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A multiple covariance approach to
PLS regression with several predictor groups:
Structural Equation Exploratory Regression
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* I3M, Université Montpellier 2, Place Eugene Bataillon, 34090 Montpellier
** ALTADIS, Centre de recherche SCR, 4 rue André Dessaux, 45000 Fleury lés Aubrais

*** LISE CEREMADE, Université Paris [X Dauphine, Place de Lattre de Tassigny, 75016 Paris

Abstract : A variable group Y is assumed to depend upon R thematic variable groups X i, ..., X g.
We assume that components in Y depend linearly upon components in the X,'s. In this work, we
propose a multiple covariance criterion which extends that of PLS regression to this multiple
predictor groups situation. On this criterion, we build a PLS-type exploratory method - Structural
Equation Exploratory Regression (SEER) - that allows to simultaneously perform dimension
reduction in groups and investigate the linear model of the components. SEER uses the
multidimensional structure of each group. An application example is given.

Keywords : Linear Regression, Latent Variables, PLS Path Modelling, PLS Regression, Structural
Equation Models, SEER.

Notations:

Lowercase carolingian letters generally stand for column-vectors (a, b, ... x, y...) or current index
values (j, k..., s, t...).

Greek lowercase letters (@, (3,....A, 14,...) stand for scalars.
<uy, ... , > 1s subspace spanned by vectors uy, ... , u,.
e, stands for the vector in |R" having all components equal to 1.

Uppercase letters generally stand for matrices (4, B..X Y...), or maximal index values
J,K..S T.).

1 y = orthogonal projection of y onto subspace E, with respect to a euclidian metric to be
specified.

X being a (,J) matrix:
x/ is the value in row i and column j;
x; stands for vector (x/)j=1 4, ; X stands for vector (x/)i=14s
<X> refers to the subspace spanned by column vectors of X
[Ty is a shorthand for /7.y
st(x) = standardized x variable.
a(k) = the current value of element a in step & of an algorithm.
(a;)s = column vector of elements a;
[as]s = line vector of elements a;

A' = transposition of matrix 4
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diag(a,...,b): if a,...,b are scalars, refers to diagonal matrix with diagonal elements q,...,b. If a,...,b
are square matrices, refers to block-diagonal matrix with block-diagonal elements q,...,b.

<X,...,Z> , where X,...,Z are matrices having the same row number, refers to the subspace spanned
by column vectors of X,...,Z.

(xly) u 1s the scalar product of vectors x and y with respect to euclidian metric matrix M.

||x|| 18 the norm of vector x with respect to metric M.

PCk(X,M,P) refers to the k™ principal component of matrix X with columns (variables) weighed by
metric matrix M, and lines (observations) weighed by matrix P.

In,(X,M,P) =inertiaof (X,M,P) along subspace E.
A(X, M, P) = largest eigenvalue of (X, M,P)'s PCA.

Other conventions:

» Variables describe the same set of n observations. Value of variable x for observation 7 is x;. A
variable x is identified to a column-vector x=(x;);_;,,€R"

* All variables are taken centred. Moreover, original numerical variables are taken standardized.
* Observation i has weight p.. Let P = diag(p:)i=1 o n-
* Variable space IR" has euclidian P-scalar product. So, we have:

(xly)p=x"Py=cov(x, y)

e A variable group X containing J variables x',....x" is identified to the (n,J) matrix X = [x',...x"].
From X's point of view, observation i is identified to the i" row-vector x;' of X.

e A variable group X = [x',....x'] is currently "weighed" by a (J,J) definite positive matrix M. This
matrix acts as an euclidian metric in the observation space IR’ attached to X. The scalar product
between observations i and k is: <xl.|xk >M =x,"M x,
Acronyms:
IVPCA = Instrumental Variables PCA, also known as MRA
MRA = Maximal Redundancy Analysis, also known as IVPCA
OLS = Ordinary Least Squares
PC = Principal Component
PCA = Principal Components Analysis
PCR = Principal Component Regression
PLS = Partial Least Squares
PLSPM = PLS Path Modelling
SEER = Structural Equation Exploratory Regression
SE(M) = Structural Equation (Model)
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Introduction

In this paper, we built up a multidimensional exploration technique that takes into account a single
equation conceptual model of data: Structural Equation Exploratory Regression (SEER).

The situation we deal with is the following: » individuals are described through a dependant
variable group Y and R predictor groups Xi.....Xz. Each group has enough conceptual unity to
advocate the grouping of its variables apart from the others. This is why these groups will be
referred to as "thematic groups". For example's sake, consider n wines described through 3 variable
groups: X' being that of olfaction sensory variables, X? that of palate sensory variables, and Y that
of hedonic judgments (all variables may for instance be averaged marks given by a jury). Now,
these groups are linked through a dependency network, just as variables are in an explanatory
model. This model, called thematic model, may be pictured by a dependency graph where groups Y
and X, are nodes and X, - Y vertices indicate that "the structural pattern exhibited by Y depends, to
a certain extent and amongst other things, on that exhibited by X," (cf. fig. 1). In our example, it is
not irrelevant to assume that the pattern of hedonic judgements depends on both olfaction and
palate perceptions. It must be clear that a X, — Y vertex means that dimensions in X, bear a relation
to variations of dimensions in Y, controlling for the variations of dimensions in all other X
predictor groups. Therefore, we consider relations between groups to be partial relations, and must
deal with them accordingly.

One important feature of data is that every thematic group may contain several important
underlying dimensions, without us knowing how many and which. What we need is a method
digging out these dimensions. PCA performed separately on each thematic group certainly digs out
hierarchically ordered and non-redundant principal dimensions in the theme, but regardless of the
role they may have to play according to the available conceptual model of the situation. What we
would like is to be able to extract from every theme a hierarchy of dimensions that are reasonably
"strong in the group" and "fit for the dependency model" (the precise meaning of these expressions
is given later).

Thus, we stand near the starting point of the modelling process: we have a conceptual model built
up from qualitative and logical considerations, but this model involves concepts that are fuzzy,
insofar as they may include several unidentified underlying aspects, each of which may in turn lead
to miscellaneous measures. This fuzziness bars the way to usual statistical modelling, because such
modelling requires that the measures be conceptually precise and the model parsimonious. To
make our way to such a model, we need to explore each theme in relation to the others. This means
a multidimensional exploration tool (as PCA is) that seeks thematic structures that are linked
through the conceptual model.

The purpose of SEER has connexions to that of the PLS Path Modelling technique or more
generally Structural Equation Estimation techniques as LISREL. But there are fundamental
differences, in approach as well as in computation:

- Unlike PLSPM, SEER really takes partial relations into account in regression models.

- Contrary to PLSPM and LISREL, SEER allows to extract several dimensions in every
thematic group (as many as one wishes and the group may provide). This makes it closer to an
exploration tool than to a latent variable estimation technique. Indeed, latent variables are a
handy way to model hypothetical dimensions. But, like in PCA, they may be viewed as a mere
intermediate tool to extract principal p-dimensional subspaces that provide useful variable
projection opportunities. Allowing to visualize the variable correlation patterns on "thematic
planes", SEER proves helpful in predictor selection.

