), the outputs may be subject to noise (e.g. numerical noise). In this case, an independent white noise U (x) is added in the stochastic part of the model:

Y (x) = f (x) + Z(x) + U (x), (2) 
where U (x) is a centered Gaussian variable with variance ε 2 = σ 2 τ . In terms of covariance function, this white noise introduces a discontinuity at the origin called the nugget effect [START_REF] Matheron | La Théorie des Variables Régionalisées, et ses Applications[END_REF]):

Cov(Y (x), Y (u)) = σ 2 R θ,p (x -u) + τ δ(x -u) , where δ(v) =    1 if v = 0, 0 otherwise.

Joint and conditional distributions

Under the hypothesis of a Gp model, the learning sample Y s follows the multivariate

normal distribution p(Y s |X s , β, σ, θ, p, τ ) = N (F s β, Σ s ) ,
where F s = [F (x (1) ) t , . . . , F (x (n) ) t ] t is the regression matrix and

Σ s = σ 2 R θ,p x (i) -x (j) i,j=1...n + τ I n
is the covariance matrix with I n the n-dimensional identity matrix.

If a new point x * = (x * 1 , ..., x * d ) is considered, the joint probability distribution of (Y s , Y (x * )) is :

p(Y s , Y (x * )|X s , x * , β, σ, θ, p, τ ) = N     F s F (x * )   β,   Σ s k(x * ) k(x * ) t σ 2 (1 + τ )     , (3) with k(x * ) = ( Cov(y (1) , Y (x * )), . . . , Cov(y (n) , Y (x * )) ) t = σ 2 ( R θ,p (x (1) , x * ) + τ δ(x (1) , x * ), . . . , R θ,p (x (n) , x * ) + τ δ(x (n) , x * ) ) t . (4) 
By conditioning this joint distribution on the learning sample, we can readily obtain the conditional distribution of Y (x * ) which is Gaussian [START_REF] Von Mises | Mathematical Theory of Probability and Statistics[END_REF]):

p(Y (x * )|Y s , X s , x * , β, σ, θ, p, τ ) = N (I E[Y (x * )|Y s , X s , x * , β, σ, θ, p, τ ], Var[Y (x * )|Y s , X s , x * , β, σ, θ, p, τ ]) , (5) 
with

   I E[Y (x * )|Y s , X s , x * , β, σ, θ, p, τ ] = F (x * )β + k(x * ) t Σ -1 s (Y s -F s β), Var[Y (x * )|Y s , X s , x * , β, σ, θ, p, τ ] = σ 2 (1 + τ ) -k(x * ) t Σ -1 s k(x * ). (6) 
The conditional mean (equation ( 6)) is used as a predictor. The variance formula corresponds to the mean squared error (MSE) of this predictor and is also known as the kriging variance. This analytical formula for MSE gives a local indicator of the prediction accuracy. More generally, Gp model provides an analytical formula for the distribution of the output variable at an arbitrary new point. This distribution formula can be used for sensitivity and uncertainty analysis, as well as for quantile evaluation [START_REF] O'hagan | Bayesian analysis of computer code outputs: A tutorial[END_REF]). Its use can be completely or partly analytical and avoids costly methods based for example on a Monte Carlo algorithm. The variance expression can also be used in sampling strategies [START_REF] Scheidt | Assessing uncertainty and optimizing production schemes: Experimental designs for non-linear production response modeling. an application to early water breakthrough prevention[END_REF]). All these considerations and possible extensions of Gp modeling represent significant advantages [START_REF] Currin | Bayesian prediction of deterministic functions with applications to the design and analysis of computer experiments[END_REF], [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF]).

Parameter estimation

To compute the mean and variance of a Gp model, estimation of several parameters is needed. Indeed, the Gp model ( 2) is characterized by the regression parameter vector β, the correlation parameters (θ, p) and the variance parameters (σ 2 , τ ). The maximum likelihood method is commonly used to estimate these parameters. Given a Gp model, the log-likelihood of Y s can be written as:

l Ys (β, θ, p, σ, τ ) = - n 2 ln(2π) - n 2 ln(σ 2 ) - 1 2 ln(det(R θ,p + τ I n )) - 1 2σ 2 (Y s -F s β) t (R θ,p + τ I n ) -1 (Y s -F s β).
Given the correlation parameters (θ, p) and the variance parameter τ , the maximum likelihood estimator of β is the generalized least squares estimator:

