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Abstract

A new subgrid model for homogeneous turbulence is proposed. The
model is used in a method of Large Eddy Simulation coupled with an
E.D.Q.N.M. prediction of the statistical properties of the small scales.
The model is stochastic in order to allow a "desaveraging" of the
informations provided by the E.D.Q.N.M. closure. It is basedon sto-
chastic amplitude equations for two~-point closures. It allows back-
flow of energy from the small scales, introduces stochasticity into
L.E.S., and is well adapted to non isotropic fields. A few results

are presented here.

1. Introduction

Direct Numerical Simulation is certainly today one of the major
tools for the study and prediction of turbulence. However, it is known
that, for flows at large Reynolds numbers it is not feasible to make
a Full Simulation over the whole range of scales of the turbulent
spectrum. Only the large scales can be simulated, and the small eddies,
or subgrid scales, have to be modelled (see for exemple Ferziger, 1982).
From a spectral point of view, it is possible to explicity take into
account the turbulent motion up to a wavenumber cutoff : KE and the

terms representing the exchanges across K¢ have to be parameterized.

Two-point closures provide an helpful analytical framework in
which to investigate and developp subgrid models. They are believed to
take correctly into account the exchange of energy between eddies of
various sizes, accordingly, they are considered as valuable tools for
the evaluation of energy flows across the wave number cutoff.
Kraichnan (1976), Leslie et al. {1979) and Chollet et al. (1981) have

particularly used two-point theories to test and improve existing

models in the caseof isotropic turbulence.



In Kraichnan (1976), Leslie (1979) and Chollet (1981) the exis-
tence of a universal behaviour for the small scale spectrum was assu-
med, which implies that K, was supposed to be situated in the inertial
range. It was then possible to derive subgrid models in which the para-
meterization was only made in terms of large scale guantities. Such
models can therefore be used in L.E.S. without requiring an explicit

computation of the small scale spectrum.

More recently, Chollet (1983) and Aupcix et al. (1983) have pro-
posed method coupling L.E.S. and E.D.Q.N.M. This type of methods simul-
taneously involves a direct simulation of the large eddies and a two-
point closure computation of the small scales. At each time step, an
information concerning the whole range of the spectrum is then availa-
ble. Such methods are well adapted to predict either situations in
which the small scales are not in equilibrium or situations in which
the wave number cutoff is not in the inertial range. They can also take

into account finite Reynolds number effects.

However an important problem is encountered when applying two-
point closures to subgrid models : the informations given by the clo=
sures are only statistically averaged informations, whereas one needs
to account for the effect of small eddies on the particular realization
of the field which is being simulated. The problem is known as the

desaveraging problem (Basdevant et al. (1978)).

A simple way to solve the desaveraging problem is to introduce
the concept of eddy viscosity. One of the advantages of subgrid models
based on this concept is in particular that they ensure a drain of
energy from the large scales to the small scales. In the case of iso-
tropic three-dimensional turbulence eddy viscosity formulations were
found to be consistent with the classical two-point closures
(Kraichnan, 1976 ; Leslie, 1979 ; Chollet, 1981), and to lead to good
predictions of the energy decay. The limitations on the use of eddy
viscosity are however known. They have been pointed out by Kraichnan
(1976) in the case of two-dimensional isotropic turbulence. For three-
dimensional non isotropic turbulence we have shown, in an earlier
study (Bertoglio and Mathieu, 1983), that the representation by an eddy

viscosity was only justified for one part of the transfer.

Two deficiencies of eddy viscosity have in particular been poin-

ted out : first, it does not provide for the possibility of back-flow

of energy from the small scales, secondly it is not stochastic and



does not account for the random forcing of small scales on large scales

(Rose,1977).In the case of a non isotropic turbulence subjected to auni-

form mean shear flow, the importance of the first deficiency was found
to be particularly large (see Bertoglio & Mathieu, 1983). As for the
lack of stochasticity, its consequences appear when the problem of pre-
dictability is considered. Let us for example consider two turbulent
fields, which are initially supposed to have identical large scales and
to differ only in their small scales. If the initial "error" is situated
in the subgrid range of the spectrum, the eddy viscosity will never
allow the "error" to contaminate the large eddies : the large scales

of the two fields will always remain identical. This is known not to

be a correct prediction.