When there is but one predictor group X, PLS regression digs out strong dimensions in X that best
model Y. SEER seeks to extend PLS regression to situations where Y depends on several predictor
groups Xj,...,Xz. Of course, in such a situation, one could consider performing PLS regression of Y
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on group X = (Xi,...,Xz). But doing so would lead to components that may be, first: conceptually
hybrid and second: constrained to be mutually orthogonal, which may drive them away from
significant variable bundles. Both are likely to make components more difficult to interpret.

1. The Thematic Model

1.1. Thematic groups and components

Xiyeory Xy Xz and Y are thematic groups. Group Y has K variables, and is weighed by a (K,K)

definite positive matrix N. Group X, has J, variables, and is weighed by a (J,,J,) definite positive
matrix M,.

We assume that every group X, (respectively Y) may be summed up using a given number J',
(respectively K') of components. Let  F) ... F/ .. F!" (resp. G',..,GX) be these components.

r

We impose that W/ (j,7): F/€(X,) and Vk: G'elY) .

1.2. Thematic model

The thematic model is the dependency pattern assumed between thematic groups. We term it single
equation model in that there is but one dependant group. It is graphed in figure 1a.

Figure la: Single equation thematic model Figure 1b: The univariate case
° °
® °
® } (ON ° } N
° °
Y
.} \ G’i[ [ ] [
o~ O » O ° .} O > oy
° o) e)
> Le *
° Fl ° Fl
x;fo O’? Q= Component x'e o’/ O = Component
e (07 | x ® = Variable ‘o (67 X ® = Variable
° r | | = Thematic Group (] r || = Thematic Group

When the dependant group Y is reduced to a single variable, we get the particular case of the
univariate model (fig. 1b).

1.3. General demands

When extracting the thematic components, we have a double demand:

> We demand that the statistical model expressing the dependency of 3*'s onto the predictor
components F/'s have a good fit;

> We demand that a group's components have some "structural strength", i.e. be far from the
group's residual (noise) dimensions.
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1.3.1. Goodness of fit

It will be measured using the classical R? coefficient.

1.3.2. Structural strength

 Consider a group of numeric variables: X = (x, ... , x’) weighed by (J,J) symmetric definite
positive matrix M and let y R’ , with ||u|[?y = u'Mu = 1. Let F = XMu be the coordinate of

observations on axis <u>. The inertia of {x;, i =1 to n} along <u> in metric space (IRJ M) s
|\F|,=F'PF=u'MX"'P XMu
It is one possible measure of structural strength for direction <u> in space (IRJ M)

* The possibility of choosing M makes this measure rather flexible. Let us review important
examples.

1) If all variables in X are numeric and standardized, the criterion is that of standard PCA. Its
extrema correspond to principal components.

2) If we do not want to consider structural strength in the group, i.e. consider that all variables in
<X> are to have equal strength, then we may take M = (X'PX)"". Indeed, we have then:

Yu: u(X'PX)'u=1 = | XMu|,=u'(X'PX)" X' 'PX(X'PX) 'u=1
This choice leads to take group X as mere subspace <X>.

3) Suppose group X is made of K categorical variables C', ..., CX. Each categorical variable C* is
coded through a matrix X; set up, as follows, from the dummy variables corresponding to its
values: all dummy variables are centred, and one of them is removed to avoid singularity. Now,
equating M to block-diagonal matrix Diag((Xi'PX:)")ii «x yields a structural strength criterion
whose maximization leads to Multiple Correspondence Analysis, which extends PCA to
categorical variables.

4) More generally, when group X is partitioned into K subgroups Xi,...Xx, such that inter-
subgroup correlations are of interest, but not within-subgroup correlations, then each subgroup
X, is considered as mere subspace <X, >. Equating M to block-diagonal matrix
Diag((Xi'PX)))ie1 ok allows to neutralize every within-subgroup correlation structure, and
yields a criterion whose maximization leads to generalized canonical correlation analysis.

2. A single predictor group X: PLS regression

2.1.Group Y is reduced to a single variable y: PLS1

Consider a numeric variable y and a predictor group X containing J variables and weighed by
metric M. The component we are looking for is /' = XMu. Under constraint u'Mu = 1, ||F]|#* is the
inertia measure of F's structural strength.

2.1.1. Program

The criterion that is classically maximized under the constraint u'Mu = 1 is:
C,(X,M,P;y)=(XMuly),= HXMMHPCOSP(XM“ ’y)”yHP (1)

It leads to the following program:
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O,(X,M,P;y): Max (XMuly),

u'Mu=1
N.B.: y being standardized, ||y|[;=1 . Then:
M=@pPxy' D [[XMull,=1 0 ¢,= cos,(XMu, y)
2.1.2. Solution: rank 1 PLS1 component
L=<XMu|y>P—%(u'Mu—l)zy'PXM —%(u’Mu—l)

S—LZO o MX'Py=AMu (2)
u

@) 0 XMX'Py=AXMu (3)

)0 u=lX’Py and then, u’Mu=10 A=[|X'Py,,

A
We shall write Ry p=XMX'P and term Ruxupy «linear resultant of y onto triplet
(X, M, P)». Let u'=Arg %af1<XM“|J’>P and F' = XMu', which we shorthand:
F'= ArgrQi(X, M, P;y). According to (3), component F" is collinear to R(X’M’p)y :
1 1

1 o —
F = XR<X,M,P>y - ||X1Py||MR(X,M,P)y

NB. M = XPX)' O Ry py=X(X 'PX)_IX'Py:HXy . Ignoring X's principal
correlation structures leads to classical regression.

2.1.3. Rank &k PLS1 Components

Let generally X* be the matrix of residuals of X regressed onto PLS components up to rank & :
F',..,F*. The rank k PLS component is defined as the component solution of Q1(X*',M,P;y).
Computing it that way ensures that F* is orthogonal to F",....F*".

2.2. Y contains several dependant variables

Consider now two variable groups X (J variables, weighed by metric M) and Y (K variables,
weighed by metric N). We may want to perform dimensional reduction in X only (looking for
component F' = XMu) or in both X and Y (then looking for component G = YNv as well).

