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Level curves, crossings and speed of specular points for Gaussian

models

Marie F. Kratz ∗ † José R. León ‡

March 21, 2008

Abstract

Using generalizations of the well known Rice formula and applying the general method related to
m-dependent processes that we settled in earlier works, allow one to obtain representations into the
Itô-Wiener Chaos and CLTs for curve-crossings number. This approach not only explains heuristic
considerations of Longuet-Higgins on specular points and related problems in the context of sea
modelling, but goes far beyond when providing asymptotic results. These results on curve-crossings
may also be applied in other fields. One example is the study of the estimator of the natural frequency
of a harmonic oscillator.

1 Introduction

Recently there has been a renewed interest in applying the generalizations of the Rice formulae to explain
some difficult phenomena in optics (see for instance [4]). In this work, we also use generalizations of the
well known Rice formula (see [21]) and apply the general method we settled in earlier works (see [12],
[14], or [16] for a survey on results and methods) to obtain representations into the Itô-Wiener Chaos and
CLTs for level functionals of stationary Gaussian processes. It allows one to provide results on curve-
crossings and specular points, which may explain for instance the light reflection on the sea surface.
Note that this last subject was heuristically developed in the fifties and sixties by Longuet-Higgins (see
[18] and [19]), whose main motivation was to determine the height of the waves.
The approach we chose allows us to explain the Longuet-Higgins discovery by proving his heuristic
formulae, and goes far beyond, providing variance results and CLTs, which may apply in various applied
research areas, as e.g. the ones considered here: sea modelling and random oscillation.
Let us also mention related works, such as Piterbarg and Rychlik’s CLT for wave functionals (see [20])
or the recent paper from Lindgren (see [17]) who introduced a Gaussian Lagrangian model to describe
the sea surface.
The paper is organized as follows. In section 2, we develop the expansion into Hermite polynomials for
the number of crossings of a differentiable curve, generalizing an earlier result we obtained for a fixed
level (see [12]). Then we describe the asymptotic behavior of this expansion according to the form of
the level curve, namely if the curve is periodic or linear. The proofs of those results are given in the
Appendix. As an application when the curve is periodic, we study the estimator of the natural frequency
of a harmonic oscillator with periodic forcing term, whereas the case of linear curves is applied to the
study of specular points. Section 3 is devoted to the speed of specular points on the sea surface.
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2 Asymptotic behavior of the curve-crossings number

Hermite polynomial expansion (or Multiple Wiener-Itô Integrals) may be a powerful tool to represent and
to study nonlinear functionals of stationary Gaussian processes. Thus we will first provide the Hermite
expansion for the curve-crossings number in order to obtain in an easier way its asymptotic behavior,
which depends on the curve’s type.

(Hn)n≥0 will denote the Hermite polynomials, defined by Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2, which con-

stitute a complete orthogonal system in the Hilbert space L2(IR, ϕ(u)du), ϕ being the standard normal
density.

2.1 Hermite expansion for the curve-crossings number

Let X = {Xt, t ∈ IR} be a centered stationary Gaussian process, variance one, with twice differentiable
correlation function r given by r(τ) =

∫∞
−∞ eiτλF (dλ), where F is the spectral measure.

Let NX
t (ψ) be the number of crossings of a differentiable function ψ by the process X :

NX
t (ψ) = card{s ≤ t : Xs = ψs}.

The random variable NX
t (ψ) can also be seen as the number NY

t (0) of zero crossings by the non-stationary
(but stationary in the sense of the covariance) Gaussian process Y = {Ys, s ∈ IR} defined by Ys := Xs−ψs,
i.e. NX

t (ψ) = NY
t (0).

Suppose that r satisfies on [0, δ], δ > 0,

r(τ) = 1 +
r′′(0)

2
τ2 + θ(τ), with θ(τ) > 0,

θ(τ)
τ2

→ 0,
θ′(τ)
τ

→ 0, θ′′(τ) → 0, as τ → 0, (1)

that the nonnegative function L defined by L(τ) :=
θ′′(τ)
τ

=
r′′(τ)− r′′(0)

τ
, τ > 0, satisfies the Geman

condition:
∃δ > 0, L ∈ L1([0, δ]) (2)

and assume that the modulus of continuity of ψ̇ defined by γ(τ) := sup
u∈[0,t]

sup
|s|≤τ

|ψ̇(u + s) − ψ̇(u)| is such

that ∫ δ

0

γ(s)
s

ds <∞. (3)

These conditions imply that NX
t (ψ) has a finite variance, as it has been proved by the authors in [15].

