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Using generalizations of the well known Rice formula and applying the general method related to m-dependent processes that we settled in earlier works, allow one to obtain representations into the Itô-Wiener Chaos and CLTs for curve-crossings number. This approach not only explains heuristic considerations of Longuet-Higgins on specular points and related problems in the context of sea modelling, but goes far beyond when providing asymptotic results. These results on curve-crossings may also be applied in other fields. One example is the study of the estimator of the natural frequency of a harmonic oscillator.

Introduction

Recently there has been a renewed interest in applying the generalizations of the Rice formulae to explain some difficult phenomena in optics (see for instance [START_REF] Berry | Phase singularities in isotropic random waves[END_REF]). In this work, we also use generalizations of the well known Rice formula (see [START_REF] Rice | Mathematical analysis of random noise[END_REF]) and apply the general method we settled in earlier works (see [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF], [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF], or [START_REF] Kratz | Level crossings and other level functionals of stationary Gaussian processes[END_REF] for a survey on results and methods) to obtain representations into the Itô-Wiener Chaos and CLTs for level functionals of stationary Gaussian processes. It allows one to provide results on curvecrossings and specular points, which may explain for instance the light reflection on the sea surface. Note that this last subject was heuristically developed in the fifties and sixties by Longuet-Higgins (see [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF] and [START_REF] Longuet-Higgins | The statistical geometry of random surfaces[END_REF]), whose main motivation was to determine the height of the waves. The approach we chose allows us to explain the Longuet-Higgins discovery by proving his heuristic formulae, and goes far beyond, providing variance results and CLTs, which may apply in various applied research areas, as e.g. the ones considered here: sea modelling and random oscillation. Let us also mention related works, such as Piterbarg and Rychlik's CLT for wave functionals (see [START_REF] Piterbarg | Central Limit Theorem for Wave-Functionals of Gaussian Processes[END_REF]) or the recent paper from Lindgren (see [START_REF] Lindgren | Slepian models for the stochastic shape of individual Lagrange sea waves[END_REF]) who introduced a Gaussian Lagrangian model to describe the sea surface. The paper is organized as follows. In section 2, we develop the expansion into Hermite polynomials for the number of crossings of a differentiable curve, generalizing an earlier result we obtained for a fixed level (see [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF]). Then we describe the asymptotic behavior of this expansion according to the form of the level curve, namely if the curve is periodic or linear. The proofs of those results are given in the Appendix. As an application when the curve is periodic, we study the estimator of the natural frequency of a harmonic oscillator with periodic forcing term, whereas the case of linear curves is applied to the study of specular points. Section 3 is devoted to the speed of specular points on the sea surface. [START_REF] Arcones | Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors[END_REF] 2 Asymptotic behavior of the curve-crossings number Hermite polynomial expansion (or Multiple Wiener-Itô Integrals) may be a powerful tool to represent and to study nonlinear functionals of stationary Gaussian processes. Thus we will first provide the Hermite expansion for the curve-crossings number in order to obtain in an easier way its asymptotic behavior, which depends on the curve's type.

(H n ) n≥0 will denote the Hermite polynomials, defined by H n (x) = (-1) n e x 2 /2 d n dx n e -x 2 /2 , which constitute a complete orthogonal system in the Hilbert space L 2 (IR, ϕ(u)du), ϕ being the standard normal density.

Hermite expansion for the curve-crossings number

Let X = {X t , t ∈ IR} be a centered stationary Gaussian process, variance one, with twice differentiable correlation function r given by r(τ ) = ∞ -∞ e iτ λ F (dλ), where F is the spectral measure. Let N X t (ψ) be the number of crossings of a differentiable function ψ by the process X : N X t (ψ) = card{s ≤ t : X s = ψ s }. The random variable N X t (ψ) can also be seen as the number N Y t (0) of zero crossings by the non-stationary (but stationary in the sense of the covariance) Gaussian process Y = {Y s , s ∈ IR} defined by Y s := X s -ψ s , i.e. N X t (ψ) = N Y t (0). Suppose that r satisfies on [0, δ], δ > 0,

r(τ ) = 1 + r (0) 2 τ 2 + θ(τ ), with θ(τ ) > 0, θ(τ ) τ 2 → 0, θ (τ ) τ → 0, θ (τ ) → 0, as τ → 0, (1) 
that the nonnegative function L defined by L(τ ) := θ (τ ) τ = r (τ ) -r (0) τ , τ > 0, satisfies the Geman condition:

∃δ > 0, L ∈ L 1 ([0, δ]) (2) 
and assume that the modulus of continuity of ψ defined by γ(τ ) := sup 

These conditions imply that N X t (ψ) has a finite variance, as it has been proved by the authors in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF]. Notice that we still do not know whether, under the Geman condition, δ 0 γ(s) s ds = ∞ implies that N X t (ψ) does not belong to L 2 (Ω).

Let a l (m) be the coefficients in the Hermite's basis of the function | . 

The following proposition gives the Hermite expansion for the curve-crossings number under the only hypothesis that the number of crossings belongs to L 2 (Ω), thus completes the results of [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF] for a fixed level ψ t ≡ x and for many functions ψ.

Proposition 1 Under the conditions (1), ( 2) and (3), the number of crossings N X t (ψ) of the function ψ by the process X has the following expansion in L 2 (Ω):

N X t (ψ) = -r (0) ∞ q=0 t 0 q l=0 H q-l (ψ s )ϕ(ψ s ) (q -l)! a l ψs -r (0) H q-l (X s )H l Ẋs -r (0) ds, (5) 
a l (.) being defined in (4). This result can be easily generalized to a process X satisfying E[X 2 t ] = r(0):

N X t (ψ) = -r (0) r(0) ∞ q=0 t 0 q l=0 κ ql (s)H q-l X s r(0) H l Ẋs -r (0) ds, (6) 
where κ ql (s) :=

H q-l ψs √ r(0) ϕ ψs √ r(0) (q -l)! a l ψs -r (0) .
We generalized the approach settled in [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF] to obtain such a result considered for the first time by Slud in [START_REF] Slud | MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications[END_REF]. Whereas this author provided a MWI expansion of N X t (ψ) by approximating the crossings of the process X by those of the discrete version of X, our method consists in approaching the process, then the crossings, by using a process smoothed-by-convolution, for which the expansion can be readily obtained. The main ideas of the proof, which uses also technical tools developed in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF], can be found in the Appendix.

Asymptotic behavior according to the level curve's type

We shall describe the asymptotic behavior of the previous expansion of the number of curve crossings according to the form of the curve ψ.

If the function ψ is periodic, then a CLT can be deduced since we may say that we remain in an ergodic situation similar to the fixed barrier problem. As an example, let us mention the case of a cosine barrier ψ of the type ψ(x) = √ 2A cos(ωx), first studied by Rice, then by Cramér & Leadbetter (see [START_REF] Cramér | Stationary and Related Stochastic Processes[END_REF]). We can also mention the case of a harmonic oscillator driven by a white noise and with periodic forcing term, that will be developed below.

If ψ is a linear function of the time, i.e. ψ s := ks, we shall prove that the number of ψ-crossings of X belongs to L 2 (Ω) as the time tends to infinity. This case encounters the number of specular points of a curve, that will be studied in the next section.

The proofs of both theorems rely mainly on the method developed in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF] and are given in the Appendix.

Periodic curve

Suppose that the function ψ is p-periodic, i.e. ψ s+p = ψ s . So is the function κ ql defined in Proposition 1, for all q and l. We are interested in the asymptotic behavior of the r.v.

N X t (ψ) -E[N X t (ψ)] as t → ∞. Let us introduce (see [1]) χ(s) := sup |r(s)| + |r (s)| -r (0) , |r (s)| -r (0) + |r (s)| -r (0) . ( 7 
)
Theorem 1 : CLT for N X t (ψ). Let X and ψ both satisfying the hypothesis of Proposition 1.

If ∞ 0 χ(s)ds < ∞ (8) then N X np (ψ) -E[N X np (ψ)] √ n d -→ n→∞ N 0, ∞ q=1 σ 2 (q) ,
where σ 2 (q) is defined by

σ 2 (q) = ∞ 0 q l1=0 q l2=0 p 0 κ ql1 (u)κ ql2 (u -z)du E H q-l1 X z r(0) H l1 Ẋz -r (0) H q-l2 X 0 r(0) H l2 Ẋ0 -r (0) dz.
The same result holds when replacing np by t.

Application to a harmonic oscillator.

The following application aims at clarifying, from a mathematical point of view, some concepts linked to the synchronization phenomenon, in particular to the phase synchronization. To study such a phenomenon, it is necessary to compare the average phase velocity between different signals. This quantity turns out to be the average rate of zero crossings by the signals and can thus be obtained by using Rice's formula. In the physics literature, this average phase velocity is called the Rice frequency and is usually denoted by < ω > R .