In this paper, we present a new subgrid model in which the "desave-
raging" operation is made by introducing a stochastic term. The model
allows back-flow of energy from the small scales. It is based on the
stochastic models for the analytical theories of turbulence (Kraichnan,
1961, 1971 ; Leith, 1971 ; Frisch et al., 1974). The cases of stochastic

terms with and without memory are investigated.

The model is used in a "coupled" method in which the small scale
spectrum is taken into account by the Eddy Damped Quasi Normal closure
(Orszag, 1970), and the large scales are simulated by using a spectral
algorithm. Results are first given in the case of isotropic turbulence.
Extensions to the study of predictability and non isotropic sheared

turbulence are shortly mentioned and a few results are presented.

2. Stochastic models for two-point closures

First introduced by Kraichnan (1961), stochastic models are equa-
tions for the turbulent fluctuation which are different from the ori-
ginal Navier-Stokes equations in a sense that the original non linear
term has been altered in a random fashion. They are helpful tools for
turbulence theory since they share with the original equations many
interesting features. A remarkable property of stochastic models is
that they lead to a closed set of equations for averaged guantities,
such as double velocity correlations, without having to introduce

further assumptions.

In particular, a stochastic model leading to the equations of the



D.1.A. was proposed by Kraichnan (1970), and Leith (1971) presented a
stochastic equation corresponding to the E.D.Q.N.M. closure. We recall
here both models. In the case of D.I.A. the amplitude equation for an
isotropic turbulent field in which we include a solenoidal stirring

force F;, in order to permit stastical stationarity, is :

t
| {%N\(e} w. (Kt +J T (K9 %(R,a) 4 = qi (R,t),,ﬁ(\?,t) ()
0
where
g (K,t,3) = TK ﬂ k0 GpE,s) U(ats) PR dBd4Q (@)

A

-
is a gquantity characterizing a damping and ﬂ‘Klt) is a stochastic
v

force given by :

g (Re) =i B2 § @0 7@ 8

/
where ; and ? are stochastic variables statistically independent of

each other and such that :

(R0 5ED = (R FRED = Ry @D,

G (P,t,é) is the average infinitesimal response fonction, U(K,t,t')

is the modal time covariance :

UKt : LY /R R
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the integration _.A is over all f and & such that K,P, Q@ form a

triangle, ’Fc.‘b'm(K} satisfies :

Ry (K ) = & [ (54 25) Ka(gfﬁ-%)}

and &)K?Q is a coefficient depending on the geometry of the triad :
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x , ’L} ,’} are the interior-angle cosines opposite K ’ P , Q , respecti-

vely. L is the side of a cyclic box.

The model proposed by Leith for E.D.Q.N.M. can be considered as a
degenerated form of (1), in which all the gquantities are evaluated at

the same time, and q; is a white-noise process :

(2 ot aie) | wlfy) = qRE) 4 RIRE) 5)
¢ (K,E) = TK H beoo O (E) U(R,E)2Q d2d@ (6)
A
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in which W 1is a white noise process such that :

<wt) w(t) > = 2§ (t-t)

It is worth noting that in the E.D.Q.N.M. formulation, the memory
effects originally appearing in the D.I.A. eguations have been arti-
ficially replaced by introducing a characteristic time OKPQ“-') . We

shall use here the expression (Pouquet et al. 1975)

L e (gt (P el E
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3. Application to subgrid models

As pointed by Kraichnan (1970), these stochastic model equations
are a logical starting-point for using two-point closures for deriving
subgrid scale models. A straighforward way to derive such a model would
be to simply take into account the non linear interactions involving
at least one wavenumber larger than Kc by a stochastic amplitude equa-
tion, meanwhile interactions involving only wavenumbers smaller than “Q
would be explicitely computed in the original Navier Stokes formulation.
In the case of E.D.Q.N.M., this would lead to

{3 I (8 c)] ®y) = iR D u(Pt NCIRLT
at " 3.8K
PLK, ond QLK. (10)

for the explicit scales u-f (K(Ko) , and
{—%—E+\7Kz+ W(K:k)} “L>(‘Zyt) = (]{, (K;t) + Fi (K:t) U\)

>
for the subgrid modes W (K>Ko) , where 0" ang C‘L are respectively
given by (6) and (7), where

. oo . .
c{ (Kb = i ?-Jle/ Z_., wit) [QKP‘Q”]/ Z(ﬁt) 7.,.(%} (19

P)K( U»d/or Q)Kg_

and where
) = ’KKH beo Ocreltl Ut Pa dbde

the integration being all over the part of the f ,tQ plane- where
? 7Kc and/or Q?V(c and where K , f , Q can form a triangle.