Notice that we still do not know whether, under the Geman condition,
∫ δ
0
γ(s)
s ds = ∞ implies that

NX
t (ψ) does not belong to L2(Ω).

Let al(m) be the coefficients in the Hermite’s basis of the function | .−m|, given by

a0(m) = E|Z −m|, where Z is a standard Gaussian r.v.,

= m [2Φ(m)− 1] +

√
2
π
e−

m2
2 =

√
2
π

[
1 +

∫ m

0

∫ u

0

e−
v2
2 dvdu

]
,

and al(m) = (−1)l+1

√
2
π

1
l!

∫ 1

0

e−
m2y2

2 Hl(−my)yl−2dy, l ≥ 1. (4)

The following proposition gives the Hermite expansion for the curve-crossings number under the only
hypothesis that the number of crossings belongs to L2(Ω), thus completes the results of [12] for a fixed
level ψt ≡ x and for many functions ψ.

Proposition 1 Under the conditions (1), (2) and (3), the number of crossings NX
t (ψ) of the function

ψ by the process X has the following expansion in L2(Ω):

NX
t (ψ) =

√
−r′′(0)

∞∑
q=0

∫ t

0

q∑
l=0

Hq−l(ψs)ϕ(ψs)
(q − l)!

al

(
ψ̇s√
−r′′(0)

)
Hq−l(Xs)Hl

(
Ẋs√
−r′′(0)

)
ds, (5)
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al(.) being defined in (4).
This result can be easily generalized to a process X satisfying E[X2

t ] = r(0):

NX
t (ψ) =

√
−r′′(0)
r(0)

∞∑
q=0

∫ t

0

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
ds, (6)

where κql(s) :=
Hq−l

(
ψs√
r(0)

)
ϕ

(
ψs√
r(0)

)
(q − l)!

al

(
ψ̇s√
−r′′(0)

)
.

We generalized the approach settled in [12] to obtain such a result considered for the first time by Slud
in [22]. Whereas this author provided a MWI expansion of NX

t (ψ) by approximating the crossings of
the process X by those of the discrete version of X, our method consists in approaching the process,
then the crossings, by using a process smoothed-by-convolution, for which the expansion can be readily
obtained. The main ideas of the proof, which uses also technical tools developed in [15], can be found in
the Appendix.

2.2 Asymptotic behavior according to the level curve’s type

We shall describe the asymptotic behavior of the previous expansion of the number of curve crossings
according to the form of the curve ψ.

If the function ψ is periodic, then a CLT can be deduced since we may say that we remain in
an ergodic situation similar to the fixed barrier problem. As an example, let us mention the case
of a cosine barrier ψ of the type ψ(x) =

√
2A cos(ωx), first studied by Rice, then by Cramér &

Leadbetter (see [9]). We can also mention the case of a harmonic oscillator driven by a white noise
and with periodic forcing term, that will be developed below.

If ψ is a linear function of the time, i.e. ψs := ks, we shall prove that the number of ψ-crossings
of X belongs to L2(Ω) as the time tends to infinity. This case encounters the number of specular
points of a curve, that will be studied in the next section.

The proofs of both theorems rely mainly on the method developed in [14] and are given in the Appendix.

2.2.1 Periodic curve

Suppose that the function ψ is p-periodic, i.e. ψs+p = ψs. So is the function κql defined in Proposition
1, for all q and l.
We are interested in the asymptotic behavior of the r.v. NX

t (ψ)− E[NX
t (ψ)] as t→∞.

Let us introduce (see [1])

χ(s) := sup

(
|r(s)|+ |r′(s)|√

−r′′(0)
,
|r′(s)|√
−r′′(0)

+
|r′′(s)|
−r′′(0)

)
. (7)

Theorem 1 : CLT for NX
t (ψ).

Let X and ψ both satisfying the hypothesis of Proposition 1. If∫ ∞

0

χ(s)ds <∞ (8)

then
NX
np(ψ)− E[NX

np(ψ)]
√
n

d−→
n→∞

N

(
0,

∞∑
q=1

σ2(q)

)
,
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where σ2(q) is defined by

σ2(q) =
∫ ∞

0

q∑
l1=0

q∑
l2=0

(∫ p

0

κql1(u)κql2(u− z)du
)

E

[
Hq−l1

(
Xz√
r(0)

)
Hl1

(
Ẋz√
−r′′(0)

)
Hq−l2

(
X0√
r(0)

)
Hl2

(
Ẋ0√
−r′′(0)

)]
dz.