When considering a harmonic oscillator driven by a white noise, the average of zero crossings provides in stationary regime the natural frequency ω 0 of the oscillator, as we will see below. If, moreover, the oscillator is driven by an additional deterministic periodic signal, another behavior is observed. In [START_REF] Callenbach | Oscillatory systems driven by noise: Frequency and phase synchronization[END_REF] an interesting discussion emphasizes the behavior of the Rice frequency depending on the existence and intensity of a noise. Recall that in the case of no noise, the system behaves with the same frequency as the one of the periodic driven force.

Let a harmonic oscillator X = (X t ) driven by a Gaussian white noise be the stationary solution of the stochastic differential equation

Ẍt + γ Ẋt + ω 2 0 X t = σdW t , (9) 
where the parameters γ > 0, ω 2 0 , σ 2 are, respectively, the damping factor, the natural frequency of the oscillator, the noise's variance, and W is a standard Gaussian white noise. Suppose that the system is underdamped, i.e. 2ω 0 > γ. The process X is Gaussian, zero mean and with spectral density

f (λ) = σ 2 2π[(λ 2 -ω 2 0 ) 2 + γ 2 λ 2 ]
, λ ∈ IR.

Computing the spectral moments, we obtain

m 0 := r(0) = 2 ∞ 0 f (λ)dλ = σ 2 2γω 2 0 and m 2 := -r (0) = 2 ∞ 0 λ 2 f (λ)dλ = σ 2 2γ .
The Ergodic Theorem and the Rice formula imply that lim t→∞

N X t (0) t = 1 π m 2 m 0 = ω 0 π a.s.,
from which can be deduced an a.s. consistent estimator of the natural frequency ω 0 of the oscillator or of the Rice frequency < ω > R since it is defined in terms of the zero crossings number

N X t (0) of X by < ω > R = lim t→∞ N X t (0) t , so ω 0 = π < ω > R .
Let us prove the asymptotical normality of the estimator of ω 0 . First we check that E[N X t (0)] 2 < ∞. To do so, we prove that the covariance function satisfies the Geman condition. Indeed, we have

δ 0 r (t) -r (0) t dt = σ 2 π ∞ 0 δ 0 1 -cos(λt) t dt λ 2 (λ 2 -ω 2 0 ) 2 + γ 2 λ 2 dλ. But δ 0 1 -cos(λt) t dt = 2 λδ 0 sin 2 (2u) u du = 2 a 0 sin 2 (2u) u du + λδ a sin 2 (2u) u du ≤ C a 2 /2 + | log(λδ)| ,
with C some positive constant which may vary from line to line, so that

δ 0 1 -cos(λt) t dt ≤ C| log(λδ)|, hence δ 0 r (t) -r (0) t dt ≤ C σ 2 π ∞ 0 | log(λδ)| λ 2 [(λ 2 -ω 2 0 ) 2 + γ 2 λ 2 ] dλ < ∞.
Now we can apply Proposition 1 to obtain

√ t N X t (0) t - ω 0 π = ω 0 π ∞ q=1 [q/2] l=0 b 2(q-l) ã2l 1 √ t t 0 H 2(q-l) (X s / √ m 0 )H 2l ( Ẋs / √ m 2 )ds,
where b 2k = H 2k (0) (2k)! and ã2l = π 2 a 2l (0) = (-1) l+1 2 l l!(2l-1) . Then, since ( 8) is satisfied because the covariance function tends exponentially towards zero as t → ∞, Theorem 1 entails:

√ t N X t (0) t - 1 π ω 0 d -→ n→∞ N (0, ω 2 0 Σ 2 /π 2 ), where Σ 2 = ∞ q=1 σ 2 (q) with σ 2 (q) = [q/2] l1=0 [q/2] l2=0 b 2(q-l1) ã2l1 b 2(q-l2) ã2l2 × ∞ 0 E H 2(q-l1) X 0 √ m 0 H 2l1 Ẋ0 √ m 2 H 2(q-l1) X s √ m 0 H 2l1 Ẋs √ m 2 ds.
Note that this result could be used to build bootstrapping confidence intervals for ω 0 .

Case of a forcing linear harmonic oscillator.

Our result on the crossings of a periodic curve allows us to consider another interesting situation, namely that of a forcing linear harmonic oscillator driven by a Gaussian white noise. Consider the process solution of the equation

Ÿt + γ Ẏt + ω 2 0 Y t = σdW t + F cos(αt),
where f (t) = F cos(αt) is the forcing function, 2π-periodic, with α > 0 and F > 0.

As t → ∞, the solution stabilizes and behaves as the process (see [START_REF] Callenbach | Oscillatory systems driven by noise: Frequency and phase synchronization[END_REF])

Y t = X t + F (ω 2 0 -α 2 ) 2 + α 2 γ 2 cos(αt + β),
where X t is the stationary solution of the stochastic differential equation [START_REF] Cramér | Stationary and Related Stochastic Processes[END_REF] and tan β = αγ ω 2 0 -α 2 . Thus the zero-crossings of the process Y are the crossings by X of the 2π/α-periodic curve ψ defined by

ψ(t) = - F (ω 2 0 -α 2 ) 2 + α 2 γ 2 cos(αt + β).
Hence, by Proposition 1 we obtain

N Y t (0) = N X t (ψ) = ω 0 ∞ q=0 t 0 q l=0 κ ql (s)H q-l X s √ m 0 H l Ẋs √ m 2 ds
and therefore

E[N Y t (0)] = ω 0 t 0 ϕ ψ s √ m 0 a 0 ψs √ m 2 ds.
Choosing t = t(n) = n 2π α and letting n → ∞ yield via the ergodic theorem

< ω > R = lim t→∞ N Y t (0) t = ω 0 α 2π 2π α 0 ϕ ψ s √ m 0 a 0 ψs √ m 2 ds = ω 0 2π 2π 0 ϕ (C 1 cos s) a 0 (C 2 sin s) ds a.s.
where

C 1 = -F/ √ m0 √ (ω 2 0 -α 2 ) 2 +α 2 γ 2 and C 2 = αF/ √ m2 √ (ω 2 0 -α 2 ) 2 +α 2 γ 2 .
Theorem 1 allows to conclude to the asymptotical normality of the estimator of < ω > R :

lim n→∞ √ n N Y t(n) (0) n - 2π α < ω > R = N 0, ∞ q=1 σ 2 (q) ,
where σ 2 (q) is computed in Theorem 1, with p = 2π/α.

Remark. It would be important to study another interesting problem, that is the asymptotic behavior of the Rice frequency for non-linear oscillators driven by a white noise with a periodic forcing, as for instance the Kramers oscillator defined by

Ẍt + γ Ẋt + X 3 t -X t = σdW t + F cos(αt).
It is well known that for such an oscillator, as well as for other Hamiltonian oscillators, the stationary solution is exponentially ergodic hence β-mixing. The asymptotic behavior of the average of zero crossings by X per unit time may be obtained via the ergodic theorem and the Rice formula. But the CLT remains an open problem.

Linear curve and specular points

We are interested in describing the behavior of the specular points in a random curve.

As was pointed out by Longuet-Higgins (see [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF]), specular points are the moving images of a light source reflected at different points on a wave-like surface. Let us modelize this surface by a Gaussian field W defined on IR + × IR, IR + for the temporal variable and IR for the spatial one.

The first derivatives with respect to the spatial variable x and the temporal variable t will be denoted by ∂ x W and ∂ t W respectively; the second derivatives will be denoted by

∂ xx W , ∂ tt W , ∂ tx W and ∂ xt W .
The spectral representation of W is given by

W (t, x) = Λ e i(λx-ωt) f (λ) dB(λ) = e i(λx-|λ| 1/2 t) f (λ) dB(λ), (10) 
where Λ = {(λ, ω) : ω 2 = λ} (the Airy relation) and the real and imaginary parts of the complex-Gaussian process B = B(λ, λ ≥ 0) are real Gaussian processes with var(Re(B(λ))) = var(Im(B(λ))) = F (λ)/2 and B(-λ) = B(λ) a.s., having independent increments. The covariance function writes

r(t, x) = 2 ∞ 0 cos(λx -λ 1/2 t)f (λ)dλ. ( 11 
)
First let us consider the process at a fixed time, for instance t = 0. In this case, W (0, x) is a centered stationary Gaussian process with correlation function

r(0, x) := r(x) = 2 ∞ 0 cos(λx)f (λ) dλ.
Let us define a curve in the plan (x, z) by the equation z = W (0, x). Suppose that the coordinates of a point-source of light and an observer are (0, h 1 ) and (0, h 2 ) respectively, situated at heights h 1 and h 2 above the mean surface level. A specular point is characterized by the equations (see [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF]):

∂ x W (0, x) = -κx with κ = 1 2 1 h 1 + 1 h 2 , (12) 
which can be interpreted as a crossing of the curve ψ(x) := -κx by the process ∂ x W (0, x).