U(Q.t) is define .
(Q:t) defined by U(Q(t/=U(Q,t,t)

We can at this point remark that the only informations concerning
the subgrid scales in the supergrid egquation (10) are statistically
averaged, therefore equation (11) can be replaced by the master equa-

tion for the kinetic energy spectrum E(\’( t)

{.%_t +2oK<}E(K,t) = h(K,t) | (14)

in which tr is the usual E.D.Q.N.M. transfer term



Unfortunately the complete evaluation of q? would require to
much computational effort. Summing over all the subgrid-modes would
result in a task comparable with the one required for a Full Direct
Simulation. In the case of a D.I.A. type model, storage problems would

furthermore be introduced by the explicit presence of memory effects.

Our prescription is to replace qfYZIE), which is a sum of pro-
ducts of stochastic processes, by a single stochastic process wich would
satisfy relation (12) only in a statistically averaged way. If we name

11+'“2It} this new stochastic process, the equation for the explicit
scales (10) then becomes :

PYITY AN Tﬂxlt)} WK ) = - LP-JM(V‘/

S(Pe) wS(@t
{ﬂ U (RE) Up(@rt)

Pra=K
?< KC and Q(Kc

L THREY & F(RY) (15
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and the condition on { can be written as :
7 +/0 L/ >, >, 3 L)
(@ TTRED = (4 (Kb HIR) (16)

C > .
Using the definition of ﬁc , we can evaluate the two time corre-

lations : N
3 o ..
>3 2 s 2F e e b [ET) S (§ K ekl f KR
(g7 (Re) g5 RE) 4178 G K ED= b () ) ) e ™
-_ O pork’#-R
where the guantity t:> , often called backscatter or input term, is

(k) = f Brat] byog 1 E(BE) E(Q) dPdd  (7)
A Pa |

Replacing in eguation (16),we obtain:

(T."KE) Ty (M/J’{Rt/T(Kt}) ( ) (H/< )m For =R
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E Y

= 0 - frK=_R

in which L is assumed to be large.



We have to specify now the statistical distribution of 17+: ﬂi>
being a sum of a large number of stochastic terms, it seems reasonable
to assume 12+ to be gaussian. We shall discuss how to generate 17

in appendix 1.

The final set of equations is then (13), (14), (15), (17) and (18),
together with the relations characterizing the stochastic process (al.1)
and (Al.2). Equation (15) is the equation governing the evolution of the
large scales, (14) is the rate equation for the small scale spectrum,
and relations (13), (17) and (18) are characterizing the coupling terms :

they take into account interactions across the wavenumber cutoff.

The operator(f ‘>appearing in (18),as well as in the definition

of U for KK, -

(5-109) T _ (L G iR

denotes ensemble average. In the case of L.E.S. we would have to consi-

der N realizations, corresponding to N different initial conditions
and N different sets of random numbers in the generation of T:+ , and
average over the results. On the basis of practical considerations, 1t

was set N equal to 1.

An advantage of the model immediately appears : it will introduce
stochasticity in L.E.S. as we shall see in section 5 when the model will
be applied to the study of predictability. A second advantage appears
when anisotropic turbulence is considered. The equivalent of eguation
(18) can then be written as

LRET, *RE)AT  ROT e = (arr) S(e-t) Ty () F,;»\%‘g.)i

- =
=0 ?ov K*'R
: : L , :
in which T? is the anisotropic backscatter (for a complete expres-
sion of T*’ see Bertoglio & Mathieu, 1983). Since it is possible to

find ‘T* satisfying (19), it then becomes p0551ble to preserve comple-
tely the anisotropic characteristics of 'Tb in the subgrid model.
This was impossible when using the classical concept of eddy viscosity
as we pointed out in an earlies paper (Bertoglio & Mathieu, 1983).
We shall shortly discuss the application of the model to non isotropic

sheared turbulence in section 5.



4. Introduction of a stochastic term with memory

The presence of a white-noise process in Tzf can be judged to
be rather unphysical, and one could try to improve the subgrid model
presented in section 3 by introducing a memory effect in
the stochastic process. Since memory is present in the model amplitude
equation for D.I.A., relation (3) constitute§a logical starting point

_ to make such an improvement.