The same result holds when replacing np by t.

Application to a harmonic oscillator.

The following application aims at clarifying, from a mathematical point of view, some concepts linked
to the synchronization phenomenon, in particular to the phase synchronization. To study such a phe-
nomenon, it is necessary to compare the average phase velocity between different signals. This quantity
turns out to be the average rate of zero crossings by the signals and can thus be obtained by using Rice’s
formula. In the physics literature, this average phase velocity is called the Rice frequency and is usually
denoted by < ω >R.
When considering a harmonic oscillator driven by a white noise, the average of zero crossings provides
in stationary regime the natural frequency ω0 of the oscillator, as we will see below. If, moreover, the
oscillator is driven by an additional deterministic periodic signal, another behavior is observed. In [8]
an interesting discussion emphasizes the behavior of the Rice frequency depending on the existence and
intensity of a noise. Recall that in the case of no noise, the system behaves with the same frequency as
the one of the periodic driven force.

Let a harmonic oscillator X = (Xt) driven by a Gaussian white noise be the stationary solution of the
stochastic differential equation

Ẍt + γẊt + ω2
0Xt = σdWt, (9)

where the parameters γ > 0, ω2
0 , σ2 are, respectively, the damping factor, the natural frequency of the

oscillator, the noise’s variance, and W is a standard Gaussian white noise.
Suppose that the system is underdamped, i.e. 2ω0 > γ.
The process X is Gaussian, zero mean and with spectral density

f(λ) =
σ2

2π[(λ2 − ω2
0)2 + γ2λ2]

, λ ∈ IR.

Computing the spectral moments, we obtain

m0 := r(0) = 2
∫ ∞

0

f(λ)dλ =
σ2

2γω2
0

and m2 := −r′′(0) = 2
∫ ∞

0

λ2f(λ)dλ =
σ2

2γ
.

The Ergodic Theorem and the Rice formula imply that

lim
t→∞

NX
t (0)
t

=
1
π

√
m2

m0
=
ω0

π
a.s.,

from which can be deduced an a.s. consistent estimator of the natural frequency ω0 of the oscillator or
of the Rice frequency < ω >R since it is defined in terms of the zero crossings number NX

t (0) of X by

< ω >R= lim
t→∞

NX
t (0)
t

, so ω0 = π < ω >R.
Let us prove the asymptotical normality of the estimator of ω0.
First we check that E[NX

t (0)]2 <∞. To do so, we prove that the covariance function satisfies the Geman
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condition.
Indeed, we have∫ δ

0

r′′(t)− r′′(0)
t

dt =
σ2

π

∫ ∞

0

(∫ δ

0

1− cos(λt)
t

dt

)
λ2

(λ2 − ω2
0)2 + γ2λ2

dλ.

But∫ δ

0

1− cos(λt)
t

dt = 2
∫ λδ

0

sin2(2u)
u

du = 2

(∫ a

0

sin2(2u)
u

du +
∫ λδ

a

sin2(2u)
u

du

)
≤ C

(
a2/2 + | log(λδ)|

)
,

with C some positive constant which may vary from line to line,

so that
∫ δ

0

1− cos(λt)
t

dt ≤ C| log(λδ)|, hence

∫ δ

0

r′′(t)− r′′(0)
t

dt ≤ C
σ2

π

∫ ∞

0

| log(λδ)| λ2

[(λ2 − ω2
0)2 + γ2λ2]

dλ <∞.

Now we can apply Proposition 1 to obtain

√
t

(
NX
t (0)
t

− ω0

π

)
=
ω0

π

∞∑
q=1

[q/2]∑
l=0

b2(q−l)ã2l
1√
t

∫ t

0

H2(q−l)(Xs/
√
m0)H2l(Ẋs/

√
m2)ds,

where b2k = H2k(0)
(2k)! and ã2l =

√
π
2 a2l(0) = (−1)l+1

2ll!(2l−1)
.

Then, since (8) is satisfied because the covariance function tends exponentially towards zero as t → ∞,
Theorem 1 entails:

√
t

(
NX
t (0)
t

− 1
π
ω0

)
d−→

n→∞
N (0, ω2

0Σ2/π2), where Σ2 =
∞∑
q=1

σ2(q)

with σ2(q) =
[q/2]∑
l1=0

[q/2]∑
l2=0

b2(q−l1)ã2l1b2(q−l2)ã2l2

×
∫ ∞

0

E

[
H2(q−l1)

(
X0√
m0

)
H2l1

(
Ẋ0√
m2

)
H2(q−l1)

(
Xs√
m0

)
H2l1

(
Ẋs√
m2

)]
ds.