Let us assume that r is four times differentiable and that r satisfies the Geman condition:

r (iv) (x) -r (iv) (0) x ∈ L 1 ([0, δ]) . ( 13 
)
Theorem 2 Under the Geman condition ( 13), the number N [0,x] of specular points in the interval [0, x] has the following expansion in L 2 (Ω):

N [0,x] = γ η ∞ q=0 x 0 F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ ds, (14) 
where η = -r (0), γ = r (iv) (0) and

F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ := q l=0 H q-l -κs η ϕ -κs η (q -l)! a l -κ γ H q-l ∂ x W (0, s) η H l ∂ xx W (0, s) γ ,
with a l (.) defined in (4) and κ in [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF]. Its expectation is given by

E[N [0,x] ] = 2 π κ η κ γ 0 e -u 2 2 du + γ κ e -κ 2 2γ 2 x 0 ϕ κs η ds, (15) 
and its variance by

V ar(N [0,x] ) = x 0 x-s 0 E F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ F q s + τ, ∂ x W (0, s + τ ) η , ∂ xx W (0, s + τ ) γ dτ ds.
Suppose that the process

∂ x W (0, x) is m-dependent, i.e. that -r (τ ) = 0 for τ > m, then the asymptotic variance of N [0,x] , as x → ∞, is given by V ar(N [0,∞] ) = 2 γ η ∞ q=1 ∞ 0 m 0 E F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ F q s + τ, ∂ x W (0, s + τ ) η , ∂ xx W (0, s + τ ) γ dτ ds. ( 16 
)
Remarks.

i) Note that the expectation [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF] of N [0,x] was heuristically obtained by Longuet-Higgins in [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF] and [START_REF] Longuet-Higgins | The statistical geometry of random surfaces[END_REF], who considered a bilateral formula E[N [-x,x] ] and showed that its limit as x → ∞ is given by

lim γ κ →∞ κ γ E[N [0,+∞] ] = 1 2π ;
it can be interpreted by saying that the number of specular points increases proportionally to the distance between the observer and the sea surface, since when h 1 = h 2 , 1 κ represents this latter distance. It is also interesting to notice that the number of specular points is a finite random variable over all the line, on the contrary to the behavior of the crossings of a fixed level or to the one of the number of maxima.

ii) We consider the hypothesis of m-dependence to simplify the computations and with the aim of using in the next section the method settled in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF].

iii) The computations may be done in dimension 2, explicitly in what concerns the expectation, but we would face some difficulty for the second moment since the determinant appearing in the integrand of it would prevent from having a Hermite polynomial expansion.

3 Speed of specular points on the sea surface Let W (t, x, y) represent the waves modeling the sea surface. We shall look at a wave in one direction, that is for fixed coordinate y, for instance when y = 0. Thus we consider from now on W (t, x) = W (t, x, 0). Our main goal is the study of the number of specular points having a given velocity.

To represent such a number into the Itô-Wiener chaos will require a generalization of Rice formula to the bidimensional case, obtained by using the co-area formula (see [START_REF] Cabaña | Esperanzas de Integrales sobre Conjuntos de Nivel aleatorios[END_REF]) that we recall here. Let W be a three times continuously differentiable bivariate function (W ∈ C 3 ), and let consider the level curve C(u) defined by

C(u) = {(x 1 , x 2 ) ∈ Q(t, M ) : W (x 1 , x 2 ) = u}, where Q(t, M ) = [0, t] × [0, M ].
If v denotes a vector field, n denotes the vector normal to the level curve C(u) and dσ the length measure of C(u), since W is C 3 , then the Green formula provides for some suitable function g,

∞ -∞ g(u) C(u) < v, n > dσ du = Q(t,M ) g(W ) < v, ∇W > dx 1 dx 2 ,
from which can be immediately deduced:

i) if v = ∇W ||∇W || , then ∞ -∞ g(u)L Q (C(u))du = Q g(W )||∇W ||dx 1 dx 2 , where L Q (C(u)) denotes the length of the curve C(u); ii) more generally, if v = ζ(α) ∇W ||∇W ||
, where ζ denotes a continuous real function defined on [0, 2π] and α is defined by

∇W := ||∇W || t (cos α, sin α), then ∞ -∞ g(u) C(u) ζ(α(s))dσ(s)du = Q g(W )ζ(α)||∇W ||dx 1 dx 2 .
Note that this formula still holds when considering ζ as the indicator function of a measurable set, by using the monotone convergence theorem (see for instance [START_REF] Cabaña | Affine process: a test of isotropy based on level sets[END_REF] and [START_REF] Azaïs | Geometrical Characteristic of Gaussian sea Waves[END_REF]).

Let us go back to our study and keep the same notation as in the previous section. Suppose W and r satisfy [START_REF] Hoeffding | The Central Limit Theorem for dependent random variables[END_REF] and ( 11) respectively, with mixed spectral moment m pq defined by

m pq = 2 {(λ,ω):ω 2 =λ} λ p ω q f (λ)dλ = 2 ∞ 0 λ p+q/2 f (λ)dλ. ( 17 
) Note that (∂ x W (t, x), ∂ xx W (t, x), ∂ tx W (t, x)) t is Gaussian, with covariance matrix ∆ = (∆ ij ) 1≤i,j≤3 , such that ∆ 11 = E[∂ x W 2 ] = m 20 ∆ 22 = E[∂ xx W 2 ] = m 40 ∆ 33 = E[∂ xt W 2 ] = m 22 ∆ 12 = E[∂ x W ∂ xx W ] = 0 = ∆ 13 = E[∂ x W ∂ xt W ] and ∆ 23 = E[∂ xx W ∂ xt W ] = m 31 . Moreover, for fixed (t, x), ∂ x W (t, x) is independent of the vector (∂ xx W (t, x), ∂ xt W (t, x)).
As Longuet-Higgins (see [START_REF] Longuet-Higgins | The statistical geometry of random surfaces[END_REF]), we consider the following simplified condition to have a specular point:

∂ x W (t, x) = u.
A straight consequence of the implicit function theorem is:

∂ xx W dx + ∂ xt W dt = 0, i.e. dx dt = - ∂ xt W ∂ xx W .
We are interested in the number of specular points with bounded speed: let -v 2 denote the lower bound and -v 1 the upper one. We define

Ñsp (s, u, v 1 , v 2 ) := # z ∈ [0, M ] : ∂ x W (s, z) = u; v 1 ≤ ∂ xt W ∂ xx W ≤ v 2 , for 0 ≤ s ≤ t,
and also

N sp (u, v 1 , v 2 , t) := 1 t t 0 Ñsp (s, u, v 1 , v 2 )ds, (18) 
since our interest is in that number per unit time.

Lemma 1

The expected number µ of specular points in Q(t, M ) with speed belonging to [-v 2 , -v 1 ] is given by

µ := E [N sp (u, v 1 , v 2 , t)] = M e -u 2 2m 20 λ 1 λ 2 4π √ m 20 β+arctan v2 β+arctan v1 | cos(θ -β)| 1 (λ 1 sin 2 θ + λ 2 cos 2 θ) 3/2 dθ,
where m pq is defined in [START_REF] Lindgren | Slepian models for the stochastic shape of individual Lagrange sea waves[END_REF], λ 1 , λ 2 are the eigenvalues of the covariance matrix of (∂ xx W (0, 0), ∂ xt W (0, 0)), and β is the rotation angle which turns diagonal this covariance matrix.

Remark. If the random field W (t, x) is isotropic the vector (∂ xx W (0, 0), ∂ xt W (0, 0)) has a diagonal covariance matrix, thus β = 0 and λ 1 = λ 2 and we obtain when supposing e.g. that

λ 1 = λ 2 = 1, µ = M e -u 2 2m 20 4πm 20 v 2 1 + v 2 2 - v 1 1 + v 2 1 , if 0 ≤ arctan v 1 ≤ arctan v 2 ≤ π 2 .
Proof of Lemma 1.

Let g be a continuous and bounded function. We have

∞ -∞ g(u)N sp (u, v 1 , v 2 , t)du = 1 t t 0 ∞ -∞ g(u) Ñsp (s, u, v 1 , v 2 )duds = 1 t t 0 M 0 g(∂ x W (s, z))1 I [v1,v2] ∂ xt W (s, z) ∂ xx W (s, z) |∂ xx W (s, z)| dzds = 1 t ∞ -∞ g(u) C(u) ζ(α(s))dσ(s)du, with ζ(α(s)) := 1 I [v1,v2] (tan α(s))| cos α(s)|,
by using the Banach formula in the first equality and the co-area formula in the last one. Note that this type of integrals has been first considered by Cabaña (see [START_REF] Cabaña | Affine process: a test of isotropy based on level sets[END_REF]). Therefore, by independence and stationarity, we obtain

∞ -∞ g(u)E [N sp (u, v 1 , v 2 , t)]du = 1 t ∞ -∞ g(u)E C(u) ζ(α(s))dσ(s) du = M ∞ -∞ g(u) e -u 2 2m 20 √ 2πm 20 duE 1 I [v1,v2] ∂ xt W (0, 0) ∂ xx W (0, 0) |∂ xx W (0, 0)| ,
and by duality it comes that, for almost all u,

E [N sp (u, v 1 , v 2 , t)] = M e -u 2 2m 20 √ 2πm 20 E 1 I [v1,v2] ∂ xt W (0, 0) ∂ xx W (0, 0) |∂ xx W (0, 0)| . ( 19 
)
It can be proved that ( 19) holds for all u (see [START_REF] Cabaña | Esperanzas de Integrales sobre Conjuntos de Nivel aleatorios[END_REF] and [START_REF] Cabaña | Affine process: a test of isotropy based on level sets[END_REF]).