It is however not our purpose here to work completely in the frame-
work of D.I.A., computation of the small scales spectrum would be to
cumbersome to permit extensions to anisotropic turbulence. Besides

D.I.A. is not statistically Galilean Invariant.

Let us make crude assumptions and propose the following approach.
We assume that the memory in 1:+ is an exponentially decreasing func-
tion of time
_t-¥
<-l'i+(\'(',\:)'\"& <T+ -Kt) > e Emlk) (30)

(W )

in which tNL(K7 is a characteristic time.

It is then possible to determine tNL(K)by using the D.I.A. sto-
chastic model equation. This can be done in the case of a stationary
turbulence, if we assume that the two-time velocity correlations are

exponentially decreasing functions of time
QuiRe) uj(-ReTy= (el HEGDNC

The calculation is presented in appendix 2.

-I-
The determination of the one time correlation <T (\r( t’) KH>
is some what more complex that in the case of the white- noise process,
since E.D.Q.N.M. cannot now directly provide this quantity. Relation

(18) was valid only for a white-noise. We have here to satisfy

(TR w4 T e SR = @3(&-3- ) trM(Kl )

(K¢ re)



where tk+7is still given by (17). Eguation (22) means that the amount
of energy injected in the super-grid modes by the stochastic process

must be statistically equal to its E.D.Q.N.M. determination.
Since the velocity fluctuation appears in it, equation (22) cannot

be used in a straightforward way. We have to write the left hand side

in the form
t
-, {, = - - - ,
<'IT'XL(K4{—/ UA(—KIt) +_[_‘)+(..K,l'} u‘<(K,l'}>: f G(K’t,t)
0

« (LR TR 4 TR TREY) ) dE7 (9
(HLiKe)

in which the infinitesimal response function was assumed to be statis-
tically independent of 1;

Assuming furthermore that :

_E-E’
GIREE) = e Ot o

(K¢, ExF)

and using (20) and (23) give for a stationary turbulence

2’ <TL+(\?/ t) T:X +("th) > =
2T
)

G%[K) is a characteristic time of the response of the large scale

3 .

\‘i‘ r ] (ﬁ‘ﬂf CTTRS
Ocl)  En(¥ I e LT

field, it can therefore be estimated at each time step from the result
of L.E.S.
tNL“Q is the correlation time of the stochastic process. It can
be determined by using (A23 ). It could also be arbitrarily fixed and
used as the only adjustable parameter in the model. In the limit
tNL———? O equations (25) and (20) degenerate into equation (18),

which means that the memory model degenerated into the white~noise model.



The damping term appearing in (15)
-»
T7E) w (K t)

is not modified here. We do not use a term involving a time integration
such as the one encountered in (1) on the basis of practical conside-

rations.

The final set of equations for the model with memory is then :
(13), (14), (15), (17), (20), (25), (Al.l) and (Al.2), together with

(A2.3) which specifies the correlation time of the subgrid term.

5. Results

The model has first been used to compute the decay of an isotropic
turbulence. A numerical code has been written for the simulation of the
large eddies, following the method proposed by Orszag & Patterson (1972).
We used a 167 grid. A few runs were performed with a 323 grid. The ini-
tial data are generated as suggested by Rogallo (1981). Since the tri-
ple velocity correlations are initially equal to zero, we used relation
(8) to specify the E.D.Q.N.M. characteristic time. This form ensures
initial compatibility between L.E.S. and E.D.Q.N.M. since it also cor-

responds to {uwup=0 at =0 (Aaupoix, personnal communication).

The first results showed a discontinuity in the slope of the energy
spectrum at the wavenumber cutoff. Our interpretation was that the
effect of the damping term G7 on the characteristic correlation times
of the supergrid modes was to strong to be compatible with E.D.Q.N.M..
Transfers between supergrid modes were then underestimated in compari-
son with E.D.Q.N.M., and accordingly they were unable to balance the

energy drain across the cutoff in a correct way.