2.2.1. Dimensional reduction in X only

a) Criterion and Program:

Let {n}w1 © x be a set of weights associated to the K variables in Y and let N = diag({7}). Then,
consider criterion Cy:

K K
C(X.M;Y,N;P)=> n{XMuly*)s = > n,C}(X,M,P;y"
k=1 k=1

It leads to the following program:

O,(X,M;Y ,N;P): Max,,,_ CyX ,M;Y N;P)
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b) Rank 1 solution:
K
C, = u'MX'PY ny'y"'PXMu = u'MX'PYNY' PXMu
k=1

N.B. Note that according to this matrix expression of C,, N need not be diagonal.
L=C,—A(u'Mu—1)

S_L:o & MX'PYNY'PXMu=AMu (4)
u

u'(4) = C, 0 Ais the largest eigenvalue.
X@) = Ry pRy vy pF=AF with A maximum (5)

2.2.2. Dimensional reduction in X and Y

a) Criterion and program:
We are now looking for components F = XMu and G = YNv.
The criterion that compounds structural strength of components and goodness of fit is:

C,=( XMu|lYNv) ,=|| XMu||, ||YNv||, cos,(XMu,YNv) (6)

It leads to the program:
O,(X,M;Y,N;P): Max,.,,_,( XMu|YNv),

v Nv=1
b) Rank 1 Solutions:
There is an obvious link between programs Q; and Q:
(F.G) = argrg Os(X.M;Y,N,P) « F=argr QX.M,P;G)and G = argc O\(Y,N,P;F) (7)
This leads us to the characterization of the solutions:
Given v, program Q;(X,M,Y,N,P) boils down to O,(X,M,P,; YNv). Therefore:
)0 MX'PYNv=AMu (8a)
(8a) = XMX'PYNv=AXMu < Ry, ,G=VnF (%)
Symmetrically, given u, program Qs(X,M,Y,N;P) boils down to O,(Y,N,P;XMu). Therefore:
)0 NY'PXMu=u Nv (8b)
(8b) = YNY'PXMu=puYNv < R, ,F=VnG (9b)
u'(8a) and v'(8b) imply that A = . Let n = A? = 1. We have: Vn=v'NY "PXMu=C; | which

must be maximized.
(9a) and (9b) imply that " and G can be characterized as eigenvectors:

Ry y pRy ypF=nF (10a) ; Ry ypRy y pG=nG (10b)
N being the largest eigenvalue of operators Ry pRyypr and Ry y pRx . p.

N.B. Component F's characterization (10a) is none other than (5). So, as far as F' is concerned,
programs O»(X,M;Y,N,P) and Qs(X,M;Y,N,P) are equivalent.
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¢) Choice of metrics M and N, and consequences

* When M = I and N = I, we get the first step of Tucker's inter-battery analysis, as well as Wold's
PLS regression.

e Take M = (X'PX)". Program Qs is equivalent to:
Max ( XMulYNv),

(| XMl =1
v'Nv=1

Correlation structures in X are no longer taken into account. To reflect that, program
0Os3(X,M; Y,N;P) will then be short-handed Os(<X>;Y,N;P).

In such cases, the method is called Maximal Redundancy Analysis, or Instrumental Variables PCA.

* If we have both M = (X'PX)" and N = (Y'PY)", we get canonical correlation analysis.
d) Rank 2 and above:

 Our basic aim is to model Y using strong dimensions in X. Once the first X-component F'
extracted, we look for a strong dimension F” in X that is orthogonal to F' and may best help model
Y. To achieve that, we regress X onto F', which leads to residuals X'. Rank 2 component /* is then
sought in X' so as to be structurally strong and predict Y as well as possible (together with ! which
is orthogonal, so that predictive powers can be separated). According to these requirements, one
wants to solve:

K
Max, Y . n,CH(X" M ,P;y") o OJX' MY N:P)
k=1

It is easy to see that this approach leads to solving Qs(X*',M;Y,N;P) to compute component F*.
Hereby, we get dimension reduction in X, in order to predict Y.

e Now, given F = (F',..,F¥), if we also want dimension reduction in Y with respect to the
regression model, we should look for strong structures in Y best predicted using the F*'s. To achieve
that, we consider the following program:

Os(<F>;Y,N,P)

Solving the program yields G'. As dimension reduction is now wanted in ¥, Y is regressed onto G',
which leads to residuals Y'. Generally, Y*' being the residuals of Y regressed onto G',...,G*",
component G* will be obtained solving Qs(<F>;Y*',N,P).

3. Structural Equation Exploratory Regression

In this section, we review multiple covariance criteria proposed in [Bry 2004], and use them in
structural equation model estimation.

3.1. Multiple covariance criteria

3.1.1. The univariate case

* Consider the situation described in §1.1 and §1.2. and depicted on fig. 1b. Consider now the
following criterion:

R
Cyoly; Xy, X)) = yllcosi(y, (F oo, F)TTIF I
r=1
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R
= cosp(y, (Fy, e, EV T TIFIL
r=1

where: V7, F,=X M u, with u,'M u,=1

C, clearly compounds structural strength of components in groups (||F||s*) and regression's
goodness of fit ( coslzg( y,(F,,...,Fg)) ). It obviously extends criterion (C;)* to the case of
multiple predictor groups.

o If one chooses to ignore structural strength of components in groups by taking
M,=(X,'PX,)" VYr ,wehave:

IF =1 Vr = Ci=cosp(y,(Fi,...Fy))
So, we get back plain linear regression's criterion.

3.1.2. The multivariate case

 If N were diagonal (N = diag(n:)i-1 v «), and dimensional reduction in Y were secondary, we might
consider the following criterion based on Cy:

K K R
Cs = anC4(yk,‘X1,...,XR) = Znkcosi’(yk:<F1’--wFR>)H||Fr||§> (1)
k=1 k=1 r=1

* If we want to primarily perform dimensional reduction in ¥ as well as in the X,'s, as pictured on
fig. 1a, we should consider the following criterion:

R
Co: NIGIfcos (G (F ... F)TIIFIL (2)
r=1

where: G=YNv with v'Nv=1 ; Vr, F =X M u, with u 'M u =1

Cs is a compound of structural strength of components in groups (||F,||»* and ||G||s*) and regression's
goodness of fit ( cosy (G, (F,,..., Fz)) ).

* Once again, if one chooses to ignore structural strength of components in groups by taking
M,=(X,’PX,)" Vr and N=(Y'PY)" ,wehave:

IGIb=1 , ||IF,|l;=1 Yr = Ci=cosp(G,(Fy,.., Fy))

3.2. Rank 1 Components

3.2.1. The univariate case

a) A simple case

* Consider figure 3: an observed variable y is dependant upon component F in group X, along with
other explanatory variables grouped in Z = [Z', ..., Z%]. Each z* is taken as a unidimensional group
having obvious component F; = z’.
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Figure 3: variable v depending on a X-component F and a 7. group

o o ¢'0 X
-
OF

F is found maximizing the multiple covariance criterion which, in this case, leads to:

Max C, < Qu(y; X, M ;Z): Max cosp(y,(F,Z))|F|
F=XMu F=XMu
u'Mu=1 u'Mu=1

‘ Property IT: If one ignores structures in X by taking M=(X'PX)", program Q. boils down to:
Max cosy(y,(F,Z))

Fe(Xx) | Fll,=1

Then, let j/f(ZH i y be the X-component of 5/< X" I (x.,zyY ; the obvious solution of the
program is:

F=st(3%)

e Let us rewrite program Q.

COSZ(,y’<F:Z>):<y|H<F,Z>y>P:y,PH<F,Z>y

Now, consider figure 4. We have H<F,z>y: HZy+HH2LF Y.