Note that at fixed (s, z), in particular at (0, 0), the covariance matrix of the random vector (∂ xx W (s, z), ∂ xt W (s, z)) can be diagonalized with a rotation matrix of angle β, independent of the point (s, z) because of the stationarity of the process (∂ xx W (., .), ∂ xt W (., .)), thus we can write, for fixed (s, z),

∂ xx W (s, z) ∂ xt W (s, z) = cos β -sin β sin β cos β η 1 (s, z) η 2 (s, z) , (20) 
with (η

1 (s, z), η 2 (s, z)) normally distributed N 0, λ 1 0 0 λ 2 .
Computing the expectation of the RHS of ( 19) gives

E 1 I [v1,v2] ∂ xt W (0, 0) ∂ xx W (0, 0) |∂ xx W (0, 0)| = 1 2π √ λ 1 λ 2 ∞ 0 β+arctan v2 β+arctan v1 | cos(θ -β)| r 2 e -r 2 2 ( cos 2 θ λ 1 + sin 2 θ λ 2 ) dθdr = λ 1 λ 2 √ 8π β+arctan v2 β+arctan v1 | cos(θ -β)| 1 (λ 1 sin 2 θ + λ 2 cos 2 θ) 3/2 dθ,
hence the result for µ given in the lemma. 2

Now we are looking at the Hermite expansion of N sp (u, v 1 , v 2 , t) (defined in [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF]) and its asymptotic behavior as t → ∞.

Theorem 3 If W (s, z) ∈ C 3 , then the Hermite expansion of the functional N sp (u, v 1 , v 2 , t) is given by

N sp (u, v 1 , v 2 , t) = ∞ l=0 0≤n+m≤l H l-(n+m) u √ m20 ϕ u √ m20 g n,m √ m 20 [l -(n + m)]! (21) 
× 1 t t 0 M 0 H l-(n+m) ∂ x W (s, z) √ m 20 H m η 1 (s, z) √ λ 1 H n η 2 (s, z) √ λ 2 dzds,
where

(η 1 (s, z), η 2 (s, z)) is normally distributed N 0, λ 1 0 0 λ 2 with λ 1 , λ 2 defined in Lemma 1,
and where

g n,m = 1 2πn!m! ∞ 0 arctan b2 arctan b1 λ 1 cos β cos θ -λ 2 sin β sin θ H n (ρ cos θ)H m (ρ sin θ)e -ρ 2 2 ρ 2 dθdρ, ( 22 
)
with b i := λ 1 λ 2 v i -tan β 1 + v i tan β , i = 1, 2. ( 23 
)
Moreover, assuming that W (t, s) is m-dependent in the time variable t, we have

√ t (N sp (u, v 1 , v 2 , t) -µ) d -→ N (0, σ 2 (M )), ast → ∞,
with µ defined in Lemma 1 and σ 2 (M ) computed in (27) below.

Remark. If W (t, x) is isotropic, the coefficients ( 22) simplify as

g n,m = 1 2πn!m! ∞ 0 arctan v2 arctan v1 |cos θ| H n (ρ cos θ)H m (ρ sin θ)e -ρ 2 2 ρ 2 dθdρ = 1 2πn!m! ∞ 0 v 2 √ 1-v 2 2 v 1 √ 1-v 2 1 H n (ρ 1 -x 2 )H m (ρx)e -ρ 2 2 ρ 2 dxdρ.
This last integral could be computed explicitly as done in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF] (see p. 663, proof of Lemma 5).

Proof. The proof of Theorem 3 relies mainly on the application of the co-area formula and follow the method developed in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF]. Suppose w.l.o.g.

E ∂ 2 x W (t, z) = m 20 = 1. i) Hermite expansion for N sp (u, v 1 , v 2 ). It can be shown that 1 h ∞ -∞ ϕ u -y h C(y) ζ(α(s))dσ(s) dy → h→0 C(u) ζ(α(s))dσ(s) = tN sp (u, v 1 , v 2 ), in L 2 (Ω),
which will be useful to obtain the Hermite expansion of

N sp (u, v 1 , v 2 ). Using the co-area formula yields 1 h ∞ -∞ ϕ u -y h C(y) ζ(α(s))dσ(s) dy = 1 h t 0 M 0 ϕ u -∂ x W (s, z) h 1 I [v1,v2] ∂ xt W (s, z) ∂ xx W (s, z) |∂ xx W (s, z)| dzds.
Using [START_REF] Piterbarg | Central Limit Theorem for Wave-Functionals of Gaussian Processes[END_REF] allows to write

1 I [v1,v2] ∂ xt W (s, z) ∂ xx W (s, z) |∂ xx W (s, z)| = 1 I [v1,v2] (tan(β + η(s, z))) |η 1 (s, z) cos β -η 2 (s, z) sin β| = 1 I h v 1 -tan β 1+v 1 tan β , v 2 -tan β 1+v 2 tan β i η 2 (s, z) η 1 (s, z) |η 1 (s, z) cos β -η 2 (s, z) sin β| = 1 I [b1,b2] Z 1 (s, z) Z 2 (s, z) λ 1 Z 1 (s, z) cos β -λ 2 Z 2 (s, z) sin β := G(Z 1 , Z 2 )(s, z) where η(s, z) := arctan η 2 (s, z) η 1 (s, z) , Z i (s, z) := η i (s, z) √ λ i , (i = 1, 2), are normally distributed N (0, Id)
for fixed (s, z), and where b i , i = 1, 2, are defined in [START_REF] Soulier | Moment bounds and central limit theorem for functions of Gaussian vectors[END_REF].

The Hermite coefficients g n,m of the functional G(Z 1 , Z 2 ) can be computed as

g n,m = 1 n!m! IR 2 G(z 1 , z 2 )H n (z 1 )H m (z 2 )ϕ(z 1 )ϕ(z 2 )dz 1 dz 2 = 1 2πn!m! ∞ 0 2π 0 G(ρ cos θ, ρ sin θ)H n (ρ cos θ)H m (ρ sin θ)e -ρ 2 2 ρdθdρ = 1 2πn!m! ∞ 0 arctan b2 arctan b1 λ 1 cos β cos θ -λ 2 sin β sin θ H n (ρ cos θ)H m (ρ sin θ)e -ρ 2 2 ρ 2 dθdρ, i.e. ( 22 
). So we obtain 1 h ∞ -∞ ϕ u -v h C(v) ζ(α(s))dσ(s) du = ∞ l=0 0≤n+m≤l c l-(n+m) (u, h)g n,m [l -(n + m)]! t 0 M 0 H l-(n+m) (∂ x W (s, z))H m (Z 1 (s, z)) H n (Z 2 (s, z)) dzds,
where the Hermite coefficients c k (y, h) of the function 1 h ϕ .

-y h are given by

c k (y, h) = 1 k! ∞ -∞ ϕ(v)H k (y -hv)ϕ(y -hv)dv → h→0 H k (y)ϕ(y) k! . ( 24 
)
Now we can deduce the Hermite expansion of N sp (u, v 1 , v 2 , t) as in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF], namely

1 h t ∞ -∞ ϕ u -y h C(y) ζ(α(s))dσ(s) dy → h→0 N sp (u, v 1 , v 2 ), in L 2 (Ω),
where

N sp (u, v 1 , v 2 , t) = ∞ l=0 0≤n+m≤l H l-(n+m) (u)ϕ(u)g n,m [l -(n + m)]! 1 t t 0 M 0 H l-(n+m) (∂ x W (s, z))H m η 1 (s, z) √ λ 1 H n η 2 (s, z) √ λ 2 dzds. ii) CLT for N sp (u, v 1 , v 2 , t).
Suppose that the field W (s, x) is m-dependent in time, that is its correlation function satisfies r(s, x) = 0 whenever s > m, for all x.