β = (F s t (R θ,p + τ I n ) -1 F s ) -1 F s t (R θ,p + τ I n ) -1 Y s , (7) 
and the maximum likelihood estimator of σ 2 is:

σ 2 = 1 n (Y s -F s β) t (R θ,p + τ I n ) -1 (Y s -F s β). ( 8 
)
Remark 2.1 If we consider the predictor built on the conditional mean (equation ( 6)),

we replace β by its estimator β. The predictor writes now

Y (x * ) |Ys,Xs,x * ,σ,θ,p,τ = F (x * ) β + k(x * ) t Σ -1 s (Y s -F s β)
and its M SE has consequently an additional component [START_REF] Santner | The design and analysis of computer experiments[END_REF]):

Var[ Y (x * )|Y s , X s , x * , σ, θ, p, τ ] = σ 2 (1+τ )-k(x * ) t Σ -1 s k(x * )+u(x * )(F s t Σ -1 s F s ) -1 u(x * ) t with u(x * ) = F (x * ) -k(x * ) t Σ -1 s F s .
Matrix R θ,p depends on θ and p. Consequently, β and σ 2 depend on θ, p and τ .

Substituting β and σ 2 into the log-likelihood, we obtain the optimal choice ( θ, p, τ ) which maximizes:

φ(θ, p, τ ) = - 1 2 n ln( σ 2 ) + ln(|R θ,p + τ I n |) where |R θ,p +τ I n | = det(R θ,p +τ I n ).
Thus, estimation of (θ, p) and τ consists in numerical optimization of the function ψ defined as follows:

( θ, p, τ ) = arg min θ,p,τ ψ(θ, p, τ ) with ψ(θ, p, τ ) = |R θ,p + τ I n | 1 n σ 2 .
Our study is focused on complex cases with large dimensions d for the input vector

x (d = 20 in our second example in section 4), where the sampling design has not been chosen as a uniform grid. In this setting, minimizing function ψ(θ, p, τ ) is an optimization problem that is numerically costly and hard to solve. Several difficulties guide the choice of the algorithm. First, a large number of parameters imposes the use of a sequential algorithm, where different parameters are introduced step by step.

Second, a large parameter domain due to the number of parameters and the lack of prior bounds requires an exploratory algorithm able to explore the domain in an optimal way. Finally, the observed irregularities of ψ(θ, p, τ ) due, for instance, to a conditioning problem induce local minima, which recommend the use of a stochastic algorithm rather than a descent algorithm.

Several algorithms have been proposed in previous papers. [START_REF] Welch | Screening, predicting, and computer experiments[END_REF] use the simplex search method and introduce a kind of forward selection algorithm in which correlation parameters are added step by step to reduce function ψ(θ, p, τ ).

In Kennedy and O'Hagan's GEM-SA software (O'Hagan ( 2006)), which uses the Bayesian formalism, the posterior distribution of hyperparameters is maximized via a conjugate gradient method (the Powel method is used as the numerical recipe). The DACE Matlab free toolbox [START_REF] Lophaven | DACE -A Matlab kriging toolbox[END_REF]) introduces a powerful stochastic algorithm based on the Hooke & Jeeves method [START_REF] Bazaraa | Nonlinear programming[END_REF]), which unfortunately requires a starting point and some bounds to constrain the optimization. In complex applications, Welch's algorithm reveals some limitations and for high dimensional input, GEM-SA and DACE software cannot be applied directly on data including all the input variables. is the condition number of the prior covariance matrix. This condition number affects the numerical stability of the linear system for the β determination and for the evaluation of the determinant. The degree of ill-conditioning not only depends on sampling design but is also sensitive to the underlying covariance model. [START_REF] Ababou | On the condition number of covariance matrices in kriging, estimation, and simulation of random fields[END_REF] showed, for example, that a Gaussian covariance (p = 2) implies an ill-conditioned covariance matrix (which leads to a numerically unstable system), while an exponential covariance (p = 1) gives more stability. Moreover, in our case, the experimental design cannot be chosen and numerical parameter estimation is often damaged by the ill-conditioning problem. The nugget effect represented by τ solves this problem.

Although the outputs of the learning sample are no longer interpolated, this nugget effect improves the correlation matrix condition number and increases robustness of our estimation algorithm.