Note that this result could be used to build bootstrapping confidence intervals for ω0.

Case of a forcing linear harmonic oscillator.
Our result on the crossings of a periodic curve allows us to consider another interesting situation, namely
that of a forcing linear harmonic oscillator driven by a Gaussian white noise.
Consider the process solution of the equation

Ÿt + γẎt + ω2
0Yt = σdWt + F cos(αt),

where f(t) = F cos(αt) is the forcing function, 2π-periodic, with α > 0 and F > 0.
As t→∞, the solution stabilizes and behaves as the process (see [8])

Yt = Xt +
F√

(ω2
0 − α2)2 + α2γ2

cos(αt+ β),

where Xt is the stationary solution of the stochastic differential equation (9) and tanβ = αγ
ω2

0−α2 .
Thus the zero-crossings of the process Y are the crossings by X of the 2π/α-periodic curve ψ defined by

ψ(t) = − F√
(ω2

0 − α2)2 + α2γ2
cos(αt+ β).
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Hence, by Proposition 1 we obtain

NY
t (0) = NX

t (ψ) = ω0

∞∑
q=0

∫ t

0

q∑
l=0

κql(s)Hq−l

(
Xs√
m0

)
Hl

(
Ẋs√
m2

)
ds

and therefore

E[NY
t (0)] = ω0

∫ t

0

ϕ

(
ψs√
m0

)
a0

(
ψ̇s√
m2

)
ds.

Choosing t = t(n) = n 2π
α and letting n→∞ yield via the ergodic theorem

< ω >R= lim
t→∞

NY
t (0)
t

= ω0
α

2π

∫ 2π
α

0

ϕ

(
ψs√
m0

)
a0

(
ψ̇s√
m2

)
ds

=
ω0

2π

∫ 2π

0

ϕ (C1 cos s) a0 (C2 sin s) ds a.s.

where C1 = −F/√m0√
(ω2

0−α2)2+α2γ2
and C2 = αF/

√
m2√

(ω2
0−α2)2+α2γ2

.

Theorem 1 allows to conclude to the asymptotical normality of the estimator of < ω >R:

lim
n→∞

√
n

(
NY
t(n)(0)

n
− 2π

α
< ω >R

)
= N

(
0,

∞∑
q=1

σ2(q)

)
,

where σ2(q) is computed in Theorem 1, with p = 2π/α.

Remark. It would be important to study another interesting problem, that is the asymptotic behavior
of the Rice frequency for non-linear oscillators driven by a white noise with a periodic forcing, as for
instance the Kramers oscillator defined by

Ẍt + γẊt +X3
t −Xt = σdWt + F cos(αt).

It is well known that for such an oscillator, as well as for other Hamiltonian oscillators, the stationary
solution is exponentially ergodic hence β-mixing. The asymptotic behavior of the average of zero crossings
by X per unit time may be obtained via the ergodic theorem and the Rice formula. But the CLT remains
an open problem.

2.2.2 Linear curve and specular points

We are interested in describing the behavior of the specular points in a random curve.
As was pointed out by Longuet-Higgins (see [18]), specular points are the moving images of a light source
reflected at different points on a wave-like surface. Let us modelize this surface by a Gaussian field W
defined on IR+ × IR, IR+ for the temporal variable and IR for the spatial one.
The first derivatives with respect to the spatial variable x and the temporal variable t will be denoted by
∂xW and ∂tW respectively; the second derivatives will be denoted by ∂xxW , ∂ttW , ∂txW and ∂xtW .
The spectral representation of W is given by

W (t, x) =
∫

Λ

ei(λx−ωt)
√
f(λ) dB(λ) =

∫
ei(λx−|λ|

1/2t)
√
f(λ) dB(λ), (10)

where Λ = {(λ, ω) : ω2 = λ} (the Airy relation) and the real and imaginary parts of the complex-Gaussian
process B = B(λ, λ ≥ 0) are real Gaussian processes with var(Re(B(λ))) = var(Im(B(λ))) = F (λ)/2
and B(−λ) = B(λ) a.s., having independent increments.
The covariance function writes

r(t, x) = 2
∫ ∞

0

cos(λx− λ1/2t)f(λ)dλ. (11)
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First let us consider the process at a fixed time, for instance t = 0.
In this case, W (0, x) is a centered stationary Gaussian process with correlation function

r(0, x) := r(x) = 2
∫ ∞

0

cos(λx)f(λ) dλ.