According to our general method (see [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF]), the proof consists mainly in studying the asymptotic behavior of an L 2 -approximation of N sp (u, v 1 , v 2 , t) defined by the finite expansion

N Q sp (u, v 1 , v 2 , t) := Q l=0 0≤n+m≤l H l-(n+m) (u)ϕ(u)g n,m (l -(n + m))! (25) × 1 t t 0 M 0 H l-(n+m) (∂ x W (s, z))H m η 1 (s, z) √ λ 1 H n η 2 (s, z) √ λ 2 dzds. N Q sp (u, v 1 , v 2 , t
) can be written in terms of the occupation functional

S t (M ) = t 0 M 0 F Q (W(s, z))dzds = t 0 M 0 F Q • Σ 1/2 (Y(s, z))dzds,
where F Q is a polynomial function of order Q, W is the Gaussian random field defined by W(t, x) = (∂ x W (t, x), ∂ xx W (t, x), ∂ tx W (t, x)) t and where

Y(t, x) := Σ -1/2 W(t, x), with R(t, x) := E [W(t, x)(W(0, 0)) t ] and Σ := R(0, 0) = E [W(0, 0)(W(0, 0)) t ]. Note that F Q • Σ 1/2
is also a polynomial function and that the field

Y(t, x) := (Y i (t, x), i = 1, 2, 3) thus defined is m-dependent in time. Given that F Q • Σ 1/2 ∈ L 2 (φ(x 1 )φ(x 2 )φ(x 3 )dx 1 dx 2 dx 3 ), we have S t (M ) = |k|≤Q c k t 0 M 0 H k1 (Y 1 (s, z))H k2 (Y 2 (s, z))H k3 (Y 3 (s, z))dzds, where k = (k 1 , k 2 , k 3 ), |k| = k 1 + k 2 + k 3 and c k are the Hermite coefficients of F Q • Σ 1/2 . Let us check that S t (M ) t -→ t→∞ c 0 in probability. ( 26 
) Defining I(|k|, k 2 , k 3 , s, z) := H |k|-(k2+k3) (Y 1 (s, z))H k2 (Y 2 (s, z))H k3 (Y 3 (s, z)),
we can write

S t (M ) = Q |k|=0 0≤ k2+k3≤|k| c (|k|-(k2+k3), k2, k3) t 0 M 0 I(|k|, k 2 , k 3 , s, z)dzds.
The random variables (Y i (0, 0), 1 ≤ i ≤ 3) being independent standard Gaussian, Parseval's equality gives

E [F Q • Σ 1/2 (Y(0, 0))] 2 = |k|≤Q c 2 k k 1 !k 2 !k 3 ! < ∞.
Therefore, using the Diagram formula and the Dominated Convergence Theorem, we obtain for t > m

σ 2 (M ) := tE S t (M ) t -c 0 2 = 2 Q |k|=1 0≤ k2+k3≤|k| 0≤ l2+l3≤|k| c (|k|-(k2+k3), k2, k3) c (|k|-(l2+l3), l2, l3) m 0 M 0 (M -z)E[I(|k|, k 2 , k 3 , s, z)I(|k|, l 2 , l 3 , 0, 0)]dzds. ( 27 
)
Hence the result (26).

It can be proved that the almost sure convergence holds too.

Let us study the weak limit of the sequence

√ t S t (M ) t -c 0 . Defining S(s, M ) = Q |k|=1 0≤ k2+k3≤|k| c (|k|-(k2+k3), k2, k3) M 0 I(|k|, k 2 , k 3 , s, z)dz, we have √ t S t (M ) t -c 0 = 1 √ t [t] k=1 k (k-1) S(s, M )ds + 1 √ t t [t] S(s, M )ds = 1 √ t [t] k=1 θ k-1 • 1 0 S(s, M )ds + 1 √ t t [t]
S(s, M )ds, (28) when introducing the time shift operator θ h . Thus (28) appears as a sum of m-dependent random variables having second moment, to which the Hoeffding-Robbins Theorem (see [START_REF] Hoeffding | The Central Limit Theorem for dependent random variables[END_REF]) can be applied, providing

√ t S t (M ) t -c 0 d -→ N (0, σ 2 (M )) as t → ∞, where c 0 = µ and σ 2 (M ) is defined in (27), i.e. √ t N Q sp (u, v 1 , v 2 , t) -µ d -→ N (0, σ 2 (M )) as t → ∞. (29) 
To conclude the proof we verify that lim sup

Q→∞ lim sup t→∞ E [ √ t N sp (u, v 1 , v 2 , t) -N Q sp (u, v 1 , v 2 , t) ] 2 = 0. ( 30 
)
Indeed, we can write

√ t N sp (u, v 1 , v 2 , t) -N Q sp (u, v 1 , v 2 , t) = 1 √ t [t] k=1 θ k-1 • Y Q (M ) + 1 √ t I 2 (t), (31) 
where

Y Q (M ) = ∞ l=Q+1 0≤n+m≤l H l-(n+m) (u)ϕ(u)g n,m (l -(n + m))! 1 0 M 0 H l-(n+m) (∂ x W (s, z))H m η 1 (s, z) √ λ 1 H n η 2 (s, z) √ λ 2 dzds
and

I 2 (t) := ∞ l=Q+1 0≤n+m≤l H l-(n+m) (u)ϕ(u)g n,m (l -(n + m))! t [t] M 0 H l-(n+m) (∂ x W (s, z))H m η 1 (s, z) √ λ 1 H n η 2 (s, z) √ λ 2 dzds,
The first term in ( 31) is a sum of m-dependent random variables whose asymptotic variance tends to zero as Q tends to infinity; the second term in (31) tends also to zero as t → ∞ uniformly in Q since we have

V ar(I 2 (t)) ≤ E (N sp (u, v 1 , v 2 , 0)) 2 = O(1).
Hence (30) is satisfied. 2

Remark. Note that the proportion

Nsp(u,v1,v2,t) N [0,M ]
of the number of specular points with a given velocity (e.g. between -v 2 and v 1 ) among the number of specular points can be shown to converge to a Gaussian r.v. as it was done in [START_REF] Kratz | Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process[END_REF] for the number of maxima.

Remark

We are pursuing our study on characteristics of sea waves, in particular on twinkles. Longuet-Higgins has shown in [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF] that the specular points evolve until a certain time up to the vanishing of the curvature. The number of images seen by the observer is not constant; specular points may appear or disappear, the images move. The creation or annihilation of specular points may be called a twinkle. At such a twinkle, the water surface is not only oriented to reflect light into the eye, but is curved so as to focuse it there, which can be mathematically translated as

Y 1 (t, x) = ∂ x f (t, x) = 0
: to have a specular point Y 2 (t, x) = ∂ xx f (t, x) = 0 : to have a singularity in the curvature, when introducing the function f (t, x) = W (t, x) + 1 2 κx 2 , (t, x) ∈ Q(t, M ), and where W (t, x) is the process whose spectral representation is given in [START_REF] Hoeffding | The Central Limit Theorem for dependent random variables[END_REF]. Using a multidimensional Rice formula to count the number of roots of a nonlinear system of equations having the same number of equations and variables (see [START_REF] Cabaña | Esperanzas de Integrales sobre Conjuntos de Nivel aleatorios[END_REF], p.80, or [START_REF] Azaïs | On the Distribution of the Maximum of a Gaussian Field with d Parameters[END_REF]) and introducing a regression model allowed us to compute explicitly the mean number of twinkles at fixed time t and when M → ∞,

as E[N T W ] = t √ 2π 3 m 60 (m 40 m 22 -m 2 31 ) κ m 40 e -κ 2 2m 40 e -a 2 2 + a a 0 e -v 2 2 dv
, where m pq is defined in [START_REF] Lindgren | Slepian models for the stochastic shape of individual Lagrange sea waves[END_REF] and

a := m 31 m 40 (m 40 m 22 -m 2 31 )
. Note that it corresponds to Longuet-Higgins's heuristic formula (see [START_REF] Longuet-Higgins | Reflection and refraction at a random surface. I, II, III[END_REF], p.853), except to a factor 2 that would correspond in our case to work on [0, t] × [-M, M ] rather than on Q(t, M ), with M → ∞.

Computing the variance and looking for a CLT is still an ongoing research.

• Smooth approximation of X t . Consider a twice differentiable even density function φ with support in [-1, 1] and define the continuous twice differentiable smoothed process as

X ε t = 1 ε ∞ -∞ φ t -u ε X u du.
Let N ψ ε, t denote the number of ψ ε t -crossings by X ε t :

N ψ ε, t = card{s ≤ t : X ε s = ψ ε s }, where ψ ε t = 1 ε ∞ -∞ φ t -u ε ψ u du.
Let B be a complex Brownian motion such that E B(dλ)B(dλ ) = F (dλ)1 I (λ=λ ) , F being the spectral measure.

We can write

X t = ∞ -∞ e itλ B(dλ) and X ε t = ∞ -∞ e itλ φ(ελ)B(dλ),
where φ denotes the Fourier transform of φ.

The correlation function of the process X ε t given by r ε

(τ ) = ∞ -∞ e iτ λ | φ(ελ)| 2 F (dλ) satisfies r ε (0) → ε→0 r(0) = ∞ -∞ F (dλ) = 1,
and

r ε (τ ) = r ε (0) + r ε (0) 2 τ 2 + θ X ε (τ ),
with θ X ε satisfying the same conditions as θ in (1).