MODELING METHODOLOGY

Let us first detail the procedure used to validate our model. Since the Gp predictor is an exact interpolator (except when a nugget effect is included), residuals of the learning data cannot be used directly. So, to estimate the mean squared error in a non-optimistic way, we use either a K-fold cross validation procedure [START_REF] Hastie | The elements of statistical learning[END_REF]) or a test sample (consisting of new data, unused in the building process of the Gp model). In both cases, the predictivity coefficient Q 2 is computed. Q 2 corresponds to the classical coefficient of determination R 2 for a test sample, i.e. for prediction residuals:

Q 2 (Y, Ŷ ) = 1 - ntest i=1 Y i -Ŷi 2 ntest i=1 Ȳ -Y i 2 ,
where Y denotes the n test observations of the test set and Ȳ is their empirical mean.

Ŷ represents the Gp model predicted values, i.e. the conditional mean (equation ( 6)) computed which the estimated values of parameters ( β, σ, θ, p, τ ). Other simple validation criteria can be used: the absolute error, the mean and standard deviation of the relative residuals, . . . (see, for example, [START_REF] Kleijnen | A methodology for fitting and validating metamodels in simulation[END_REF]), which are all global measures. Some statistical and graphical analyses of residuals can provide more detailed diagnostics.

Our methodology consists in seven successive steps. A formal algorithmic definition is specified for each step. For i = 1, . . . , d, let e i denote the i th input variable. Step 0 -Standardization of input variables

M 0 = e (0) 1 , . . . , e ( 
The appropriate procedure to construct a metamodel requires space filling designs with good optimality and orthogonality properties [START_REF] Fang | Design and modeling for computer experiments[END_REF]). However, we are not always able to choose the experimental design, especially in industrial studies when the data have been generated a long time ago. Furthermore, other restrictions can be imposed; for example, a sampling design taking into account the prior distribution of input variables. This can have prejudicial consequences for hyperparameter estimation and metamodel quality.

So, to increase the robustness of our parameter estimation algorithm and to optimize the metamodel quality, we recommend to transform all the inputs into uniform variables. In order to get each transformed input variable following an uniform distribution U[0, 1], the theoretical distribution (if known) or the empirical ones after a piecewise linear approximation is applied to the original inputs. This approximation is required to avoid transforming a future unsampled x * to one of the transformed training sites, even if no element of x * is equal to the corresponding element of any of the untransformed training sites. We empirically observed that this uniform transformation of the inputs seems well adapted to correctly estimate correlation parameters.

Choices of bounds and starting points are also simplified by this standardization.

Step 1 -Initial input variables ranking by decreasing coefficient of correlation between e i and Y

Sorting input variables is necessary to reduce the number of possible models, especially to dissociate regression and covariance models. Furthermore, direct estimation of all parameters without an efficient starting point gives bad results. So, as a sort criterion, we choose the coefficient of correlation between the input variable and the output variable under consideration. The correlation coefficients between the input parameters and the output variable are the simplest measures of the influence of inputs on the output (Saltelli et al. (2000)). They are valid in the linear relation context, while in the nonlinear context, they give a first idea of the hierarchy among input variables, in terms of their influence on the output. Finally, this simple and intuitive choice does not require any modeling and appears a good initial method to sort the inputs when no other information is available.

For a strongly nonlinear computer code, it could be interesting to use a qualitative method, independent of the model complexity, in order to sort the inputs by influence order [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF]). Another possibility would be to fit an initial Gp model with an intercept only regression part and all components of p equal to 1 or 2. Only Step 3 -Successive inclusion of input variables in the covariance function

For each set of inputs included in the covariance function, all the inputs from the ordered set in the regression function are evaluated. Correlation and regression parameters are estimated by the DACE modified algorithm, with the values, estimated at the (i -1) th step for the same regression model, used as a starting point.

More precisely, at step i, input variables numbered from 1 to i are included in the covariance function and the algorithm estimates pairs of the correlation parameters (θ l , p l ) for l = 1, . . . , i. As the starting point, the algorithm uses correlation parameters obtained at the (i -1) th step for the starting values of ((θ 1 , p 1 ), . . . , (θ i-1 , p i-1 )).

First starting value of (θ i , p i ) is fixed to an arbitrary reference value. Then, at each step, selection of variables in the regression part is also made.

