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Abstract

A variational principle for two-fluid mixtures is proposed. The Lagrangian
is constructed as the difference between the kinetic energy of the mixture and
a thermodynamic potential conjugated to the internal energy with respect to
the relative velocity of phases. The equations of motion and a set of Rankine-
Hugoniot conditions are obtained. It is proved also that the convexity of the
internal energy guarantees the hyperbolicity of the one-dimensional equations
of motion linearized at rest.

1 — Variational approach to the description of homogenous two-velocity

media

The variational approach to the construction of two-fluid models was used
by many authors (A.Bedford & D.S. Drumbheller (1978), V.L.Berdichevsky
(1983), J.A. Geurst (1985,1986), H. Gouin (1990)). Here we give its gener-
alisation for the case of homogeneous two-fluid mixtures. A physical example
of such flow is a motion of a mixture of two gases with quite different molecular
weights. The Hamilton’s principle is applied for perfect fluid motions. In order
to obtain the equations of motion of the mixture from this variational princi-
ple, we neglect the dissipative effects. We will then consider only mechanical

processes by suppressing thermal evolution. We suppose that the homogeneous



mixture motion is well represented by the velocities of its components w7, s ,
the average densites p;, p2 and the total internal energy U. The total energy

of a two-velocity medium is written in the form:
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In order to define the internal energy of one-velocity media, a moving coordinate
system, where the elementary volume of the continuum is at rest, is considered.
The total energy of the continuum with respect to this system is called the
internal energy of the motion. For a two-velocity medium, there is no coordinate
system, within the framework of which any motion could be disregarded. This is
the reason why the standard definition of internal energy leads to its dependence

on the relative motion of components.

Let @ = iy — 1, w=|w |. We propose the following extended form of

Hamilton’s principle of least action for the two-velocity systems:

o oo [ iy > @ }
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with the kinematic contraints
Op;
a’; +div (p; U;) = 0. (1.2)

Here [ t1, t2] is a time interval , D is a domain in the physical space, the potential
W(p1 ,p2 ,w) is connected with the internal energy U by the partial Legendre
transformation with respect to the variable w:
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The internal energy of the medium U (p1 , p2 , ©) is generally a convex function
of its variables. This assumption corresponds to the condition of thermodynamic
stability. As a consequence, W (py ,p2 ,w) is a convex function with respect to
variables p; ,p2 and a concave function with respect to variable w. A simple

case is associated with

a(p1 ,P2)w2

Wi(p1, p2, w)=c(p1, p2) — 5 ;
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where e(p1 , p2) is a convex function with respect to p1, p2 and a (p1, p2)
is a positive function. If the relative velocity @ is small enough, the energy U
is convex. The example (1.4) is a reasonable approximation of a general case as
W is an analytic function of the velocities #@; (and hence, an analytic function
of w? only). The term in equation (1.4) which is quadratic with respect to
the relative velocity W, can be considered as the energy due to an added mass
effect. We note that this quadratic dependence is usually used in the theory of
bubbly liquids (V.L. Berdichevsky, 1983, J.A. Geurst, 1985, 1986). To derive the

governing equations and the Rankine-Hugoniot conditions, it is not necessary

to focus on the particular case (1.4).
2 — Governing equations

We introduce Lagrange coordinates )Zi for each component:
di X, i _ 9
T 0, where — = —+ (&;V), i=1,2. (2.1)

dt ot
It follows from (2.1) that

0X; 1< 0X;
0% ot

>, (2.2)
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where the operation A < f > denotes the product of the tensor A by the vector

—

f
Introducing the Lagrange multipliers o1 (¢, Z) , @2(t, &) , corresponding to the
balance of masses (1.2) , we consider the Lagrangian L of the system

dapa
dt

dip1
dt

Voo il — EE) Wpr,pw). (23)

0X;
The formulae (2.2),(2.3) give the Lagrangian L as a function of variables Tk

0X; 0 0
oF ot oz P
we find the governing equations of motion :
4K, 0
@ T ox

Calculating the corresponding variational derivatives,

- ow
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and, of course, the mass conservation laws (1.2). Here and later ”*” denotes the

transposition. For the case (1.4) equations (2.4) have the form :

d;K; . L p2) Ot L o 1 ,0
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The system (1.2) , (2.4) yields the momentum conservation law and the energy

conservation law, corresponding to the homogeneity of the Lagrangian with

respect to space and time variables:
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where ® denotes the tensor product and [ is the unit tensor.