We will work with the normalized process Xε t =

X ε t σ ε
, where σ ε := r ε (0), since the number of ψε tcrossings by Xε t is the number of ψ ε t -crossings by X ε t :

card{s ≤ t : Xε s = ψε s } = N ψ ε, t , where ψε t = ψ ε t σ ε .
Note that Xε t is of variance 1 and correlation function ρ ε such that

ρ ε (τ ) = 1 + ρ ε (0) 2 τ 2 + θ ε (τ ),
where

ρ ε (τ ) = r ε (τ ) r ε (0) and θ ε (τ ) = θ X ε (τ ) r ε (0) .
The smoothed process X ε t has the fourth derivative of its correlation function r ε finite in 0, and so does Xε t , since these processes are twice differentiable:

r (iv) ε (0) < ∞ and ρ (iv) ε (0) < ∞,
• Hermite expansion for N ψ ε, t . By using the same approach as in [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF], the Hermite expansion for N ψ ε, t is obtained as

N ψ ε, t = lim h→0 N X ε t, h (ψ)
, where

N X ε t, h (ψ) := 1 h t 0 ϕ Xε s -ψε s h | Ẋε s -ψε s | σ ε ds = η ε hσ ε t 0 ϕ Xε s -ψε s h Ẋε s η ε - ψε s η ε ds,
with ϕ the standard Gaussian density, η ε := -r ε (0) and h > 0. We can write in L 2 (Ω),

N X ε t, h (ψ) = η ε σ ε ∞ q=0 t 0 q l=0 c q-l ( ψε s , h)a l ψε s η ε H q-l ( Xε s )H l Ẋε s η ε ds, (32) 
where the Hermite coefficients a l (m) are defined in (4) and c k (y, h) in (24). The expansion of N ψ ε, t follows by taking h → 0 in (32):

N ψ ε, t = η ε σ ε ∞ q=0 t 0 q l=0 H q-l ψ ε s σε ϕ ψ ε s σε (q -l)! a l ψε s η ε H q-l X ε s σ ε H l Ẋε s η ε ds. (33) 
• Convergence in L 2 (Ω) of N ψ ε, t to N X t (ψ) as ε → 0. To get this L 2 -convergence, we will show that

lim ε→0 E[N ψ ε, t ] 2 = E[N X t (ψ)] 2 (34) 
and

lim ε→0 E[N X t (ψ)N ψ ε, t ] = E[N X t (ψ)] 2 . (35) 
Proving (34) only requires some work since (35) is easily obtained as in [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF] (p.245).

It comes back to prove the convergence of the second factorial moment since we have, by using (33) and the uniform convergence,

E[N ψ ε, t ] = η ε σ ε t 0 ϕ ψ ε s σ ε a 0 ψε s η ε ds → ε→0 η t 0 ϕ(ψ s )a 0 ψs η ds = E[N X t (ψ)].
The second factorial moment M ε, ψ 2 of the number of ψε -crossings by Xε can be deduced from the one of the number of zero-crossings by Y (see [START_REF] Cramér | Stationary and Related Stochastic Processes[END_REF], p.209), namely

M ε, ψ 2 = t 0 t 0 dt 1 dt 2 IR 2 ẋ1 -ψε t1 ẋ2 -ψε t2 p ε t1, t2 ψε t1 , ẋ1 , ψε t2 , ẋ2 d ẋ1 d ẋ2 ,
where p ε t1, t2 (x 1 , ẋ1 , x 2 , ẋ2 ) is the joint density of the vector ( Xε t1 , Ẋε t1 , Xε t2 , Ẋε t2 ). The formula holds whether M ε, ψ 2 is finite or not. It can also be expressed as

M ε, ψ 2 = 2 t 0 t t1 I ε (t 1 , t 2 )dt 2 dt 1 = 2 t 0 t-t1 0 I ε (t 1 , t 1 + τ )dτ dt 1 ,
where

I ε (t 1 , t 2 ) := IR 2 | ẋ1 -ψε t1 || ẋ2 -ψε t2 |p ε t1, t2 ( ψε t1 , ẋ1 , ψε t2 , ẋ2 )d ẋ1 d ẋ2 = p ε t1, t2 ( ψε t1 , ψε t2 )E | Ẋε t1 -ψε t1 || Ẋε t2 -ψε t2 | Xε t1 = ψε t1 , Xε t2 = ψε t2 ,
where p ε t1, t2 (x 1 , x 2 ) is the joint density of the Gaussian vector ( Xε t1 , Xε t2 ). By using the following regression model:

(R) Ẋε t1 = ζ ε + α 1 Xε t1 + α 2 Xε t2 Ẋε t2 = ζ * ε -β 1 Xε t1 -β 2 Xε t2 where α 1 (t 2 -t 1 ) = β 2 (t 2 -t 1 ) = ρ ε (t 2 -t 1 )ρ ε (t 2 -t 1 ) 1 -ρ 2 ε (t 2 -t 1 ) , α 2 (t 2 -t 1 ) = β 1 (t 2 -t 1 ) = - ρ ε (t 2 -t 1 ) 1 -ρ 2 ε (t 2 -t 1 )
,

and (ζ ε , ζ * ε ) is jointly Gaussian such that σ 2 ε (t 2 -t 1 ) = V ar(ζ ε ) = V ar(ζ * ε ) = -ρ ε (0) - (ρ ε (t 2 -t 1 )) 2 1 -ρ 2 ε (t 2 -t 1 ) and Cov(ζ ε , ζ * ε ) = -ρ ε (t 2 -t 1 ) - (ρ ε (t 2 -t 1 )) 2 ρ ε (t 2 -t 1 ) 1 -ρ 2 ε (t 2 -t 1 )
, we obtain

I ε (t 1 , t 1 +τ ) = p ε τ ( ψε t1 , ψε t1+τ )E |ζ ε + α 1 (τ ) ψε t1 + α 2 (τ ) ψε t1+τ -ψε t1 ||ζ * ε -α 2 (τ ) ψε t1 -α 1 (τ ) ψε t1+τ -ψε t1+τ | .
For each τ > 0 and by using the uniform convergence, we have

lim ε→0 I ε (t 1 , t 1 + τ ) = I(t 1 , t 1 + τ ) := IR 2 | ẋ1 -ψt1 || ẋ2 -ψt1+τ |p t1,t1+τ (ψ t1 , ẋ1 , ψ t1+τ , ẋ2 )d ẋ1 d ẋ2 ,
and thus lim

ε→0 t 0 t δ I ε (t 1 , t 1 + τ )dτ dt 1 = t 0 t δ I(t 1 , t 1 + τ )dτ dt 1 .
We now have to prove that lim sup

δ→0 lim sup ε→0 t 0 δ 0 I ε (t 1 , t 1 + τ ) dτ dt 1 = 0.
We can write

t 0 δ 0 I ε (t 1 , t 1 + τ ) dτ dt 1 ≤ 3 i=1 4 j=1 t 0 δ 0 p ε τ ( ψε t1 , ψε t1+τ )E[I i J j ]dτ dt 1 ,
where

I 1 = ζ ε - ρ ε (τ ) 1 + ρ ε (τ ) ψε t1 , I 2 = 1 + τ ρ ε (τ ) 1 -ρ 2 ε (τ ) ψε t1+ητ , I 3 = | ψε t1+ητ -ψε t1 |
and

J 1 = ζ * ε + ρ ε (τ ) 1 + ρ ε (τ ) ψε t1 , J 2 = ρ ε (τ ) 1 + τ ρ ε (τ ) 1-ρ 2 ε (τ ) ψε t1+ντ , J 3 = |(ρ ε (τ ) -1) ψε t1+ντ |, J 4 = | ψε t1+ντ -ψε t1+τ |, with 0 ≤ η , ν ≤ 1.
Let C be some positive constant which may vary from equation to equation. First we have

t 0 δ 0 p ε τ (ψ ε t1 , ψ ε t1+τ )E[I 1 J 1 ]dτ dt 1 ≤ C δ 0 f ε (τ ) 1 τ σ 2 ε (τ ) + ρ ε (τ ) 1 + ρ ε (τ ) 2 dτ, (36) 
where

f ε (τ ) := τ 1 -ρ ε (τ ) .
Note that

f ε (τ ) = -ρ ε (0) 2 - θ ε (τ ) τ 2 -1/2 → ε→0 τ 1 -r(τ ) .
By similar techniques as the ones introduced to prove the lemmas in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF], it can be shown that

f ε is uniformly bounded when ε → 0 in [0, δ], δ > 0, f ε (τ ) ≤ C, (37) 
that

σ 2 ε (τ ) τ ≤ C τ θ ε (τ ) -θ ε (τ ) τ 3 ≤ C L(τ ),
therefore, under the Geman condition, by applying (37) and the Dominated Convergence Theorem, that lim

ε→0 δ 0 σ 2 ε (τ ) 1 -ρ ε (τ ) dτ = δ 0 σ 2 (τ ) 1 -r(τ ) dτ, with σ 2 (τ ) := -r (0) - r 2 (τ ) 1 -r 2 (τ ) , (38) 
which tends to zero as δ → 0. It can also be proved that

lim δ→0 lim ε→0 δ 0 1 1 -ρ ε (τ ) ρ ε (τ ) 1 + ρ ε (τ ) 2 dτ = 0, (39) 
by using the uniform bound (37) for f ε (τ ), and the fact that τ ρ ε (τ )

τ 2 ≤ Cτ (r (0)) 2 .
We can conclude by combining (36), (37), ( 38) and (39). Now let us study

t 0 δ 0 p ε τ ( ψε t1 , ψε t1+τ )E[I 1 J 2 ]dτ dt 1 . We have t 0 δ 0 p ε τ ( ψε t1 , ψε t1+τ )E[I 1 J 2 ]dτ dt 1 ≤ C δ 0 f ε (τ )dτ + δ 0 (f ε (τ )) 3/2 θ (τ ) τ + θ(τ ) τ 3 dτ .
Again, the uniform bound (37) for f ε (τ ) and the Geman condition allow to conclude that Hence the result (34).