Hoeting et al. (2006) recommends the corrected Akaike information criterion

(AICC) for input selection in the regression model in order to take spatial correlations into account. Therefore, after the estimation of correlation and regression parameters, the AICC is computed: Other criteria often used in the optimization of the computer experiment designs [START_REF] Sacks | Design and analysis of computer experiments[END_REF], [START_REF] Santner | The design and analysis of computer experiments[END_REF]) could be considered to select the optimal regression and covariance model. These criteria are based on the variance of Gp model: they produce a model that minimizes the maximum or the integral of predictive variance over input space. However, in the case of a high number of inputs, the optimization of these criteria can be very computer time expensive. The advantage of the Q 2 statistic is its relatively fast evaluation, while producing a final model that optimizes the predictive performance.

AICC = -2l Ys β, θ, σ + 2n m 1 + m 2 + 1 n -m 1 -m 2 -2 ,
Step 4 (optional) -New input variables ranking in the covariance function based on the evolution of Q 2 (inputs sorted by decreasing "jumps" of Q 2 )

This optional step improves the selection of inputs, particularly in the covariance function. For each input X i , the increase of the Q 2 coefficient (denoted ∆Q 2 (i)) is computed when this i th variable is added to the covariance function. This value is an indicator of the contribution of the i th input to the accuracy of the Gp model. For this reason, it can be judicious to use values ∆Q 2 (1), . . . , ∆Q 2 (d) to sort the inputs included in the correlation function. The inputs are sorted by decreasing of values ∆Q 2 (i) and the procedure of parameter estimation is repeated with this new ranking of inputs for the covariance function (step 3 is rerun).

Algorithm

• Evaluation of Q 2 increase for each input variable included in the covariance function:

∆Q 2 (k) = Q 2 (1) For k = 2 . . . d ∆Q 2 (k) = Q 2 (k) -Q 2 (k -1) end • Sorting input variables by decreasing of ∆Q 2 M 1 =⇒ M 2
Step 5 (optional) -Algorithm for parameter estimation with new ranking of input variables in the covariance function This optional step improves the selection of inputs, particularly in the covariance function. The procedure of parameter estimation (step 3) is repeated with the inputs sorted by decreasing values of ∆Q 2 (i) in the covariance function. Consequently, correlation parameters related to the inputs that are the most influential for the increase of the Gp model accuracy are estimated in the first place. Furthermore, we can also hope that the use of this new ranking allows a decrease in the number of inputs included in the covariance function and an optimal input selection. The use of this new ranking appears more judicious and justifiable for the covariance function than sorting by decreasing correlation coefficient (cf. step 1). However, the ranking of step 1 is kept for the regression function.

Algorithm    M reg = M 1 M cov = M 2
Step 6 -Optimal covariance model selection

For each set of inputs in the covariance function, the optimal regression model is selected based on minimization of the AICC criterion (cf. step 3.3). Then, the predictivity coefficient Q 2 is computed either by cross validation or on a test sample (cf. step 3.4). Finally, the selected covariance model is the one corresponding to the highest Q 2 value.

Algorithm

i optim = arg max i (Q 2 (i))    M optim cov = M cov (1, . . . , i optim ) M optim reg = M reg (1, . . . , j optim (i optim ))
Step 7 -Final validation of the optimal Gp model After building and selecting the optimal Gp model, a final validation is necessary to evaluate the predictive performance and to eventually compare it to other metamodels. To do this, coefficient Q 2 is evaluated on a new test sample (i.e. data not used in the building procedure). If only few data are available, a cross validation procedure can be considered. So, two cross validation procedures are overlapped; one for building the model and one for its validation.

Algorithm

Q f inal 2 = Q 2 (M optim cov , M optim reg )
After all the steps of our algorithm (including the step 5), we can often link the inputs appearing in the covariance and regression functions with the nature of their effects on the output. Indeed, we can generally observed 4 cases: the inputs with only a linear effect which are supposed to appear only in the regression and excluded from the covariance with the step 5, the inputs with only a non-linear effect which are excluded from the regression and can then appear in the covariance with the reordering of M cov at step 5, the inputs with both effects appearing in the regression and covariance functions and, finally, the inactive input variables excluded from both.