The question of the hyperbolicity of the system (1.2),(2.4) is of great interest.
Unfortunately, the multi-dimensional case is not very simple and this is why
we restrict our attention on the one-dimensional case. Moreover, to simplify
the calculations, we consider the case (1.4) and linearize our system in the
neighbourhood of the equilibrium state @ = @9 = 0, pY, pY. Straightforward
calculations give the following result: if ¢ (p1 , p2) is a convex function and

a (p1, p2) > 0 then linearized at rest, the system (1.2), (2.4) is hyperbolic.

3 — The Rankine-Hugoniot conditions

The non-linearity and hyperbolicity of the system (1.2),(2.4) imply the ne-

cessity to obtain Rankine-Hugoniot conditions across shocks. In multi-dimensional



case the conservation laws (1.2),(2.5),(2.6) are not sufficient to obtain the whole
set of such relations. In what follows, we show that the additional jump condi-

tions can be derived from the variational principle.

Let us define variations of particules deduced from the relation # =
P, ()?l , t, €;) and its inverse X, =0, (Z,t, &) Here ¢ , i = 1,2
are small parameters defined in a neighbourhood of zero. One defines virtual

displacements ;7 and 51-)_(1— by

8@;1 = - 8\171
0,7 = —(X;,t,0), 6X; = 7,t,0). 3.1
7 = S (Xat0) (@, 0) (3.1)
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It is clear that §,X; = —F] " < 6;& >, where F; = —-. For any variable

(2
a; (¥, t) we define their eulerian perturbations &; (¥, t, ;) and lagrangian
perturbations &; ()?l ,t, &) = ai(éi(fi,t,ai),t,si). The variations d;a; and

d;a; of «y are defined by

i = g‘;‘ (7.1,0), G = %(}?i,t,o).
It follows from the above definitions that
Sic; = di0u — %é; < 6; > (3.2)
In particular,
bipi = —div(p; 6;) , 6;il; = % 5T — % < 0> . (3.3)
We define
5. 1= iy 11O
Then
5i T = /tt /D (&-pi(W;'Q _ 682/) + K8 0, ) dE dt. (3.4)

It follows from (3.3) (3.4) that

t = 12 =
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As a consequence, we obtain equations of motion (2.4) and the jump conditions:

oW |
8pi 2

[pi(ﬁ* 5:7) ( )+ pi (7 @) (K} 6,Z)— D, pi(leféif)} =0, (3.5)

where 77 is the unit normal vector to the shock surface and D,, is the normal
velocity of the shock. Since §;Z is not continuous across the shock, it is
not straightforward to obtain Rankine- Hugoniot conditions in terms of desired

quantities. Nevertheless, taking into account that across the shock
piFy <ii>] =0,

such difficulties can be overcame. We finally obtain from (3.5):

oW i

K @, — D, (Ki)| =0, 3.6
o 5 TH U (K77) (3.6)

K2

(K, — (K; )i =0. (3.7)

2

In the limiting case when the velocities of the components coincide, these condi-
tions reduce to the conservation of the tangential component of the velocity and
the conservation of the Bernoulli constant across the shock. We note also that
conditions (3.6), (3.7) are obtained from the variational principle (1.1) without
any assumption on the flow properties. But it can be shown directly that they
correspond to the jump conditions for the additional conservation laws admitted

by the system (1.2), (2.4) :

—

K, w1,
- — — w4+ K @) = 0. .
o0 TV (G, il Er i) =0 (3.8)

I‘Ot[?i = 0,

The conservation laws (2.5), (2.6) also imply momentum balance and energy
balance at the shock. Finally note that all possible jump conditions are of great
interest but the correct choice of the jump conditions depends on the physics of

the problem.
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