Figure 4

<E/>
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Let t=II,.F  We have:

(tly)p t' Py

11 = II,y+I1l.y = II,y+ t = II,y+ t

<F,Z>y z) (Y z) <t|t>p zy t' Pt

IT,. is P-symmetric, so: 1I,."P=PII,. . Asaconsequence:
1 I PR b - e e g g
= + L = + L
¥ = e P, F 2P, F Y
' ' F’HZL'Py '
=y PH<F,Z>y =y PHZy—me PHZLF

F'II,'Pyy'PII, F

o cosz(y,<F,Z>) = y'PI,y+ P F
Zl

(y'PII,y)F'PII, F+F'Il,.'Pyy'PII . F
F'PII, F

F'((y'PH,y)PII,+11,.Pyy'PII .|F
F'PI, F

So:
F'[(y'PI,y)PI.+11,.'Pyy'PII ,.|F

C, = F'PF
! F'PII, F

(13)

We can write it:

F'A(y)F

C,= F'PF
F'BF

, with P, A(y) and B symmetric matrices:

B=PII,. = P—PZ(Z’PZ)le'P ; A(y) = (y'PII,y)B+B'yy'B
N.B. When unambiguous, 4(y) will be short-handed A.
Replacing F with XMu, we get the program:

: u' MX ' AXMu
X M Z): M "MX ' P XM
0y ): Max “ UTMX " BXMu
e Let us now try to characterize the solution of Q4 (v, X,M; Z).
L= u'MX'P XMy WM AXMu )
u' MX ' BXMu
g—Lzo o (y(u)MX' A+B(u)MX'P—y(u)B(u)MX 'B)| XMu = AMu (14)
u

_u'MX'"AXMu ()= u'MX'P XMu
w MX BxMu Y u'MX ' BXMu

with:  B(u)

Notice that u) and W(u) are homogeneous functions of u with 0 degree.

Besides, let us calculate «'(14) and use constraint u’Mu = 1, which gives:
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u'ly(u)MX " A+ B(u)MX ' P—y(u)B(u)MX 'B) XMu = A
o y(u)u'MX'"AXMu+B(u)u'MX ' PXMu—y (u)B(u)u' MX' BXMu = A

o A= u MY PxMy WX AXMu o
u' MX' BXMu

As a consequence, A must be maximum.
To characterize directly component ' = XMu, we calculate:
X(14) = (y(u)XMX ' A+B(u) XMX 'P—y(u)B(u) XMX 'B) XMu = A XMu
= XMX'(y(F)A+B(F)P—y(F)B(F)B)F

_FUAF o PR
Fer = ¥ e 19

= AF (15)

with B(F)
N.B.1: These coefficients are homogeneous functions of F with 0 degree, which allows to seek
solution F of (15) sparing a multiplicative constant.

N.B.2: It is easy to show that at the fixed point, 8 and y receive interesting substantial
interpretations:

Fr,PFr _ ||F P _ 1
F,'BF, |, .. .Fll;  cos’(F,(F,s#r))

y(F,)=

_Fr'AFr Fr’[(y !PH(Fs,s#l*>y)PH<Fy,s#r>L+H<Fx,s#r>L,Pyy,PH<FA,s¢r>‘}Fr
~ F,'BF, F,'PI,; ,F,

(y’PH<FS,S¢r>y)Fr’PH(FV,Ag;ﬁr}LFr+(Fr'H<FX,s¢r>L’Py)2
F"'PH('FV,s#rVFV

(FV'HQ/FV,S;ﬁrV'Py)z
Fi"PH(FV,AT#r)iFF

<H<Fd,s¢r>LFr|y>i’
”H(Fx,s#r}‘FrHJZD

= (y!PH<FV,s¢r>y)+

= ||H<Fvs¢r>y||2P+

= ||H<Fa,s¢r>y||3>+”H(HF_m FF>J’||§> = ||H<Fx,s¢r>+<ﬂF“R’_HF’,>y||; = ||H<F6,s;ﬁr>+<Fr>y||i’

2
= ||H<Fy,s=lt0R>y||P
=cos(y ; <F.,r=1to R>) if y is standardized

* As coefficients yand [ depend on the solution, it is not obvious to solve analytically equations
(15) and (16) where A is maximum. As an alternative, we propose to look for Q,"'s solution as the
fixed point of the following algorithm:
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Algorithm AQ:

Iteration 0 (initialization):

- Choose an arbitrary initial value F(0) for F in <X>, for example one of X's columns, or
X's first PC. Standardize it.

Current iteration k > 0:

- Calculate coefficients y= y(F(k-1)) and 8= B (F(k-1)) through (16).

- Extract the eigenvector f'associated with the largest eigenvalue of matrix:
XMX 'y A+BP—y B B)

- Take F(k) = st(f)

- If F(k) is close enough to F(k-1), stop.

This algorithm has been empirically tested on matrices exhibiting miscellaneous patterns. It has
shown rather quick convergence in most cases (less than 30 iterations to reach a relative difference
between two consecutive values of one component lower than 10°).

b) The general univariate case

The program to be solved in the general case is:

R
O Max C, & Max  cosi(y (F,, .. FEO)TIFI2
Yor:u'M,u=1 Yr: u'M,u=1 r=1
where: Vr,F.=X M u,

We propose to maximize the criterion iteratively on each F, component, taking all other
components {F, , s # r} as fixed and using algorithm A0. So, we get the following algorithm:

Algorithm Al:

Iteration 0 (initialization):

- For » =1 to R: choose an arbitrary initial value F,(0) for F, in <X,>, for example one of
X.'s columns, or X,'s first PC. Standardize it.

Current iteration k > 0:

- Forr=1to R: set F.(k) = F.(k-1)

- For » =1 to R: use algorithm 40 to compute F,(k) as the solution of program:
04" (:X,M3[Fi(k) , s # r])

- If Or, F,(k) is close enough to F,(k-1), stop.

3.2.2. The multivariate case

a) A simple case

Consider now )',..., y* standardized, and suppose they depend upon F = XMu together with other
predictors z', ..., z° considered each as a unidimensional group as in §3.2.1. Let Z = [Z, ..., Z°].
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Use of criterion Cs:

Let N = diag(7n4)i-1 v «. In this case:
K
Cs = |IFIf 2 mcosp(y',(F, Z))
k=1

From (13) we draw:

K

C5 = ' k '
F'BF = F'BF

K
F'AF with: A=) n,A(y")
k=1
As a consequence, algorithm 40 may be used to solve program:
K
O.Y.N:X,M:Z): Max |F|f, X ncosp(y",(F,Z))
F=XMu,u'Mu=1 k=1

Expression of matrix 4:

AV =PI,y PO, +11,.' Py y"'PIT,.