APPLICATIONS

Analytical test case

First, an analytical function called the g-function of Sobol is used to illustrate and justify our methodology. The g-function of Sobol is defined for d inputs uniformly distributed on [0, 1] d :

g Sobol (X 1 , . . . , X d ) = d k=1 g k (X k ) where g k (X k ) = |4X k -2| + a k 1 + a k and a k ≥ 0.
Because of its complexity (strongly nonlinear and non-monotonic relationship) and the availability of analytical sensitivity indices, the g-function of Sobol is a well known test example in the studies of global sensitivity analysis algorithms (Saltelli et al. (2000)). The contribution of each input X k to the variability of the model output is represented by the weighting coefficient a k . The lower this coefficient a k , the more significant the variable X k . For example:

               a k = 0 → X k is very important, a k = 1 → X k is relatively important, a k = 9 → X k is non important, a k = 99 → X k is non significant.
For our analytical test, we choose a k = k.

Applying our methodology to the g-function of Sobol, we illustrate its different steps, especially the importance of rerunning the estimation procedure after sorting the inputs by decreasing ∆Q 2 (cf. steps 4 and 5). At the same time, comparisons are made with other reference software like, for example, the GEM-SA software [START_REF] O'hagan | Bayesian analysis of computer code outputs: A tutorial[END_REF], freely available at http://www.ctcd.group.shef.ac.uk/gem.html).

To 1979)). Using these learning data, two Gp models are built: one following our methodology and one using the GEM-SA software. For each method, the Q 2 coefficient is computed on a test sample of N T S = 1000 points.

For each dimension d, this procedure is repeated 50 times to obtain an average performance in terms of the prediction capabilities of each method (mean of Q 2 ).

The standard deviation of Q 2 is also a good indicator of the robustness of each method.

For each dimension d, the mean and standard deviation of Q 2 computed on the test sample using different methods are presented in Table 1. Three methods are compared: the GEM-SA software, our methodology without steps 4 and 5, and our methodology with steps 4 and 5.

For the values of d higher than 6, our methodology including double selection of inputs (with steps 4 and 5) clearly outperforms the others. More precisely, the pertinence of rerunning the estimation procedure after sorting the inputs by decreasing ∆Q 2 is obvious. The prediction accuracy is much more robust (lower standard

deviation of Q 2 ).
The drawback of our methodology lies in the somewhat costly steps 4 and 5.

g-Sobol

GEM-SA software

Gp methodology Gp methodology simulations without steps 4 and 5 with steps 4 and 5 Indeed, sequential estimation and rerunning of the procedure require many executions of the Hooke & Jeeves algorithm, particularly in the case of a double cross validation (cf. steps 3.4 and 7 of the algorithm). Consequently, this approach is much more computer time expensive than the GEM-SA software. For example, for a simulation with d = 10 and N LS = 100, the computing time of our approach is on average ten times larger than that of the GEM-SA software.

d N LS Q 2 sd Q 2 sd Q 2 sd
For a practitioner, a compromise is usually made between the time to obtain the sampling design points and the time to build a metamodel. As a conclusion of this section, our methodology is interesting for high dimensional input models (more than ten), for inadequate or small sampling designs (a few hundreds) and when simpler methodologies have failed. The data presented in the next section fall into this scope.

Remark 4.1 The Gp model used in the GEM-SA software has a gaussian covariance function. Our model uses a generalized exponential correlation function even if it requires the estimation of twice as many hyperparameters. Indeed, the sequential approach allows to estimate a large number of hyperparameters.

Application on an hydrogeologic transport code

Our methodology is now applied to the data obtained from the modeling of strontium 90 (noted 90 Sr) transport in saturated porous media using the MARTHE software (developed by BRGM, the French Geological Survey). The MARTHE computer code models flow and transport equations in three-dimensional porous formations. In the context of an environmental impact study, this code is used to model 90 Sr transport in saturated media for a radwaste temporary storage site in Russia [START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site[END_REF]). One of the final purposes is to determine the short-term evolution of 90 Sr transport in soils in order to help rehabilitation decision making. Only a partial characterization of the site has been made and, consequently, values of the model input parameters are not known precisely. One of the first goals is to identify the most influential parameters of the computer code in order to improve the characterization of the site in an optimal way. Because of large computing time of the MARTHE code, [START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site[END_REF] propose to construct a metamodel on the basis of the first learning sample. In the following, our Gp methodology is applied and its results are compared to the previous ones obtained with boosting regression trees and linear regression.

