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BOUNDARY BEHAVIOR OF FUNCTIONS IN THE DE

BRANGES–ROVNYAK SPACES

EMMANUEL FRICAIN, JAVAD MASHREGHI

Abstract. This paper deals with the boundary behavior of functions in the de Branges–

Rovnyak spaces. First, we give a criterion for the existence of radial limits for the

derivatives of functions in the de Branges–Rovnyak spaces. This criterion generalizes a

result of Ahern-Clark. Then we prove that the continuity of all functions in a de Branges–

Rovnyak space on an open arc I of the boundary is enough to ensure the analyticity of

these functions on I. We use this property in a question related to Bernstein’s inequality.

1. Introduction

For 0 < p ≤ ∞, let Hp(D) denote the classical Hardy space of analytic functions on

the unit disc D := {z ∈ C : |z| < 1}. As usual, we also treat Hp(D) as a closed subspace

of Lp(T, m), where T := ∂D and m is the normalized arc length measure on T. Let b be

in the unit ball of H∞(D). Then the canonical factorization of b is b = BF , where

B(z) = γ
∏

n

|an|
an

an − z

1 − anz
, (z ∈ D),
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is the Blaschke product with zeros an ∈ D satisfying the Blaschke condition
∑

n(1 −
|an|) < +∞, γ is a constant of modulus one, and F is of the form

F (z) = exp

(

−
∫

T

ζ + z

ζ − z
dσ(ζ)

)

, (z ∈ D),

where dσ = − log |b| dm+dµ and dµ is a positive singular measure on T. In the definition

of B, we assume that |an|/an = 1 whenever an = 0. In this paper, we study some aspects

of the de Branges–Rovnyak spaces

H(b) := (Id − TbTb)
1/2H2.

Here Tϕ denotes the Toeplitz operator defined on H2 by Tϕ(f) = P+(ϕf), where P+ is

the (Riesz) orthogonal projection of L2(T) onto H2. In general, H(b) is not closed with

respect to the norm of H2(D). However, it is a Hilbert space when equipped with the

inner product

〈 (Id − TbTb)
1/2f, (Id − TbTb)

1/2g 〉b = 〈f, g〉2,

where f and g are chosen so that

f, g⊥ ker (Id − TbTb)
1/2.

As a very special case, if |b| = 1 a.e. on T, or equivalently when b is an inner function

for the unit disc, then Id− TbTb is an orthogonal projection and the H(b) norm coincides

with the H2 norm. In this case, H(b) becomes a closed (ordinary) subspace of H2(D),

which coincides with the shift-coinvariant subspace Kb := H2 ⊖ bH2.

This paper treats two questions related to the boundary behavior of functions in H(b).

The first of these concerns the existence of radial limits for the derivatives of functions in

the de Branges–Rovnyak spaces. More precisely, given a non-negative integer N , we are

interested in finding a characterization of points ζ0 ∈ T such that every function f in H(b)

and its derivatives up to order N have radial limits at ζ0. Ahern and Clark [1] studied

this question when b is an inner function and they got a characterization in terms of the

zeros sets (an) and the measure µ. In Section 3, we show that their methods in [1, 2]
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can be extended in order to obtain similar results for the general de Branges–Rovnyak

spaces H(b), where b is an arbitrary element of the unit ball of H∞. Let us also mention

that Sarason [11, page 58] has obtained another criterion in terms of the measure whose

Poisson integral is the real part of
λ + b

λ − b
, with λ ∈ T. Recently, Bolotnikov and Kheifets

[3] gave a result, in some sense more algebraic, in terms of the Schwarz-Pick matrix.

Our second theme is related to the analytic continuation of functions in H(b) through

a given open arc of T. In [7], in the case where b is an inner function, Helson proved that

every function in Kb has an analytic continuation through an open arc I of T if and only

if b has an analytic continuation through I. Then, in [11, page 42], Sarason extended

this result to the de Branges–Rovnyak spaces H(b), when b is an extreme point of the

unit ball of H∞. In the last section, we study the question of continuity on the open

arc I for functions in H(b). In particular, we show that the continuity on some open arc

of the boundary of all functions in H(b) implies the analyticity on this arc. We apply

this remarkable property to discuss a possible generalization of the Bernstein’s inequality

obtained by Dyakonov [5] in the model space Kb.