Z nkykyk'

K

O A=), nA(y"=PII,. an VP, y")+1T,.

k=1

L

K
=PI, ) n(y"'PI,y")+II, P(YNY'|PII,
k=1
(V' 'PI,y )=t (y" P11,y )=t (" y' ' PII,)

So:

M-
S

K
(y''pr,y") = tr(anykyk’PHZ) = (YNY'PII,)
Py

And: A = PI, or(YNY'PII,)+II,.' P[YNY'|PII .
Use of criterion Cs:

* Let us show that maximizing Cs and Cs do not lead to the same F-solution. Let us rewrite both
criteria in our simple case:

K K
Cs = ||F||i> ancosi(yk,<F,Z>) = ”FHi znk<yk|HF,Zyk>P
k=1 k=1

K K
= |FIEY noer (' PIT, ,5°) = |Fllhtr (D ny* v PIT, )
k=1 k=1

= ||Flper(YNY ' PII ;) (17)
Whereas:
Cs: Glfhcosi (G (F, )NFIz = IFIGIT, ,G)p
= |FI} v'N'Y'PH, ,YNv (13)

From (18) we know that, given F, program: Max C, has a G solution characterized by:
v'Nv=1

NY'PII, ,YNv = nNv (19)
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Y(19) = YNYPl.,G=nG
v(19)O n = v'N'Y'PII; ,YNv = C, maximum
So: Co(F) = |IFl n(F) @0)
where 1(F) is the largest eigenvalue of YNY'P[1;,

When there is no Z group, YNY'P[r has rank 1, and its trace is also its only non 0 eigenvalue
which, being positive, is its largest one. So both criteria boil down to the same thing. But when
there is a group Z, they no longer coincide. Of course, maximizing either criterion might possibly
lead to the same F component; in appendix 1, we show that it does not.

* We think that, in a multidimensional regressive approach, Cs should be preferred to Cq, because
the aim is to obtain, first, thematic dimensions that may help predict group Y as a whole. Only then
arises the secondary question of which dimensions in Y are best predicted.

b) The general case

K R
CS = znkCOSi(yk,<F1;~-~:FR>)H||Fr||12[’
k=1 =1

K R
0 Max Yo' (Fr FOITIFIR
r=1

Vr:F=XM,u u'Mu=1 |=]
We shall simply use an algorithm maximizing Cs on each F’ in turn:

Algorithm A2:

Iteration 0 (initialization):

- For » =1 to R: choose an arbitrary initial value F,(0) for F, in <X,>, for example one of
X.'s columns, or X,'s first PC. Standardize it.

Current iteration k > 0:

- Forr=1to R: set F.(k) = F.(k-1)

- For » =1 to R: use algorithm 40 to compute F,(k) as the solution of program:
Os* (YN X, M;[Fi(k) , s # r])

- If Or, F,(k) is close enough to F,(k-1), stop.

3.3. Rank k Components

When we have more than one predictor group, a problem appears of hierarchy between
components. Indeed, within a predictor group, the components must be ordered as they are for
instance in PLS regression, but how should we relate the components between predictor groups?
The solution that seems to us most consistent with regression's proper logic is to calculate
sequentially (as in PLS) each predictor group's components controlling for all those of the other
predictor groups. This implies that we state, ab initio, how many components we shall look for in
each predictor group.
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3.3.1. Predictor group component calculus

Let J, be the number of components [ ' ...,F that are wanted in group X,. We shall use the

Foyoees r

following algorithm, extending algorithm A2:
Algorithm A3:

Iteration 0 (initialization):

-Forr=1to R and forj = 1 to J,: set F//'s initial value F/(0) as X,'s /" PC. Standardize it.
Current iteration k > 0:

- For r=1 to R: set F.(k) = F.(k-1).

-Forr=1toR:

Forj=1toJ:
n i—1 _
Let X(k)= X, and, if /> 1: X7 (K)=I1 o) i X,

Let YVs,m: Fg(m)Z[F:(m) F{(m)]
Use algorithm A0 to compute F/(k) as the solution of program:
Os' (YN X (k), My [{F (k) , s # r}O{F/(k) , 1 < h <j-1}])
- If Orj F/(k) is close enough to F/(k-1), stop.

Consider J' <Jy, ..., Jx<Jr. Let M (J,', ..., ") = [[Ff]lsjsJ,.']lgrsR . The component-
set - ormodel - M (J,...,J ;) produced by algorithm A3 contains sub-models. A sub-model is
defined by any ordered pair (7, J',) where | <r<RandJ', < J, as:

SM(r,J,") = M(Jyts d, T, T eind )

r—1-

The set of all sub-models is not totally ordered. But we have the following property, referred to as
local nesting:

Every sequence SM(r,.) of sub-models defined by SM (r,.) = (SM (r,Jr')) B
totally ordered through the relation:
SM(r,J "\ <SM(r,J %) & J'<J*

This order may be interpreted easily, considering that the component F/ making the difference
between SM(r,j-1) and its successor SM(r,j) is the X,-component orthogonal to [F,',....F/"] that
"best" completes model SM(7,j-1) (as meant in PLS) controlling for all other predictor components
in SM(r,j-1).

3.3.2. Predictor group component backward selection

e Let model M = M(j, , ..., jz). When we remove predictor component £ f , going from model
M to its sub-model SM, = SM(r,j,-1), criterion Cs is changed so that:
2/ k
C.(M) . Zk:cosp(y (M)
oy = IFA
Cs(SM,) g Z cosy(y*, (SM,))

k
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But, to make norms ||F f ||i, comparable between groups, one should standardize all X,'s inertia
momenta using a proper weighting. For instance, ||F/|[> might be divided by In(X,M,P) or
alternatively by A,(X,,M,, P), so that its upper bound would be 1 for every group.

* Practically, to select components in X,'s, one may initially set every J, to a value that is "too
large", and then remove group components through the following backward procedure:

On current step m, having current model M =M (j,,..., jz) where Vr,1<j <J,

- Find s, such that:

D, cos (¥, (M)

r”F;{’HJZD /; k
ZCOSP(J} :<SM(rir_1)>)
k

s = Arg Min|w

1 - 1
nx m,p) O “TA(X M, P)

with W, =

- Set j, = j, - 1 and rerun the estimation procedure.
3.3.3. Calculating the dependent group components

Now, given the components in predictor groups: F = M (J,...,J;) , we may want to achieve

dimension reduction in Y with respect to the regression model. Let us proceed as in section 2.2.2.d,
and look for strong structures in Y using the program of (¥,N,P)'s MRA onto </>:

Ox(<F>;Y,N,P)
Solving the program yields G'. Generally, Y*' being the residuals of Y regressed onto G'....,G*',
component G* will be obtained solving Qs(<F>;Y*',N,P).

3.4. Starting from Cs: an alternative

What we want to do now is to perform dimension reduction in Y and the X,'s "at the same time".

This means that the components G in Y and F, in the X,'s are co-determined through a unique
criterion maximization.