Data presentation

Data simulated in this study are composed of 300 observations. Each simulation consists of 20 inputs and 20 outputs. The 20 uncertain model parameters are permeability of different geological layers composing the simulated field (parameters 1 to 7), longitudinal dispersivity coefficients (parameters 8 to 10), transverse dispersivity coefficients (parameters 11 to 13), sorption coefficients (parameters 14 to 16), porosity (parameter 17) and meteoric water infiltration intensities (parameters 18 to 20).

To study sensitivity of the MARTHE code to these parameters, simulations of these 20 parameters have been made by the LHS method. 

Comparison of three different models

For each output, we choose to compare and analyze the results of three models:

⊲ Linear regression: it represents a model that provides a reference for the contribution of the Gp model stochastic component to modeling quality. Indeed, comparison between simple linear regression and Gp model will show if considering spatial correlations has significant impact on the modeling results. Moreover, a selection based on the AICC criterion is implemented to optimize the results of the linear regression.

⊲ Boosting of regression trees: this model was used in the previous study of the data [START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site[END_REF]). The boosting trees method is based on sequential construction of weak models (here regression trees with low interaction depth), that are then aggregated. The MART algorithm (Multiple Additive Regression Trees), described in [START_REF] Hastie | The elements of statistical learning[END_REF], is used here. The boosting trees method is relatively complex, in the sense that, as with neural networks, it is a black box model, efficient but quite difficult to interpret. It is interesting to see if a Gp model, that is easier to interpret and offers a quickly computable predictor, can compete with a more complex method in terms of modeling and prediction quality. Note that the boosting trees algorithm also makes its proper input selection.

⊲ Gaussian process: to implement this model, the methodology previously described in this paper is applied, with the input selection procedure.

Results

To compare prediction quality of the three different models presented above, the coefficient of predictivity Q 2 is estimated by a 6-fold cross validation. Note that for each model the results correspond to the optimal set of inputs included in the model. To avoid some bias in the results, the cross validation used to select variables in the Gp model (see step 6) differs from the cross validation used to validate and compare prediction capabilities of the three models. Indeed, at each cross validation step (used to validate), data are divided into a learning sample (denoted LS1) of 250 observations and a test sample (T S1) of the 50 remaining observations. For the Gp model, the procedure of variable selection is then performed by a second cross validation on LS1 (for example: a 4-fold cross validation, dividing LS1 into a learning set LS2 of 210 data and a test set T S2 of the 40 others). Then, an optimal set of variables is determined and a Gp model is built based on the 250 data of LS1 (with this optimal set of inputs previously selected). Finally, the model is validated on the test set T S1 that has never been used for the Gp model construction.

The results are presented in Table 2 and are taken up in a barplot (see Figure 2).

Results obtained for the output 8 (piezometer p110) are not considered because of physically insignificant concentration values. For most outputs, the Gp performance is superior to linear regression and boosting, in many cases substantially so. Concerning the outputs 11 (p27k) and 19 (p4a), the performances of the Gp model are worse than the linear regression ones. However, for these two outputs, the prediction errors are very high and consequently the difference of performance between the two models can be considered as non-significant.

As expected, for most of the outputs, the linear regression presents the worst results. When this model is successfully adapted, the two others are also efficient.

When linear regression fails (for example, for output number 12), Gp model presents a real interest, since it gives results as good as those of the boosting trees method. In fact, this is verified for all the ouputs and results are significantly better for several outputs (outputs 1, 2, 4, 9, 12, 13 and 16). To illustrate this, the Figure 3 shows the predicted values vs real values for the output 16, for the Gaussian process and boosting trees models. It clearly shows a better repartition of the Gp model residuals than the boosting trees model ones.

Furthermore, the estimator of MSE, that is expressed analytically (see Equation ( 6)), can be used as a local prediction interval. 

Analysis

These results confirm the potential of the Gp model and justify its application for computer codes. Application of our methodology to complex data also confirms the efficiency of our input selection procedure. For a fixed set of inputs in the covariance function, we can verify that this procedure selects the best set of inputs in regression part. Furthermore, the necessity of conducting sequential and ordered procedure estimation has been demonstrated. Indeed, if all the Gp parameters (i.e. considering the 20 inputs) are directly and simultaneously estimated with the DACE algorithm, they are not correctly determined and poor results in terms of Q 2 are obtained. So, in case of a complex model with a large number of inputs, we recommend using a selection procedure such as the algorithm of section 3.