2. Preliminaries

We first recall some basic well-known facts concerning reproducing kernels in H(b). For

any λ ∈ D, the linear functional f 7−→ f(λ) is bounded on H2(D) and thus, by Riesz’

theorem, it is induced by a unique element kλ of H2(D). On the other hand, by Cauchy’s

formula, we have

f(λ) =
1

2π

∫ 2π

0

f(eiϑ)

1 − λe−iϑ
dϑ, (f ∈ H2(D), λ ∈ D),

and thus

kλ(z) =
1

1 − λz
, (z ∈ D).

Now, since H(b) is contained contractively in H2(D), the restriction to H(D) of the eval-

uation functional at λ ∈ D is a bounded linear functional on H(D). Hence, relative to
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the inner product in H(b), it is induced by a vector kb
λ in H(b). In other words, for all

f ∈ H(b), we have

f(λ) = 〈f, kb
λ〉b.

But if f = (Id − TbTb)
1/2f1 ∈ H(b), we have

〈f, (Id − TbTb)kλ〉b = 〈f1, (Id − TbTb)
1/2kλ〉2 = 〈f, kλ〉2 = f(λ),

which implies that

kb
λ = (Id − TbTb)kλ.

Finally, using the well known result Tbkw = b(w)kw, we obtain

kb
λ(z) =

1 − b(λ)b(z)

1 − λz
, (z ∈ D).

We know (see [11, page 11]) that H(b) is invariant under the backward shift operator

S∗ and, in the following, we use extensively the contraction X := S∗|H(b). Its adjoint

satisfies the important formula

X∗h = Sh − 〈h, S∗b〉b b,(2.1)

for all h ∈ H(b) (see [11, page 12]).

We end this section by recalling the definition of the spectrum of a function b in the

unit ball of H∞(D) (see [9, page 103]). A point λ ∈ D is said to be regular (for b) if

either λ ∈ D and b(λ) 6= 0, or λ ∈ T and b admits an analytic continuation across a

neighbourhood Vλ = {z : |z − λ| < ε} of λ with |b| = 1 on Vλ ∩ T. The spectrum of b,

denoted by σ(b), is then defined as the complement in D of all regular points of b.

3. Existence of derivatives for functions of de Branges–Rovnyak spaces

We first begin with a lemma which is essentially due to Ahern-Clark [1, Lemma 2.1].
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Lemma 3.1. Let S1, . . . , Sp be bounded commuting operators of norm less or equal to 1 on

a Hilbert space X. Let (λ1, . . . , λp) ∈ Tp such that Id− λjSj is one to one. Furthermore,

let (λ
(n)
1 , . . . , λ

(n)
p ) ∈ Dp tends nontangentially to (λ1, . . . , λp) as n → +∞. Then, for any

y ∈ X, the sequence wn := (Id − λ
(n)
1 S1)

−1 . . . (Id − λ
(n)
p Sp)

−1y is uniformly bounded if

and only if y belongs to the range of the operator (Id − λ1S1) . . . (Id − λpSp), in which

case, wn tends weakly to w0 := (Id − λ1S1)
−1 . . . (Id − λpSp)

−1y.

Proof: If ‖Sj‖ < 1, then the operator Id − λjSj is invertible and (Id − λ
(n)
j Sj)

−1

tends to (Id − λjSj)
−1 in operator norm, as n → +∞. Therefore, we see that we can

assume that all operators Sj are of norm equal to 1. This case is precisely the result of

Ahern-Clark.

�

The following result gives a criterion for the existence of the derivatives for functions

of H(b) and it generalizes the Ahern-Clark result.