This undesirable behaviour was cured by a modification of the
E.D.Q.N.M. characteristic time for the supergrid modes. Our proposition
is to identify 7(&(,@'with the inverse of the characteristic time of
the average response fonction, a quantity which is directly deduced

from the computed scales

1K) = 4 b K ¢ Ve
’ 9@“’(1%}
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In order to ensure continuity of ? atb(:&nge furthermore write

) 2 X /¢
(K, = ij__ L0355 | PPEEDAT] 4 oK
7 8¢ (Kt A

e KHK,

With this modification, the behaviour of the energy spectrum E(KJ?
appears to be correct. In figure 1 we have plotted a spectrum obtained
in the case of a freely evolving isotropic turbulence. The 163 grid has
been used and the stochastic term includes memory effects ( tpu_arbitra-

rily fixed).

On figure 2 the backscatter predicted by E.D.Q.N.M. tr+>(K,t)
is compared with the effective value actually injected in L.E.S. by the
stochastic term, called tk':}z . The agreement is reasonably good. In
this case the 323 grid has been used. The stochastic process is without
memory ( t~L=:At Y. In the case of a stochastic process including memory
effects, the agreement would be less satisfactory since,for a freely
evolving turbulence/equation (25) is not exactly statisfied. On figure
2, the term characterizing the drain of energy from the large scales

to the small scales

E 77 (K k) =2 T7(KY) E(KE)

has also been plotted.

Results concerning the turbulent kinetic energy decay are presen-
ted on figure 3. Evolutions of the turbulent kinetic energy are plotted.
We compare the kinetic energy of the supergrid field to the kinetic
energy of the full field. The stochastic process used here includes

memory effects, the characteristic time tNL is given by (A2.3).

+ .
The advantage of including memory in Wz does not appear clearly
when comparing the results. Quantities like double velocity correla-
tions, energy spectra, are only very slightly modified. Only the

skewness of the large scale field seems to be affected.

It is beyond the scope of the present paper to give a full presen-

tation of the extensions to the study of predictability and to the



1 T T
E
(cE'nkgs*) « LES
t«tt\. o EDQNM
- :\'
107 Y ey -
R
a
°
A
|10 6§ -
N
o.\
1 []
o
(o]
[+
01.1 1I' 1q. K ( s

Figure 1 - Kinetic energy spectrum. Results of L.E.S.
- 3
0.425, K, = 1.21 cm 1, 16°grig, by = 0.15 s.

C ; t =
(crmis-3)
500 s tr” eponm

-500L

*,and E.D.Q.N.M.

Figure 2 - Comparison between the E.D.Q.N.M. evaluation of the subgrid

terms tp+>, tp. >, and the values effectively injected in the

simulation : tngf ’ tr-:“ ;

t=o0.5s, 32° gria, ty = AL .



prediction of non-isotropic homogeneous turbulence. Nevertheless some

results are presented here as examples.

In the case of predictability two realizations of the large eddies
have to be simulated, simulatneously with a closure computation of the
subgrid energy spectrum and of the "error" spectrum. The correlation
between the stochastic subgrid terms acting on the two realizations
is fixed by the closure. On figure 4, the growth of the "error" appears
in the spectra. On the first stage, only the subgrid eddies are conta-
minated. Latter the error affects the supergrid field. It is worth
pointing out that the error spectrum E(KHkeeps a K¥ siope on both
sides of the cutoff.

When non-isotropic turbulence is investigated, a coordinate trans-
formation have to be introduced in the spectral simulation (Rogallo,
1981). In the E.D.Q.N.M. computation, simplifications are introduced
in order to reduce the computational cost (Bertoglio, 1981). The model
is applied to an initially isotropic turbulence subjected to a uniform
mean shear flow. Spectral results are plotted in figure 5, they are
compared with results obtained with an eddy viscosity formulation,
also coupled with E.D.Q.N.M., The improvement due to the stochastic mo-
delling of the backscatter appears on the component normal to the
velocity in the plane of the shear q%a(KH. Another interesting result
is that the slope of the Reynolds stress spectrum tends to a |<-7/3

behaviour on both sides of ‘(c (figure 6).

6. Conclusion

A new subgrid model has been presented. It has been shown to give
satisfactory results in the case of isotropic turbulence. Since the
model is stochastic it permits to take into account effects neglected
by eddy viscosity formulations, for example in the case of predictabi-
lity studies. When non isotropic turbulence is considered, the model

seems to do better than eddy viscosity.