The study of these data have motivated the choice of this methodology. At first, Welch's algorithm (see section 2.3) has been tried. Considering the poor results 

CONCLUSION

The Gaussian process model presents some real advantages compared to other metamodels: exact interpolation property, simple analytical formulations of the predictor, availability of the mean squared error of the predictions and the proved efficiency of the model. The keen interest in this method is testified by the publication of the recent monographs of [START_REF] Santner | The design and analysis of computer experiments[END_REF], [START_REF] Fang | Design and modeling for computer experiments[END_REF] and [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF].

However, for its application to complex industrial problems, developing a robust implementation methodology is required. In this paper, we have outlined some difficulties arising from the parameter estimation procedure (instability, high number of parameters) and the necessity of a progressive model construction. Moreover, an a priori choice of regression function and, more important, of covariance function is essential to parameterize the Gaussian process model. The generalized exponential covariance function appears in our experience as a judicious and recommended choice.

However, this covariance function requires the estimation of 2d correlation parameters, where d is the input space dimension. In this case, the sequential estimation and selection procedures of our methodology are more appropriate. This methodology is interesting when the computer model is rather complex (non linearities, threshold effects, etc.), with high dimensional inputs (d > 10) and for small size samples (a few hundreds).

Results obtained on the MARTHE computer code are very encouraging and place the Gaussian process as a good and judicious alternative to efficient but non-explicit and complex methods such as boosting trees or neural networks. It has the advantage of being easily evaluated on a new parameter set, independently of the metamodel complexity. Moreover, several statistical tools are available because of the analytical formulation of the Gaussian model. For example, the MSE estimator offers a good indicator of the model's local accuracy. In the same way, inference studies can be developed on parameter estimators and on the choice of the experimental input design. Finally, one possible improvement in our construction algorithm is based on the sequential approach of the choice of input design, which remains an active research domain [START_REF] Scheidt | Assessing uncertainty and optimizing production schemes: Experimental designs for non-linear production response modeling. an application to early water breakthrough prevention[END_REF] for example).

  θ l |x lu l | p l ) with θ l ≥ 0 and 0 < p l ≤ 2, where θ = [θ 1 , . . . , θ d ] t and p = [p 1 , . . . , p d ] t are the correlation parameters. Our motivations stand on the derivation and regularity properties of this function. Moreover, different choices of covariance parameters allow a wide spectrum of possible shapes (Figure 1); p = 1 gives the exponential correlation function and p = 2 the Gaussian correlation function.

Figure 1 :

 1 Figure 1: Generalized exponential correlation function for different power and correlation parameters.

  0) d denotes the complete initial model (i.e. all the inputs in their initial ranking). M 1 = e inputs in new rankings after sorting by different criteria (correlation coefficient or variation of Q 2 ). Finally, M cov and M reg denote the current covariance model and the current regression model; i.e. the list of selected inputs appearing in the covariance and regression functions.

M

  the correlation coefficients vector θ has to be estimated. Then, sensitivity measures such as the Sobol indices(Saltelli et al. (2000),[START_REF] Volkova | Global sensitivity analysis for a numerical model of radionuclide migration from the RRC "Kurchatov Institute" radwaste disposal site[END_REF]) are computed and used to sort the inputs by influence order. cov = M 1Step 2 -Initialization of the correlation parameter bounds and starting points for the estimation procedure To constrain the ψ optimization, the DACE estimation procedure requires three following values for each correlation parameter: a lower bound, an upper bound and a starting point. These values are crucial for the success of the estimation algorithm, when it is used directly for all the input variables. However, using sequential estimation based on progressive introduction of input variables, we limit the problems associated with these three values, especially with the starting point value. Another way to reduce the importance of starting point and bounds is to increase the number of iterations in DACE estimation algorithm. However, in the case of a high number of inputs, increasing the number of iterations in DACE can become extremely time expensive; a compromise has to be found. As the input variables have been previously transformed into standardized uniform variables, the initialization and the bounds of the correlation parameters can be the same for all the inputs: 3 lower bounds for each component of θ and p: lob θ = 10 -8 , lob p = 0, 3 upper bounds for each component of θ and p: upb θ = 100 , upb p = 2, 3 starting points for estimation of each component of θ and p: θ 0 = 0.5 , p 0 = 1.