Theorem 3.2. Let b be a point in the unit ball of H∞(D) and let

(3.1) b(z) = γ
∏

n

( |an|
an

an − z

1 − anz

)

exp

(

−
∫

T

ζ + z

ζ − z
dµ(ζ)

)

exp

(
∫

T

ζ + z

ζ − z
log |b(ζ)| dm(ζ)

)

be its canonical factorization. Let ζ0 ∈ T and let N be a non-negative integer. Then the

following are equivalent.

(i) for every function f ∈ H(b), f(z), f ′(z), . . . , f (N)(z) have finite limits as z tends

radially to ζ0;

(ii) for every function f ∈ H(b), |f (N)(z)| remains bounded as z tends radially to ζ0;

(iii)
∥

∥∂Nkb
z/∂zN

∥

∥

b
is bounded as z tends radially to ζ0;

(iv) X∗Nkb
0 belongs to the range of (Id − ζ0X

∗)N+1;

(v) we have

∑

n

1 − |an|2
|ζ0 − an|2N+2

+

∫ 2π

0

dµ(eit)

|ζ0 − eit|2N+2
+

∫ 2π

0

∣

∣ log |b(eit)|
∣

∣

|ζ0 − eit|2N+2
dm(eit) < +∞.
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Proof:

(i) =⇒ (ii): it is obvious.

(ii) =⇒ (iii): for a point z in D, the function
∂Nkb

z

∂zN
is easily seen to be the kernel

function in H(b) for the functional of evaluation of the Nth derivative at z:

f (N)(z) = 〈f,
∂Nkb

z

∂zN
〉b, ∀f ∈ H(b).(3.2)

Therefore, the implication (ii) =⇒ (iii) follows from the principle of uniform boundedness.

The equivalence of (i) and (iii) is not new and can be found in [11, page 58].

(iii) =⇒ (iv): using the fact that kb
z = (Id− zX∗)−1kb

0 (see [11, page 42]), we easily get

∂Nkb
z

∂zN
= N !(Id − zX∗)−(N+1)X∗Nkb

0.(3.3)

We know from [6, Lemma 2.2] that σp(X
∗) ⊂ D and thus the operator Id − ζ0X

∗ is one-

to-one. By assumption, (Id − znX
∗)−(N+1)X∗Nkb

0 is uniformly bounded for any sequence

zn ∈ D tending radially to ζ0. Hence, by Lemma 3.1, X∗Nkb
0 belongs to the range of

(Id − ζ0X
∗)N+1.

(iv) =⇒ (i): using once more Lemma 3.1 with p = N + 1, S1 = · · · = Sp = X∗,

λ1 = · · · = λp = ζ0 and y = X∗Nkb
0, we see that (iv) implies that (Id−znX∗)−(N+1)X∗Nkb

0

tends weakly to (Id − ζ0X
∗)−(N+1)X∗Nkb

0, for any sequence zn ∈ D tending radially to

ζ . Hence (3.2) and (3.3) imply that, for every function f in H(b), f (N)(z) has a finite

limit as z tends radially to ζ0. Now of course, for every 0 ≤ j ≤ N , (iv) ensures that

X∗jkb
0 belongs to the range of (Id− ζ0X

∗)j+1 and similar arguments show that, for every

function f in H(b), f (j)(z) has a finite limit as z tends radially to ζ0.

(v) =⇒ (iii): without loss of generality we assume that ζ0 = 1. Using Leibnitz’ rule, by

straightforward computations we obtain

(3.4) kb
ω,N(z) :=

∂Nkb
ω

∂ωN
(z) =

hb
ω,N (z)

(1 − ωz)N+1
,
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with

(3.5) hb
ω,N(z) = N !zN − b(z)

N
∑

j=0

(

N

j

)

b(j)(ω)(N − j)!zN−j(1 − ωz)j .

Hence, by (3.2), we have
∥

∥

∥

∥

∂Nkb
ω

∂ωN

∥

∥

∥

∥

2

b

= (kb
ω,N)(N)(ω),

and thus, we need to prove that (kb
r,N)(N)(r) is bounded as r → 1−.