Let us define a curve in the plan (x, z) by the equation z = W (0, x).
Suppose that the coordinates of a point-source of light and an observer are (0, h1) and (0, h2) respectively,
situated at heights h1 and h2 above the mean surface level. A specular point is characterized by the
equations (see [18]):

∂xW (0, x) = −κx with κ =
1
2

(
1
h1

+
1
h2

)
, (12)

which can be interpreted as a crossing of the curve ψ(x) := −κx by the process ∂xW (0, x).
Let us assume that r is four times differentiable and that r′′ satisfies the Geman condition:

r(iv)(x)− r(iv)(0)
x

∈ L1 ([0, δ]) . (13)

Theorem 2 Under the Geman condition (13), the number N[0,x] of specular points in the interval [0, x]
has the following expansion in L2(Ω):

N[0,x] =
γ

η

∞∑
q=0

∫ x

0

Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
ds, (14)

where η =
√
−r′′(0), γ =

√
r(iv)(0) and

Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
:=

q∑
l=0

Hq−l

(
−κs
η

)
ϕ
(
−κs
η

)
(q − l)!

al

(
−κ
γ

)
Hq−l

(
∂xW (0, s)

η

)
Hl

(
∂xxW (0, s)

γ

)
,

with al(.) defined in (4) and κ in (12).
Its expectation is given by

E[N[0,x]] =

√
2
π

κ

η

(∫ κ
γ

0

e−
u2
2 du+

γ

κ
e
− κ2

2γ2

) ∫ x

0

ϕ

(
κs

η

)
ds, (15)

and its variance by

V ar(N[0,x]) =∫ x

0

∫ x−s

0

E
[
Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
Fq

(
s+ τ,

∂xW (0, s+ τ)
η

,
∂xxW (0, s+ τ)

γ

)]
dτds.

Suppose that the process ∂xW (0, x) is m-dependent, i.e. that −r′′(τ) = 0 for τ > m, then the asymptotic
variance of N[0,x], as x→∞, is given by

V ar(N[0,∞])

= 2
γ

η

∞∑
q=1

∫ ∞

0

∫ m

0

E
[
Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
Fq

(
s+ τ,

∂xW (0, s+ τ)
η

,
∂xxW (0, s+ τ)

γ

)]
dτds. (16)
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Remarks.

i) Note that the expectation (15) of N[0,x] was heuristically obtained by Longuet-Higgins in [18] and
[19], who considered a bilateral formula E[N[−x,x]] and showed that its limit as x→∞ is given by

lim
γ
κ→∞

κ

γ
E[N[0,+∞]] =

√
1
2π

;

it can be interpreted by saying that the number of specular points increases proportionally to the
distance between the observer and the sea surface, since when h1 = h2, 1

κ represents this latter
distance.
It is also interesting to notice that the number of specular points is a finite random variable over
all the line, on the contrary to the behavior of the crossings of a fixed level or to the one of the
number of maxima.

ii) We consider the hypothesis of m-dependence to simplify the computations and with the aim of
using in the next section the method settled in [14].

iii) The computations may be done in dimension 2, explicitly in what concerns the expectation, but we
would face some difficulty for the second moment since the determinant appearing in the integrand
of it would prevent from having a Hermite polynomial expansion.

3 Speed of specular points on the sea surface

Let W̃ (t, x, y) represent the waves modeling the sea surface. We shall look at a wave in one direction, that
is for fixed coordinate y, for instance when y = 0. Thus we consider from now on W (t, x) = W̃ (t, x, 0).
Our main goal is the study of the number of specular points having a given velocity.
To represent such a number into the Itô-Wiener chaos will require a generalization of Rice formula to the
bidimensional case, obtained by using the co-area formula (see [6]) that we recall here.
Let W be a three times continuously differentiable bivariate function (W ∈ C3), and let consider the level
curve C(u) defined by

C(u) = {(x1, x2) ∈ Q(t,M) : W (x1, x2) = u}, where Q(t,M) = [0, t]× [0,M ].