• Conclusion.

Since, by Fatou lemma, for each Q positive,

Q q=0 E   t 0 q l=0 H q-l (ψ s )ϕ(ψ s ) (q -l)! a l ψs -r (0) H q-l (X s )H l Ẋs -r (0) ds 2   ≤ lim ε→0 E   -r ε (0) r ε (0) N ψ ε, t 2   = E[( -r (0) N X t (ψ)) 2 ],
the formal expansion in the right hand side of (5) defines a random variable in L 2 (Ω), denoted by N t . Moreover

E 1 η N X t (ψ) -N t 2 ≤ 2   E N X t (ψ) -r (0) - r ε (0) -r ε (0) N ψ ε, t 2 + E r ε (0) -r ε (0) N ψ ε, t -N t 2   .
The first term of the right hand side, tends to zero as shown in the previous step. For the second term, an argument of continuity for the projections into the chaos entails the result (see [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF]).

Note that we considered the case where r(0) = 1; it can be easily generalized to a process X satisfying

E[X 2 t ] = r(0) when noticing that N X t (ψ) = N Y t/ √ r(0) (0), where Y s = 1 √ r(0)
X s r(0) -ψ s r(0) . 2 A2 -Proof of Theorems 1 and 2

1) Periodic curve

We will consider the case t = np, where p is the curve's periodicity. It will be straightforward to deduce the general case.

We can write

N X t (ψ) -E[N X t (ψ)] = -r (0) r(0) ∞ q=1 t 0 q l=0 κ ql (s)H q-l X s r(0) H l Ẋs -r (0) ds.
Let define

Y k Q := ∞ q=Q+1 kp (k-1)p q l=0 κ ql (s)H q-l X s r(0) H l Ẋs -r (0) ds, = ∞ q=Q+1 p 0 q l=0 κ ql (u)H q-l X u+(k-1)p r(0) H l Ẋu+(k-1)p -r (0)
du (by periodicity).

We have

n k=1 Y k Q = ∞ q=Q+1 np 0 q l=0 κ ql (s)H q-l X s r(0) H l Ẋs -r (0) ds. 
(i) Let us prove that

lim Q→∞ lim n→∞ 1 n E   n k=1 Y k Q 2   = 0. ( 40 
)
We have

E[(Y k Q ) 2 ] = ∞ q=Q+1 E   p 0 q l=0 κ ql (u)H q-l X u r(0) H l Ẋu -r (0) du 2   = E[(Y 1 Q ) 2 ],
by using the orthogonality of the chaos, the stationarity and the p-periodicity.

Therefore we obtain

1 n n k=1 E[(Y k Q ) 2 ] = E[(Y 1 Q ) 2 ] → 0 as Q → ∞. (41) 
Suppose now that k > m and write

E Y k Q Y m Q = ∞ q=Q+1 p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (k -m, u, v)dudv,
where I ql1l2 (k -m, u, v) is defined for k > m by

I ql1l2 (k -m, u, v) = E H q-l1 X u+(k-m)p r(0) H l1 Ẋu+(k-m)p -r (0) H q-l2 X v r(0) H l2 Ẋv -r (0) . (42) 
Thus we have

k =m E[Y k Q Y m Q ] = 2 k>m ∞ q=Q+1 p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (k -m, u, v)dudv = 2n n-1 j=1 (1 - j n ) ∞ q=Q+1 p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (j, u, v)dudv. (43) 
By hypothesis we have ∞ 0 χ(u)du < ∞. The continuity of the functions defining χ implies that there exists a positive integer a such that χ(v) < ρ for v > a. So (43) can be rewritten as

k =m E[Y k Q Y m Q ] = 2(I a1 + I a2 ), (44) 
with

I a1 := a j=1 1 - j n ∞ q=Q+1 p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (j, u, v)dudv and I a2 := n-1 j=a+1 1 - j n ∞ q=Q+1 p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (j, u, v)dudv.
On one hand we have

I a1 ≤ a j=1 1 - j n ∞ q=Q+1 E   p 0 q l1=0 κ ql1 (u)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) du 2   → Q→∞ 0. (45) 
On the other hand, I a2 can be bounded as

I a2 ≤ n-1 j=a+1 1 - j n ∞ q=Q+1 p 0 p 0 χ q (u + jp -v) E 1/2   q l1=0 κ ql1 (u)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   ×E 1/2   q l1=0 κ ql1 (v)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   dvdu ≤ ∞ q=Q+1 p 0 u+np u+ap χ q (w) E 1/2   q l1=0 κ ql1 (u)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   ×E 1/2   q l1=0 κ ql1 (u -w)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   dwdu ≤ ∞ q=Q+1 ρ q-2 ∞ ap χ 2 (w) p 0 E 1/2   q l1=0 κ ql1 (u)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   ×E 1/2   q l1=0 κ ql1 (u -w)H q-l1 X 0 r(0) H l1 Ẋ0 -r (0) 2   dudw,
by using Arcones inequality (see [START_REF] Arcones | Limit theorems for non-linear functionals of a stationary Gaussian sequence of vectors[END_REF] or [START_REF] Soulier | Moment bounds and central limit theorem for functions of Gaussian vectors[END_REF]), then the change of variables w = u + jp -v and finally the periodicity of κ ql .

This last upper bound tends to 0 as

Q → ∞ since E   q l=0 κ ql (u)H q-l ( X 0 r(0) )H l ( Ẋ0 -r (0) ) 2   = 1 2π R 2 q l=0 κ ql (u)H q-l (x 1 )H l (x 2 ) 2 e -x 2 1 +x 2 2 2 dx 1 dx 2 = κ 2 ql (u) (q -l)! l! = q l=0 H 2 q-l ψs √ r(0) ϕ 2 ψs √ r(0) (q -l)! a 2 l ψs -r (0) l! ≤ C E   Z + ψs -r (0) 2   ≤ 2C 1 + || ψ|| 2 ∞ -r (0) ,
with C some constant independent of q, as a consequence of Proposition 3 in Imkeller et al. (see [START_REF] Imkeller | Chaos expansion of double intersection local time of Brownian motion in R d and renormalization[END_REF]). Hence I a2 -→ Q→∞ 0, which combined with (45), ( 44) and ( 41) provide (40).

(ii) We are now interested in the asymptotical variance of F

n := N X np (ψ) -E[N X np (ψ)] √ n .
We have

σ 2 n := var(F n ) = -r (0) r(0) ∞ q=1 σ 2 n (q), with σ 2 n (q) := 1 n E   np 0 q l=0 κ ql (s)H q-l X s r(0) H l Ẋs -r (0) ds 2   .
Note that the Fatou lemma implies that

∞ q=2 lim n→∞ σ 2 n (q) ≤ lim n→∞ 1 n E   n k=1 Y k 1 2   = E[(Y 1 1 ) 2 ] < ∞.
Let us study the asymptotical behavior as n → ∞ of each component σ 2 n (q). We can write

σ 2 n (q) = 1 n E   n k=1 p 0 q l=0 κ ql (u)H q-l X u+(k-1)p r(0) H l Ẋu+(k-1)p -r (0) du 2   := 1 n E   n k=1 Z q k 2   = E (Z q 1 ) 2 + 2 n n-1 k1=1 n k2=k1+1 E[Z q k1 Z q k2 ]. But E (Z q 1 ) 2 = 2 p 0 u 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (u -z)E H q-l1 X z r(0) H l1 Ẋz -r (0) H q-l2 X 0 r(0) H l2 Ẋ0 -r (0) dzdv,
and, by stationarity,

E[Z q k1 Z q k2 ] = p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (k 2 -k 1 , u, v)dudv, I ql1l2 being defined in (42), thus it comes 1 n n-1 k1=1 n k2=k1+1 E[Z q k1 Z q k2 ] = n-1 j=1 1 - j n p 0 p 0 q l1=0 q l2=0 κ ql1 (u)κ ql2 (v)I ql1l2 (j, u -v, 0)dudv = p 0 n-1 j=1 1 - j n u+jp u+(j-1)p q l1=0 q l2=0 κ ql1 (u)κ ql2 (u -z)I ql1l2 (0, z, 0)dzdu = p 0 ∞ u n-1 j=1 1 - j n 1 I [u+(j-1)p,u+jp ] (z) q l1=0 q l2=0 κ ql1 (u)κ ql2 (u -z)I ql1l2 (0, z, 0)dzdu,
with the change of variables z = u -v + jp, and using the periodicity and stationarity of κ ql .