But the condition (v) clearly implies that

∑

n

1 − |an|2
|ζ0 − an|j

+

∫ 2π

0

dµ(eit)

|ζ0 − eit|j +

∫ 2π

0

∣

∣ log |b(eit)|
∣

∣

|ζ0 − eit|j dm(eit) < +∞,

for 0 ≤ j ≤ 2N + 2 and then it follows from [2, Lemma 4] that

lim
r→1−

b(j)(r) and lim
R→1+

b(j)(R)

exist and are equal. Here we extend the function b outside the unit disk by the formula

(3.1), which represents an analytic function for |z| > 1, z 6= 1/an. We denote this function

also by b and it is easily verified that it satisfies

b(z) =
1

b(1/z)
, ∀z ∈ C.(3.6)

Therefore, there exists R0 > 1 such that b has 2N + 1 continuous derivatives on [0, R0].

Now take R−1
0 < r < 1. Noting that b can have only a finite number of real zeros, we

can assume that the interval (R−1
0 , 1) is free of zeros. Then straightforward computations

using (3.5) and (3.6) show that hb
r,N and its first N derivatives must vanish at z = 1/r.

Therefore we can write, for s ∈ (0, 1),

hb
r,N(s) =

∫ 1

0

d

dt
hb

r,N

(

1

r
+ t(s − 1

r
)

)

dt

=

(

s − 1

r

)
∫ 1

0

(hb
r,N)′

(

1

r
+ t(s − 1

r
)

)

dt

=

(

s − 1

r

)2 ∫ 1

0

∫ 1

0

(hb
r,N)′′

(

1

r
+ tu(s − 1

r
)

)

t du dt.
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Continuing this procedure, we get

hb
r,N(s) =

(

s − 1

r

)N+1∫ 1

0

∫ 1

0

. . .

∫ 1

0

(hb
r,N)(N+1)

(

1

r
+ t1t2 . . . tN+1(s −

1

r
)

)

m(t) dt1 . . . dtN+1,

where m(t) is a monomial in t1, . . . , tN+1. Hence, using (3.4), we obtain

kb
r,N(s) =

1

rN+1

∫ 1

0

∫ 1

0

. . .

∫ 1

0

(hb
r,N)(N+1)

(

1

r
+ t1t2 . . . tN+1(s −

1

r
)

)

m(t) dt1 . . . dtN+1.

But, thanks to properties of b, we can differentiate under the integral sign to get

(kb
r,N)(N)(s) =

1

rN+1

∫ 1

0

∫ 1

0

. . .

∫ 1

0

(hb
r,N)(2N+1)

(

1

r
+ t1t2 . . . tN+1(s −

1

r
)

)

v(t) dt1 . . . dtN+1,

where v(t) is a monomial in t1, . . . , tN+1. Since (hb
r,N)(2N+1) is bounded on (0, R0), we

deduce that |(kb
r,N)(N)(r)| ≤ 1

rN+1‖(hb
r,N)(2N+1)‖∞, which is bounded as r → 1−.

(iii) =⇒ (v): here we also assume that ζ0 = 1. According to [1, Lemma 4.2] we can take

a sequence (Bj)j≥1 of Blaschke products converging uniformly to b on compact subsets of

D and such that

∑

k

1 − |aj,k|2
|1 − raj,k|2N+2

−→
j→+∞

∑

k

1 − |ak|2
|1 − rak|2N+2

+

∫ 2π

0

dµ(eit)

|eit − r|2N+2
+

∫ 2π

0

| log |b(eit)||
|eit − r|2N+2

dm(eit),

where (aj,k)k≥1 is the sequence of zeros of Bj . As before, let kb
ω,N :=

∂Nkb
ω

∂ωN
and let

k
Bj

ω,N :=
∂Nk

Bj
ω

∂ωN
. Hence, we have

k
Bj

ω,N(z) =

N !zN − Bj(z)
N

∑

p=0

(

N

p

)

B
(p)
j (ω)(N − p)!zN−p(1 − ωz)p

(1 − ωz)N+1
(3.7)

and thus k
Bj

ω,N tends to kb
ω,N uniformly on compact subsets of D. Therefore,

lim
j→+∞

(k
Bj

ω,N)(N)(ω) = (kb
ω,N)(N)(ω).