3.4.1. One component per thematic group

Supposing we want a single component in each thematic group. Let us look back at criterion Cs:
R
Co: IGIfcosp (G (F s )T TIF I
r=1

We shall use the same approach as for Cs's maximization, i.e. iteratively maximize Cs on each
component in turn:

-Given Gand F, ..., .y, Fra, ..., Fx:

Max C6 < Max ||G||3’COS§’(G’<F1J)FR>)||F1||§’
F =X Mu

FI‘:XI‘MVMV
u,' M.u,=1 u,'M,u,=1

-

This Q. -type program is solved through algorithm AO.
- Given F = [F1, ..., Fz]:
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Max Cy, = Max ||G|ycosp(G,(F)) < Q(Y,N,P;(F))
G=YNv F=XM.u,
v'Nv=1 u,'M,u,=1

The G solution is the rank 1 component of (¥,N,P)'s MRA onto <F>.
Finally, we get the following algorithm:
Algorithm B1:

Iteration 0 (initialization):

- For » = 1 to R: choose an arbitrary initial value F,(0) for F, in <X,>, for example one of
X's columns, or X,'s first PC. Standardize it.

- Choose an arbitrary initial value G(0) for G in <Y>, for example one of Y's columns, or
Y's first PC. Standardize it.

Current iteration k > 0:
- Calculate F(k) = [F\(k), ..., Fr(k)] as follows:

- For =1 to R: set F.(k) = F.(k-1).

- For » =1 to R: use algorithm 40 to compute F,(k) as the solution of program:

04 (G X Mi[Fy(k) , s £ 7))
- Calculate G(k) as the G-solution of:
O:(Y,N,Pi<F(k)>)

- If G(k) is close enough to G(k-1) and Ur, F.(k) to F.(k-1), stop.

3.4.2. Several components per thematic group

What if we want J, components in group X, and L components in group Y? Again, we may
conveniently consider the local nesting approach to extend the rank 1 algorithm B1 of section
3.4.1. Having to deal with several components in Y, we shall consider them as a new dependant
variable group on each step, and use criterion Cs to find predictor components that best predict
them. Thus, we get:

Algorithm B2:

Iteration 0 (initialization):
- Set all F//'s initial values to those given using algorithm A2.
Let F(0) = [[F/(0)]]; .
- Set all G"s initial values to those calculated as in section 3.3.3.:
G'(0) is the solution of Q(<F(0)>;Y"',N,P).
Current iteration k> 0:
Let:  G(k-1)=[G'(k-D]i=1 w01
Vs, m: F,(m)=[F\(m),.. Flm)]

Ym: F(m)=|F, (m

v
~
=
S
3
=
=
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-Forr=1toR:
Forj=1toJ:
Set F/(k) = F/(k-1).
-Forr=1to R:
Forj=1to J:
Let X'(k)=X. 1fj> L let X '(K)=IT ) o X,
Use algorithm A0 to compute F/(k) as the solution of program:
Os (<G(k-1)>: X7 (k),M:[Fi(k) , s # 7])
-For/=1toL:
Let Yo(K)=Y,and if 1> 11 Y'"'(k)=IT 5 repY
Compute G'(k) as the G-solution of?
Os(Y",N, P;<F(k)>)
- If 01, G'(k) is close enough to G'(k-1) and Ur,j F/(k) to F/(k-1), stop.

4. Compared applications of PLS and SEER

4.1. Data and goal

100 french cities have been described from various points of view through numeric variables',
which may be thematically structured as shown in table 1:

Table 1: variables describing the french towns

Theme Sub-theme Variable label Variable description
demographic PopGrowth Population growth rate
dynamics Ageing Nr of over 75 / Nr of below 20 (in 1999)
PopAttract Population attraction rate (nr of immigrants on

1990-1999 over population in 1999)

ActivePopAttract | Active population attraction rate (nr of active
immigrants on 1990-1999 over population in 1999)

Economy Work Unemployt Unemployment rate

YouthUnemployt | Unemployment rate of the <25yrs

LongUnemployt | % of those unemployed for > lyr

VarJobCreat Annual variation of the nr of jobs created in a year
Activity Pct of active population

FemActivity Pct of women in active population

ActivelnCity Pct of active population working in the city

1 Source: Le Point - issue n" 1530 - 11/01/2002
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Theme Sub-theme Variable label Variable description
CieFailures Pct of failures in companies created in a year
AvgWage Average yearly net wage
Wealth IncomeTax Average amount of the income tax
WealthTax Pct of taxpayers having to pay the wealth tax
Taxpayers Pct of persons having to pay the income tax
Cost of living: | SquaMeter Average cost of 1 m? in ancient lodgings
InhabDuty Average amount of the inhabited house duty
RealEsTax Average amount of the real estate tax
WaterM3 Cost of the water cubic meter
Housing Owners Pct of house owners
Housed4rooms Pct of houses having 4 rooms or more
Houselnsal Pct of insalubrious houses
HouseVacant Pct of vacant houses
HouseNewBuilt | Nr of houses started in 2000 over total nr of houses
Risks Crime, road Criminality Criminality rate (nr of crimes and offences per
capita)
CrimVar Criminality rate variation (%)
RoadRisk Nr of inhabitants killed or injured owing to road
traffic in 2000
Health MortInfant Infant Mortality Rate (nr of children deceased
before 1 yr over nr of living births)
MortLungCancer |Standardized lung cancer-related Mortality Rate
MortAlcohol Standardized alcohol-related Mortality Rate
MortCorThromb | Standardized coronary thrombosis-related Mortality
Rate
MortSuicide Standardized suicide-related Mortality Rate
Environmental | Floods Nr of floodings between 1982 and 2001
risks PollutedLand Nr of polluted tracts of land
IndustRisk Nr of factories classified 1 on the Seveso scale
Educational SchoolDelayl Pct of children beyond age in the first year of
risks secondary school
SchoolDelay4 Pct of children beyond age in the fourth year of
secondary school
SchoolDelay7 Pct of children beyond age in the seventh and last
year of secondary school
Resources Natural SeaSide Sea side less than two hours far by car
Ski Ski resort less than two hours far by car
Sun Annual duration of sunshine
Rain Annual nr of days with precipitation over I mm
Temperature Average annual temperature from 1961 to 1990
Walkers Pct of employed going to work on foot
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Theme Sub-theme Variable label Variable description
Cultural Museums Nr of museums
Cinema Nr of cinema entries per inhabitant in 2000
Monuments Nr of listed historical monuments
BookLoan Nr of loaned books per inhabitant in 2000
Restaurants Nr of restaurants graded with at least one star in the
Michelin guide in 2001
Press Nr of magazine issues sold per inhabitant in 2000
Students Pct of students in population
PrimClassSize Average size of primary school classes

What we want to achieve is to quickly, efficiently and understandably relate the demographic
dynamics to structures in the other themes. We shall first try a non-thematic approach and then our
SEER thematic approach, and see if the use of a thematic model helps. The question naturally
arises of which thematic model to choose. One may have a substantial socio-economic theory to
back a specific thematic model, as in current structural equation modelling. But for want of such a
theory, one may find reasonable to start with a rather "poor" conceptual model, and gradually
refine it by taking into account the empirical findings provided by its SEER-estimation, in so far as
these structural facts may receive satisfying conceptual interpretation. It is all the more necessary to
proceed that way as conceptual partitioning is far from univocal.