The model have been used in a method involving both L.E.S. and
E.D.Q.N.M. computations. It is therefore guite uneasy to apply to
industrial flows. It can however be used as a guidance to developp
simpler model in which the stochastic modelling of energy back-flows

could be retained. It can also be used to test "defiltering" methods
(Bardina et al., 1983). '
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Extensions to two-dimensional turbulence could be of interest

since in this case back-flows of energy are important.

Appendix 1 - Generation of a stochastic process

We propose here a method to generate a stochastic terme

such as the averaged guantity

(THkE) TR

satisfiesrelation (18), or, more generally, relations (20) and (25).

In other words, the stochastic process must have a given characteristic
time and its single time correlation must be equal to a given value.
We call this value Pté (b?,t).

Since incompressibility implies
Ki Flé (K(t) =0

it is convenient to introduce a new frame, an axis of which is parallel
-

to K , for example K'S . In this new frame all components correspon-

ding { =3 vanish. We can then consider that L and J take only the

values 1 and 2.

In this new frame F‘J is an isotropic tensor if turbulence is
isotropic. However since the model is supposed to be valid for non iso-
tropic fields, we consider the general case in which ;g is not isotro-

pic. - ¥'5 is real and symmetrical.

Details concerning the generation of are given in Bertoglio
and Mathieu (1984). The final result is written in a discrete form and

for a fixed wvalue of K . It is, at the time step number (n)

e 12y
+
-ri+ (n+4.} = ('i - é——t- )Ti(n) + ]344(”4) Ei{n) [:_A_E e in#y)

NL NL

19 . /
D 8( Zﬁ%nu/

+ ﬁ"(n,u,) &m o

| (A1 .4q)



Y oom
+ _ At + At ' ‘ﬂ?.("_j}
T2‘ (n+4.) - ( - F— ) T; (n) + P?Z(Md (F (n) [»NL)

NL

amy
+ Pﬂ(nn) (?«mt ) e fo )

1A 1.1b)

where AP is the time step, where the ﬁ‘(, are solutions of :

(Y'-H(M‘L)—F‘“(n)) Ene/pt = Fam) ﬁfz(""i) v (2o At/t

: P“(nﬂ} = FM(n) NL

I

' -F tN - ?4 n y +

| P&(n o = (me) 2m) Lab = Ful )ﬁéi(“ 4) s (3 _Al:/tm_)

g, F&(n)

: P - (Fii\rw»j.)"%Z(n)) tNL/At F'12(“) 2 _bb/ )

LT AR(n4) Pe«(m—i) = + 1/ L

i (fu(n) Fzztnl)w G\'M(n) FZ?.(n)) ( N

|

! \3‘%2(“1} = ﬁ;d (n+4) (A1.2)

/ . \
L{)“(n)' ({g(n) and Lhn) constitute a set of random numbers independent
of each other, with uniform distributions between 0 and 1.
Such a process is not gaussian, but it has been found to be conve-

nient, at least for tm,» At (Bertoglio & Mathieu, 1984).

Appendix 2 - Determination of characteristic time ‘;NL(K)

Starting from equation (20), and replacing q£> by its D.I.A.

expression

(k)= - i Pjm (R fae }95(?,&; £l
PKe and/or @)\,

qive .

<.
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P, omd/,, QI (A2 -i)

X (<ue(?,t) Nu(“?;t,)> <um(al*’) “r‘('@‘/tl/>

+ (e e LB Cun@8) 1y T)

For a stationary turbulence, replacing the two time correlations

by the exponential forms (20) and (21), then integrating between t'=0
/

and t=t give:

tl\/L (K} < L+(F('/t) 1‘}-+(-r(’,l’}> = RM(E/ TZ’”““Z) (A2-2)
Z 1 {<b(( (5,(’) Mn(-ﬁt'b <“m{a'lf'}“r{'-éll')>

Pri-ic (eY) + 7(@t)
7 + (u (B (D Cam@ 4y (B

f)l(c ‘""%r Q ‘((

for large values of t .

We can now use (A2.1) for C= ' o express <_E+(F(’,(’} T;+(-Et’}>

in (A2.2). We finally obtain that tNL is equal to the R.H.S. of
(A2.2) divided by the R.H.S. of (A2.1). In the case of an isotropic

turbulence it comes :

Il Cral) rre KO E(re) Efor) dP4R

b (K) =

beeo & E(PH Efat) P40
HA, e 5 (P E(Qt) C e

where :

A
7(P,l')+ 7(6?,1')

&m (b=
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