Notice that

n-1 j=1 1 - j n 1 I [u+(j-1)p,u+jp ] (z) → n→∞ 1 I [u,∞) (z).
On the other hand, we can apply the Dominated Convergence Theorem, splitting the inner integral into two parts, namely on the interval [u, a], with a chosen such that χ(z) < ρ < 1 for z > a, and on [a, ∞] respectively.

Finally we obtain

1 n k1 =k2 E[Z q k1 Z q k2 ] → n→∞ 2 p 0 ∞ u q l1=0 q l2=0 κ ql1 (u)κ ql2 (u -z) I ql1l2 (0, z, 0) dzdu, hence σ 2 n (q) → n→∞ 2 ∞ 0 q l1=0 q l2=0 p 0 κ ql1 (u)κ ql2 (u -z)du I ql1l2 (0, z, 0) dz, namely σ 2 (q) := lim n→∞ σ 2 n (q) = 2 ∞ 0 q l1=0 q l2=0 κql1 * κ ql2 (z) I ql1l2 (0, z, 0) dz, (46) 
with the notation h(u) := h(-u) and h * g(u) := p 0 h(u -v)g(v)dv.

As in [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF] (p.653), we can conclude that

E F 2 n := E   N X np (ψ) -EN X np (ψ) √ n 2   -→ n→∞ -r (0) r(0) ∞ q=1
σ 2 (q), σ 2 (q) satisfying (46). where θ t denotes the shift operator of path t associated to X and where the random variables Y k are, under the m-dependence condition on X, ( m p + 1)-dependent and identically distributed, then an immediate application of the Hoeffding-Robbins CLT for m-dependent sequences (see [START_REF] Hoeffding | The Central Limit Theorem for dependent random variables[END_REF]) provides

F Q,n d -→ n→∞ N (0, Q q=1
σ 2 m (q)), with σ 2 m (q) = 2 m 0 q l1=0 q l2=0 κql1 * κ ql2 (z) I ql1l2 (0, z, 0) dz, with the notation (42).

(iv) Generalization.

The result can be extended now under the more general weak dependence assumption [START_REF] Callenbach | Oscillatory systems driven by noise: Frequency and phase synchronization[END_REF], aproaching in L 2 (Ω) the process X by a m-dependent process, as t → ∞ (see [START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF], Lemma 3). 2

2) Linear curve and specular points

Since the correlation function of ∂ x W (0, x) is -r (x), Proposition 1 provides the Hermite expansion of N [0,x] under the Geman condition [START_REF] Kratz | Central limit theorems for the number of maxima and some estimator of the second spectral moment of a stationary Gaussian process[END_REF], from which the expectation is deduced: As a consequence of the diagram formula (see [START_REF] Breuer | Central limit theorems for non-linear functionals of Gaussian fields[END_REF]) and the Dominated Convergence Theorem , we obtain for each q ≥ 1 lim First let us prove that the second factorial moment M ψ 2 (x) of N [0,x] is finite as x → ∞. For ease of notation we shall suppose bellow that -r (0) = 1.

E[N [0,x] ] =
We have M ψ 2 (x) = 2 When working in the interval [0, δ], we proceed as in the proof of Proposition 1 when bounding the terms E[I i J i ], to bound all terms defining G(s, τ ) by functions belonging to L 2 [0, δ] in order to be able to apply the Dominated Convergence Theorem.

The we can conclude that lim But N [0,x] ↑ N [0, ∞] and so E(N 2 [0,x] ) → E(N 2 [0, ∞] ), as x → ∞. We can then conclude to (16) of Theorem 2. 2

e -m 2 y 2 2 H

 2 -m|, given by a 0 (m) = E|Z -m|, where Z is a standard Gaussian r.v., = m [2Φ(m)l (-my)y l-2 dy, l ≥ 1.

  t1 , ψε t1+τ )E[I 1 J 2 ]dτ dt 1 = 0. t1 , ψε t1+τ )E[I 2 J 1 ]dτ dt 1 can be bounded in the same way.Now, since p ε τ ( ψε t1 , ψε t1+τ ) J 3 ≤ C( 1 -ρ ε (τ ) ), we obtain t1 , ψε t1+τ )E[I i J 3 ]dτ dt 1 = 0.Finally, the fact that| ψε t+τ -ψε t | ≤ Cγ(τ ) and p ε τ ( ψε t1 , ψε t1+τ )I 3 ≤ C f ε (τ ) t1 , ψε t1+τ )E[I i J 4 ]dτ dt 1 = 0.

(√ n np 0 g√ n n k=1 p 0 gθ

 00 iii) CLT for F n under the hypothesis of m-dependence on X.Let us defineF Q,n := 1 Q (s, X s , Ẋs ) ds, with g Q (s, X s , Ẋs ) := -r n -F Q,n ) 2 = 0.As pointed out in[START_REF] Kratz | Central limit theorems for level functionals of stationary Gaussian processes and fields[END_REF], we just have to show that F Q,n satisfies a CLT to obtain the same result for F n . Since can writeF Q,n = 1 Q (s, X s+(k-1)p , Ẋs+(k-1)p )ds := 1 (k-1)p Y 1 ,

  i.e.[START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF], as well as the variance. Let us study the limit of the variance of N [0, x] as x → ∞, under the m-dependence assumption on ∂ x W (0, x).

E 0 E

 0 F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ F q s + τ, ∂ x W (0, s + τ ) η , ∂ xx W (0, s + τ ) F q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ F q s + τ, ∂ x W (0, s + τ ) η , ∂ xx W (0, s + τ ) γ dτ ds,F q being defined in Theorem 2.We shall study the asymptotic behavior as x → ∞ of the second moment of N [0,x] .

p 2 x 0 δ 0 p 2 + κ 2 1 2π 1 - 2 1- κ 2 τ 2 4 2 ,

 202211222 τ (-κs, -κ(s + τ ))G(s, τ )dτ ds, whereG(s, τ ) = E ζ -r (τ )r (τ ) 1 -(r (τ )) 2 κs -r (τ ) 1 -(r (τ )) 2 κ(s + τ ) + κ ζ * + r (τ ) 1 -(r (τ )) 2 κs + r (τ )r (τ ) 1 -(r (τ )) 2 κ(s + τ ) + κ , ψ(x) = -κx, p τ is the density of (∂ x W (0, s), ∂ x W (0, s + τ )) and (ζ, ζ * ) is defined in the same way as in (R) given in the proof of Proposition 1-κs, -κ(s + τ ))G(s, τ )dsdτ + τ (-κs, -κ(s + τ ))G(s, τ )dsdτ.By using the Cauchy-Schwarz inequality, we haveG(s, τ ) ≤ C Eζ 2 + r (τ )r (τ ) 1 -(r (τ )) (s 2 + (s + τ ) 2 ).Moreover, we can writep τ (-κs, -κ(s + τ )) = (r (τ )) 2 e -κ -r (τ ) (s+ 1 2 τ )2 e (1+r (τ )) , providing p τ (-κs, -κ(s + τ )) ≤ C e if τ ∈ [δ, x -s]. Thus applying the Dominated Convergence Theorem provides lim -κs, -κ(s + τ ))G(s, τ )dsdτ = ∞ 0 m δ p τ (-κs, -κ(s + τ ))G(s, τ )dsdτ.

E

  -κs, -κ(s + τ ))G(s, τ )dsdτ < ∞.Now applying the Fatou lemma givesF q s, ∂ x W (0, s) η , ∂ xx W (0, s) γ F q s + τ, ∂ x W (0, s + τ ) η , ∂ xx W (0, s + τ ) γ dsdτ.

Appendix

A1 -Proof of Proposition 1

As already mentioned, we follow the main approach we proposed in [START_REF] Kratz | Hermite polynomial expansion for non-smooth functionals of stationary Gaussian processes: crossings and extremes[END_REF] to obtain the result for a fixed level. Technical tools developed recently in [START_REF] Kratz | On the second moment of the number of crossings by a stationary Gaussian process[END_REF] allow, now, to generalize this result to differentiable curves. The proof can be sketched in four main steps, outlined below for the paper to be self-contained.