4.2. Local nesting PLS regression (LN-PLS2)

Initially, we wanted to use standard PLS2 analysis as non-thematic technique - taking the
demographic dynamics as dependant group, and all other groups merged into one as the predictor
group (the conceptual model can be seen in appendix 2, fig. 2a). But as PLS2 gives correlated
components in the dependant group Y, it makes graphing of ¥ awkward. Of course, there exists a
variant of PLS2 dealing with groups X and Y identically’ and thus yielding uncorrelated
components in both of them, but the nesting of components would still be different in this variant
and in SEER, making their results theoretically impossible to compare. Therefore, we chose to
perform our local nesting variant of PLS2 analysis: LN-PLS2, which is merely what SEER boils
down to when there is but one predictor group.

As shown by figure 5, demographic variables are very well projected on plane (G',G*). Component
G? is highly correlated with population growth rate. Component G' is positively correlated with
ageing on one hand, and attraction rates on the other. Yet, as these are uncorrelated, G' is less
clearly interpretable than G*.

Dependant plane (G, G*):

The R? column in table 2 shows that prediction of G* and population growth is poor, whereas that
of G' and associated variables is much better. Components F' and F° appear to be important to
predict ageing, and F* and F* to predict population attraction.

2 Canonical PLS [Tenenhaus 1998]; note that this symmetric PLS variant departs from the initial non-symmetric
approach, which was to model Y through X.
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Fioure 5: Demographic Plane (G'.G’)
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Table 2: Goodness of fit and _importance of LN-PLS?2 predictor components
R? F F F F F F
Modelling:
G' .634 393 #** 569 *** -.320) *** -.168 ** 153 *
G? 205 312 ** =225 *
PopGrowth 118 -.286 **
Ageing .539 S13 *x* -.403 *** 187 **
\PopAttract 442 578 ww* -.2092 H*
ActivePopAttract .534 657 FHX -.208 *x*

P-value coding: 0 <"***' <(.001 <"**' <0.01< "*' <0.05 <'' <]

N.B: Standard linear model P-value has been used to measure the importance of predictive
components. It is of course not possible to view this indicator as a proper P-value, since predictive
components here are not exogenous. This also goes for all subsequent similar tables.

Let us now see whether F-components may easily receive interpretation.
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Predictor components planes:

Plane (F', F):

Figure 6: Predictor plane (F'.F?)
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Figure 6 shows that components F' and F” are not separately interpretable, whereas there is a
clearly interpretable direction in plane (F', F?): that of wealth / activity. Figure 7 shows that
components F° and F* are poorly correlated to any predictor. This lack of interpretation of
predictive components means failure of the PLS2-type non-thematic method for our exploratory
modelling purpose.
3
Plane (F°, F’):
Figure 7: Predictor plane (F*.F*)
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4.3. SEER

4.3.1. Rough thematic model of the data

Our initial thematic model must be rather gross, yet conceptually defendable. Thus, we first
partition predictors into three explanatory themes: Economy, Risks, Resources (see table 1 and
appendix 2, fig. 2b).

To merely have a comparison basis for SEER, let us first perform "Thematic" Principal
Components Regression. We extract the first two PCs of each theme: let G' and G” be those of the
dependant theme Y, and F,' and F,* those of explanatory theme X,. Then G', G* and all y*'s are
regressed onto {F,', F,*},_ 3. Table 3 gives the goodness of fit (R?) of each model.

Table 3: Thematic PCR goodness of fit (3 themes model)

R2
G' .303
G 272
\PopGrowth .067
Ageing 298
PopAttract 375
ActivePopAttract 417

4.3.2. SEER Results

Now, SEER is performed using the rough thematic model. Two components are extracted per
theme. Convergence threshold for a unit norm vector was set to 10®. Convergence was always
reached in less than 30 iterations.

Dependant plane (G', G°):
Figure 8 shows that plane (G',G%) is very similar to that of LN-PLS2 (cf. figure 5).
Figure 8: Demographic Plane (G'.G?)
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The R? column in table 4 shows that, compared to Thematic PCR, SEER has significantly
improved model adjustment, except for population growth whose prediction is poor (R* = 0.07) for
both techniques. Prediction of ageing is much better (R? = 0.42), and that of population attraction
rates is relatively good (R?=0.61). The first two economic components F,' and F,% together with
the first risk-component F,' appear to be important to predict population attraction, and only the
first risk-component F,' together with the first resource-component F;' to predict ageing.

Table 4: Goodness of fit and _importance of SEER predictor components (3 themes model)

R? F' F/ F' F’ F' F?
G' 516 400 *** -.629 FH* 509 *** -.265 ** -.193 *
G’ 370 -.545 **
PopGrowth .070 240 *
Ageing 417 265 * 375 xx* -.652 ***
PopAttract .608 A430 *x* -.589 #** 376 *** .180 *
ActivePopAttract .608 521 #x* =556 #** 353 - 181 *

P-value coding: 0 <"***' <(.001 <"**' <0.01< '*'<0.05 <'' <]

Predictor components planes:
Economic Plane (F;', F/):

Figure 9 exhibits two easily interpretable economic components. F,' is a wealth/activity
component, the only structural direction dug up by LN-PLS2. F)* looks close to a housing
component, which has a negative partial effect on population attraction, which means that,
controlling for everything else, towns with higher attraction rates have more vacant houses and a
lower percentage of people owning their house.

Figure 9: Economic predictor plane (F,' . F\?)
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Risk Plane (F;', F):

Figure 10 exhibits a clear and interesting pattern: that of two distinct variable bundles which are
also conceptually apart: one of social risks (school delays, criminality), and one of mortality risks
owing to diseases related to alcohol and tobacco. First component F,' being negatively correlated to
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both bundles, it may be interpreted as a global security component. Its partial effect on population
attraction is positive (cf. table 4). Yet, through its intermediate position, this component clearly
appears to be an unsatisfactory compromise between two distinct risk structures. This pleads in
favour of splitting the risk theme into two sub-themes: that of social risks and that of sanitary risks.
We can see here all the benefit of graphing the themes in explanatory component planes: it allows
to investigate their structure from an explanatory viewpoint, and further refine the thematic model

appropriately.
. . . 1 2
Figure 10: Risk plane (F,' , F>*)
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Resource Plane (F;', F;%):