But,
∥

∥

∥

∥

∂Nkb
ω

∂ωN

∥

∥

∥

∥

2

b

= (kb
ω,N)(N)(ω), and

∥

∥

∥

∥

∥

∂Nk
Bj
ω

∂ωN

∥

∥

∥

∥

∥

2

2

= (k
Bj

ω,N)(N)(ω),
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and condition (iii) implies that there exists C1 > 0 such that, for all 0 < r < 1, we have

|(kb
r,N)(N)(r)| ≤ C1. Therefore, for all 0 < r < 1, there exists jr ∈ N, such that for j ≥ jr,

we have
∥

∥

∥

∥

∥

∂Nk
Bj
r

∂rN

∥

∥

∥

∥

∥

2

2

= |(kBj

r,N)(N)(r)| ≤ C1 + 1.

Moreover, using (3.7), we see that

(1 − rz)N+1∂Nk
Bj
r

∂rN
(z) = N !zN − Bj(z)gj(z),

where gj ∈ H2. Hence, it follows from [1, Theorem 3.1] that there is a constant K

(independent of r) such that

∑

k

1 − |aj,k|2
|1 − raj,k|2N+2

≤ K, (j ≥ jr),

Letting j → +∞, we obtain

∑

k

1 − |ak|2
|1 − rak|2N+2

+

∫ 2π

0

dµ(eit)

|eit − r|2N+2
+

∫ 2π

0

| log |b(eit)||
|eit − r|2N+2

dm(eit) ≤ K

for all r ∈ (0, 1). Now we let r → 1−, we get the desired condition (v).

�

4. Continuity and analytic continuation for functions of the de

Branges–Rovnyak spaces

In this section, we study the continuity and analyticity of functions in the de Branges–

Rovnyak spaces H(b) on an open arc of T. As we will see the theory bifurcates into two

opposite cases depending whether b is an extreme point of the unit ball of H∞(D) or not.

Let us recall that if X is a linear space and S is a convex subset of X, then an element

x ∈ S is called an extreme point of S if it is not a proper convex combination of any two
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distinct points in S. Then, it is well known (see [4, page 125]) that a function f is an

extreme point of the unit ball of H∞(D) if and only if
∫

T

log(1 − |f(ζ)|) dζ = −∞.

The following result is a generalization of results of Helson [7] and Sarason [11]. The

equivalence of (i), (ii) and (iii) were proved in [11, page 42] under the assumption that

b is an extreme point. Our contribution is the last two parts. The mere assumption of

continuity implies analyticity and this observation has interesting applications.

Theorem 4.1. Let b be in the unit ball of H∞(D) and let I be an open arc of T. Then

the following are equivalent:

(i) b has an analytic continuation across I and |b| = 1 on I;

(ii) I is contained in the resolvent set of X∗;

(iii) any function f in H(b) has an analytic continuation across I;

(iv) any function f in H(b) has a continuous extension to D ∪ I;

(v) b has a continuous extension to D ∪ I and |b| = 1 on I.

Proof: (i) =⇒ (ii): since |b| = 1 on an open interval, it is clear that b is an extreme

point of the unit ball of H∞(D). In that case, we know that the characteristic function

of the operator X∗ (in the theory of Sz-Nagy and Foias) is b (see [10]). But then this

theory tells us that σ(X∗) = σ(b) (see [9, Theorem 2.3.4., page 102]). Therefore, if b has

an analytic continuation across I and |b| = 1 on I, then I is contained in the complement

of σ(b) and thus I is contained in the resolvent set of X∗.

(ii) =⇒ (iii): for f ∈ H(b), we have

f(ω) = 〈f, kb
ω〉b = 〈f, (Id − ωX∗)−1kb

0〉b.

Now if I is contained in the resolvent set of X∗, then the vector valued function ω 7−→
(Id − ωX∗)−1kb

0, thought of as an H(b)-valued function, can be continued analytically

across I and thus the condition (iii) follows.
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(iii) =⇒ (iv): is clear.