where m 1 3

 1 denotes the number of input variables in the regression function, m 2 those in the covariance function and l Y the log-likelihood of the sample Y . The required model is the one minimizing this criterion. Algorithm For i = 1 . . . d Step 3.1: Variables in covariance function M i,cov = M cov (1, . . . , i) 13 cross validation procedure), different from the one used for the final validation of the Gp model at step 7.

  do this, different dimensions of inputs are considered, from 4 to 20: d = 4, 6, . . . , 20. For each dimension d, we generate a learning sample formed by N LS = d × 10 simulations of the g-function of Sobol following the Latin Hypercube Sampling (LHS) method (McKay et al. (

For

  each simulated set of parameters, MARTHE code computes transport equations of 90 Sr and predicts the evolution of 90 Sr concentration. Initial and boundary conditions for the flow and transport models are fixed at the same values for all simulations. So, for an initial map of 90 Sr concentration in 2002 and a set of 20 input parameter values, MARTHE code computes a map of predicted concentrations in 2010. For each simulation, the 20 outputs considered are values of 90 Sr concentration, predicted for year 2010, in 20 piezometers located on the waste repository site.

Figure 2 :

 2 Figure 2: Barplot of the predictivity coefficient Q 2 for the three different models.

Figure 3 :

 3 Figure 3: Plot of predicted values vs real values for boosting trees (left) and Gaussian process (right).

Figure 4 :

 4 Figure 4: Plot of observed and Gaussian process predicted values for the output 16 with the 95% prediction interval based on MSE formula.

  Remark 2.2 One of the problems we have to acknowledge in the evaluation of ψ(θ, p, τ )

	To solve this problem, we propose a sequential
	version (inspired by Welch's algorithm) of the DACE algorithm. It is based on the
	step by step inclusion of input variables (previously sorted). Our methodology allows
	progressive parameter estimation by input variables selection both in the regression
	part and in the covariance function. The complete description of this methodology
	is the subject of the next section.

Table 1 :

 1 Mean Q 2 and standard deviation sd of the predictivity coefficient Q 2 for several implementations of the g-function of Sobol.

	4	40	0.82	0.08	0.60	0.21	0.86	0.07
	6	60	0.67	0.24	0.59	0.16	0.85	0.05
	8	80	0.66	0.13	0.61	0.10	0.85	0.04
	10	100	0.59	0.25	0.63	0.13	0.83	0.05
	12	120	0.57	0.16	0.61	0.15	0.84	0.05
	14	140	0.60	0.17	0.61	0.14	0.83	0.03
	16	160	0.62	0.11	0.67	0.06	0.86	0.04
	18	180	0.66	0.09	0.67	0.05	0.84	0.03
	20	200	0.64	0.09	0.72	0.07	0.86	0.02

Table 2 :

 2 Predictivity coefficients Q 2 for the three different models of the MARTHE data.

	To illustrate this, we consider 50

curves.
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For j = 1 . . . d

• Regression Model:

M j,reg = M reg (1, . . . , j)

• Parameter estimation: θ init = (θ 1 (i-1),j , . . . , θ i-1 (i-1),j , θ 0 ) t p init = (p 1 (i-1),j , . . . , p i-1

End

Step 3.3: Optimal regression model selection:

3

Step 3.4: Q 2 evaluation by K-fold cross validation or on test data (with current correlation model and optimal regression model)

End

This order (correlation outer, regression inner) can be justified by minimizing the computer time required for optimization. The selection procedure for the regression part is made by the minimization of AICC criterion which requires, at each step, only one parameter estimation. On the other hand, the covariance selection is made by the maximization of Q 2 which is often computed by a K-fold cross validation. This procedure requires, at each step, K estimation procedures. So, the loop on covariance selection is the more expensive, and consequently has to be outer. The choice of K depends on the number of observations of the data set, on the constraints in term of computer time and on the influence of the learning sample size on prediction quality.

If few data are available, a leave-one-out cross-validation could be preferred to a K-fold procedure to avoid an undesirably negative effect of small learning sets on prediction quality.

Remark 3.1 To avoid some biases on the choice of the optimal covariance model in the next two steps, the coefficient Q 2 has to be computed on a test sample (or by a