Figure 11 also exhibits a two-bundle structure in the resource theme, but this time, each of the first
two components matches a bundle. F5' is a climatic component opposing warm and sunny towns to
cold and rainy ones. F;* is a cultural component pointing at monuments, museums and luxury
restaurants. On the town plane, we notice the peculiar situation of Paris, which alone may account
for the second component. Indeed, here is a second benefit of thematic planes: they allow to
explore the individuals' thematic structure with respect to the explanatory model. It appears
necessary to later remove Paris from the data, or better, to replace the original variables by the
corresponding rank variables, in order to shrink the influence of outliers. For the time being, it is
not necessary to split the theme into two sub-themes (one of natural resources and one of cultural
resources), since each of the two structures is satisfactorily reflected by a component. According to
table 4, the effect of these components on population attraction are weak, but the partial effect of
F5' on ageing is important, and negative: warmer climes are linked to older populations, controlling
for all other predictive components.
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Figure 11: Resource plane (F5' . F5?)
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4.3.3. Refining the thematic model

Splitting the Risk-theme into two sub-themes (social risk and health risk), we get a 4 theme-model
(graphed in appendix 2, fig. 2c). The SEER estimation of this model does not change the
conclusions regarding the economy and resource factors (cf. fig. 13 and 16). But the risk factors are
now twofold: as shown on figures 14 and 15, we now have a social risk component (F,'") as well as
a health security component (F3'). According to table 5, the social risk component F,' appears not
to be clearly partially correlated to population attraction, whereas the health security is (with
positive effect). On the other hand, F,'is partially positively correlated to ageing: school delay is
marginally more important in areas with older populations.

Figure 12: Demographic Plane (G',G*)
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Table 5: Goodness of fit and _importance of SEER predictor components (4 themes model)

R? F' F/? ' F? Fy' Fi? F! F#
G' 528 || 397 FxF | 547 K| 244 %% | 181 *F | -363 FF* | 213 * | -236** | -185*
G’ 383 -.586 ***
PopGrowth 126 347 **
Ageing 426 =259 % | 290 ** -.630 ***
\PopAttract 607 | 427 FRE | 47T *x* 214 %% | 37 ok 260 **
ctivePopAttract | .610 | .533 *** | . 457 *** 160 * 280 ** | 190 * -.167 *

P-value coding: 0 <"***' <(.001 <"**' <0.01< "*' <0.05 <''<]

Figure 13: Economic predictor plane (F,' . F\)
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axe 2 (18.41 %)

axe 2 (22.02 %)

4.4. Conclusion: comparing PLS and SEER

Local nesting of components has allowed us to build models nested in an understandable way. This
is imperative if one wants to produce multidimensional graphs of every variable group in relation
to a model linking groups. Having a dependent group and a predictor one, we may then partition
the latter thematically (SEER), or not (LN-PLS2). Compared to non-thematic LN-PLS2, the use of
gradually refined thematic models has helped a good deal in outlining possibly important
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Figure 15: Health risk plane (F;' . F3?)
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explanatory factors. SEER components are naturally easier to interpret, for three main reasons:

> Each component being local to a thematic subspace, it has conceptual unity.

» Components are constrained to be uncorrelated within each theme, but not between themes.

Thus, they gain freedom to better adjust structures in themes.

> Thematic planes allow clearer vision of thematic structures, thus allowing to sub-partition

themes according to noticeable substructures.
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Appendix 1

Maximizing Cs or Cs does not lead to the same component.

The situation we are dealing with is that pictured on fig. 1.

Figure 1: variable group Y depending on a X-component ¥ and a 7. group

7 o e e e e'e X
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Let us consider the particular case where M = (X'PX)' and see what becomes of the two
maximizations.

o Max Cs:
Max C; < Max tr(YNY'PII, ,)

Fel(X) Fe(X)
tr(YNY'PII. ;) = tr(YNY'PII; ,) = tr(II. ,YNY 'PII, ,)
= (I, ,YN(II, ,Y)'P) = tr(Y, ,NY, ,'P) (1)

A

where : Yo, =II; Y

So: tr(YNY'PII, ,) = Ing ,(Y,N,P) (2)

Besides: Fe(X) © F=Xb

And: F=II,F+II,F

So: (F,Z) = (1 ,F,Z) = (I1,Xb,Z) = (I, Xb)®(Z) (3)

From (2) and (3),and (I1,.X b)L(Z) ,we draw:
o (YNY'PII,. ;) = Ing (Y, N, P)+In, (Y N,P)
Let: X, = IT, X
In,(Y,N,P) being constant:
Max (YNY 'PII, ) & Max In; ,(Y,N,P)

Fe(X) beR’

This latter program is none other than that of MRA (i.e. IVPCA) of (Y,N,P) onto <)~( ,) - So,
solution F is Xb with X ,b being the first component of this MRA.
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Figure 2

y2 :y3 A z

<X> 4

pl=x!

Let us now consider a very simple case, pictured on fig. 2, where X = {x', x*} with x'0x*, and Z =
{z}, with z 0 X. We obviously have then: X, = Il X = X . So, F is the first component

of MRA of (Y,N,P) onto X. Now, let Y= {)',)?, )} with y' = x' and y* =)* =z + &, where £= 0,
and N = 1. MRA of (Y,I,P) onto X is PCA of (/1yY,LP). But [1yY = {x', &2, &’ }. So this PCA
leads to F'= x'.

o Max C:
Max C; < Max A(YNY'PII, )

Fe(X) Fe(Xx)
where A;(Q) denotes the largest eigenvalue of operator Q.
YNY'PII,, u = Au = II, ,YNY'PII, , u = All; ,u
< I, ,YNY'PII, , I, ,u = AIl, ,u
So any eigenvalue of YNY'PII, , is also one of II,, YNY'PII,, =

IT, ,YNY'II, ,"P . Since, according to (1), both operators have the same trace, we may
state that they have identical eigenvalues.
So, in particular: A, (YNY'PII, ,) = A,(II, ,YNY'PII, ,) = A(Y, ,NY, ,'P)
BesideAs: A A A A
AP, ,NY,,'P) = Max v'PY, ,NY, ,/Pv = In,(V, ,,N,P) (4
v'Pv=1

A

Note that v is then the standardized first principal component of (Y rz N, P ) 's PCA, and so:
vE(F,Z) (5)
From (4) and (5), we deduce:
Al(f]F,ZNf]F,Z’P) = In(v}(f]F,Z’N’P) = In,(Y,N,P)

provided that it has maximal value for V€& < F,Z > .
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So, we may write:

Max C, < Max Max In<v>(Y,N,P)

FelX) FelX) ve(F,Z)

&  Max In (Y,N,P) (6)
ve(X,Z)
(6) is none other than the program of (Y,N,P)'s MRA onto subspace <X,Z>. So, to get the F
maximizing Cs, one has to perform this MRA, get rank 1 solution v, and then decompose v onto
<X> and <Z> . The standardized X-component of this decomposition is the sought F.

Let us apply this to the case pictured on fig. 2: MRA of (Y,/,P) onto subspace <X,Z> is PCA of
(Mexz-Y,LP). But in this case: [lxzY=Y. And (V,[,P)'s PCA leads to first component
V' =y’ =z+ &’ , whereby we get F =x".
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Appendix 2:

Thematic partitioning of predictors

Fioure 1: Thematic hierarchy of predictor partitions for the city data
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Figure 2: Some thematic models of the city data
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