(iv) =⇒ (v): let ω0 ∈ D such that b(ω0) 6= 0. Since
1 − b(ω0)b(z)

1 − ω0z
belongs to H(b), it has a

continuous extension to D∪ I. Therefore b also has a continuous extension to D∪ I. Now

let ζ0 be a point of I. An application of the principle of uniform boundedness shows that

the functional on H(b) of evaluation at ζ0 is bounded. Let kb
ζ0

denote the corresponding

kernel function. The family kb
ω tends weakly to kb

ζ0
as ω tends to ζ0 from D. Thus, for

any z ∈ D, we also have

kb
ζ0

(z) =〈kb
ζ0

, kb
z〉b = lim

ω→ζ0
〈kb

ω, kb
z〉b

= lim
ω→ζ0

1 − b(ω)b(z)

1 − ωz
=

1 − b(ζ0)b(z)

1 − ζ0z
.

In particular, the function
1 − b(ζ0)b(z)

z − ζ0
is in H2(C+), which is possible only if |b(ζ0)| = 1.

Hence we get that |b| = 1 on I.

(v) =⇒ (i): follows from standard facts based on the Schwarz’s reflection principle.

�

As we have seen in the proof of Theorem 4.1, one of the conditions (i)−(v) implies that

b is an extreme point of the unit ball of H∞(D). Thus, the continuity (or equivalently, the

analytic continuation) of b or of the elements of H(b) on the boundary completely depend

on b being an extreme point or not. If b is not an extreme point of the unit ball of H∞(D)

and if I is an open arc of T, then there exists necessarily a function f ∈ H(b) such that

f has not a continuous extension to D ∪ I. On the opposite case, if b is an extreme point

such that b has continuous extension to D ∪ I with |b| = 1 on I, then all the functions

f ∈ H(b) are continuous on I (and even can be continued analytically across I).

Theorem 4.1 shows that the de Branges–Rovnyak spaces H(b) have a remarkable prop-

erty, i.e. continuity on an open arc of T of all functions of H(b) is enough to imply

the analyticity of these functions. This property enables us to show that the result of

Dyakonov [5] concerning the Bernstein’s inequality in the model spaces is sharp in the
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sense that we couldn’t extend it to all de Branges–Rovnyak spaces. The definition of de

Branges–Rovnyak spaces of the upper half plane is similar to its counterpart for the unit

disc. First, we make precise a little more the transfer of the unit disc to the upper half

plane C+. We consider γ the conformal map from C+ onto D defined by

γ(z) =
z − i

z + i
, z ∈ C+,

and we denote by U the (unitary) map from L2(T) onto L2(R) defined by

(Uf)(x) :=
1√
π

1

x + i
f

(

x − i

x + i

)

, x ∈ R, f ∈ L2(T).(4.1)

Then it is well known (see [8, pages 247-248]) that U maps H2(D) onto H2(C+). Moreover,

if ϕ ∈ L∞(T), then

UTϕ = Tϕ◦γU.(4.2)

Now let b be in the unit ball of H∞(D) and let b1 = b ◦ γ. Then, using (4.2), basic

arguments show that U maps unitarily H(b) onto H(b1). Using this unitary transform,

we can obviously state the analogue of Theorem 3.2 and Theorem 4.1 in the upper half

plane C+.

Corollary 4.2. Let b1 be a point of the unit ball of H∞(C+). Then the following are

equivalent:

(i) the operator f −→ f ′ is a bounded operator from H(b1) into H2(C+);

(ii) b1 is an inner function and b′1 ∈ H∞(C+).

Proof: Using [5, Theorem 1], the only thing to prove is that if (i) holds, then b1 is

inner. But, if for any function f in H(b1), we have f ′ ∈ H2(C+), then in particular, f has

a continuous extension to C+ ∪R. Thus, using the analogue of Theorem 4.1 in the upper

half plane, we see that b1 has a continuous extension to C+ ∪R and |b1| = 1 on R, which

means b1 is an inner function. �
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