If v denotes a vector field, n denotes the vector normal to the level curve C(u) and dσ the length measure
of C(u), since W is C3, then the Green formula provides for some suitable function g,∫ ∞

−∞
g(u)

∫
C(u)

< v,n > dσ du =
∫
Q(t,M)

g(W ) < v,∇W > dx1 dx2,

from which can be immediately deduced:

i) if v = ∇W
||∇W || , then

∫∞
−∞ g(u)LQ(C(u))du =

∫
Q
g(W )||∇W ||dx1 dx2,

where LQ(C(u)) denotes the length of the curve C(u);

ii) more generally, if v = ζ(α) ∇W
||∇W || , where ζ denotes a continuous real function defined on [0, 2π]

and α is defined by ∇W := ||∇W || t(cosα, sinα), then∫ ∞

−∞
g(u)

∫
C(u)

ζ(α(s))dσ(s)du =
∫
Q

g(W )ζ(α)||∇W ||dx1 dx2.

Note that this formula still holds when considering ζ as the indicator function of a measurable set, by
using the monotone convergence theorem (see for instance [7] and [2]).
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Let us go back to our study and keep the same notation as in the previous section.
Suppose W and r satisfy (10) and (11) respectively, with mixed spectral moment mpq defined by

mpq = 2
∫
{(λ,ω):ω2=λ}

λpωqf(λ)dλ = 2
∫ ∞

0

λp+q/2f(λ)dλ. (17)

Note that (∂xW (t, x), ∂xxW (t, x), ∂txW (t, x))t is Gaussian, with covariance matrix ∆ = (∆ij)1≤i,j≤3,
such that

∆11 = E[∂xW 2] = m20 ∆22 = E[∂xxW 2] = m40 ∆33 = E[∂xtW 2] = m22

∆12 = E[∂xW∂xxW ] = 0 = ∆13 = E[∂xW∂xtW ] and ∆23 = E[∂xxW∂xtW ] = m31.

Moreover, for fixed (t, x), ∂xW (t, x) is independent of the vector (∂xxW (t, x), ∂xtW (t, x)).
As Longuet-Higgins (see [19]), we consider the following simplified condition to have a specular point:

∂xW (t, x) = u.

A straight consequence of the implicit function theorem is:

∂xxWdx+ ∂xtWdt = 0, i.e.
dx

dt
= − ∂xtW

∂xxW
.

We are interested in the number of specular points with bounded speed: let − v2 denote the lower bound
and − v1 the upper one. We define

Ñsp(s, u, v1, v2) := #
{
z ∈ [0,M ] : ∂xW (s, z) = u; v1 ≤

∂xtW

∂xxW
≤ v2

}
, for 0 ≤ s ≤ t,

and also

Nsp(u, v1, v2, t) :=
1
t

∫ t

0

Ñsp(s, u, v1, v2)ds, (18)

since our interest is in that number per unit time.

Lemma 1 The expected number µ of specular points in Q(t,M) with speed belonging to [−v2,−v1] is
given by

µ := E [Nsp(u, v1, v2, t)] = M
e−

u2
2m20 λ1λ2

4π
√
m20

∫ β+arctan v2

β+arctan v1

| cos(θ − β)| 1
(λ1 sin2 θ + λ2 cos2 θ)3/2

dθ,

where mpq is defined in (17), λ1, λ2 are the eigenvalues of the covariance matrix of (∂xxW (0, 0), ∂xtW (0, 0)),
and β is the rotation angle which turns diagonal this covariance matrix.

Remark. If the random field W (t, x) is isotropic the vector (∂xxW (0, 0), ∂xtW (0, 0)) has a diagonal
covariance matrix, thus β = 0 and λ1 = λ2 and we obtain when supposing e.g. that λ1 = λ2 = 1,

µ = M
e−

u2
2m20

4πm20

[
v2√

1 + v2
2

− v1√
1 + v2

1

]
, if 0 ≤ arctan v1 ≤ arctan v2 ≤

π

2
.

Proof of Lemma 1.
Let g be a continuous and bounded function. We have∫ ∞

−∞
g(u)Nsp(u, v1, v2, t)du =

1
t

∫ t

0

∫ ∞

−∞
g(u)Ñsp(s, u, v1, v2)duds

=
1
t

∫ t

0

∫ M

0

g(∂xW (s, z))1I[v1,v2]

(
∂xtW (s, z)
∂xxW (s, z)

)
|∂xxW (s, z)| dzds

=
1
t

∫ ∞

−∞
g(u)

∫
C(u)

ζ(α(s))dσ(s)du, with ζ(α(s)) := 1I[v1,v2](tanα(s))| cosα(s)|,
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by using the Banach formula in the first equality and the co-area formula in the last one.
Note that this type of integrals has been first considered by Cabaña (see [7]).
Therefore, by independence and stationarity, we obtain∫ ∞

−∞
g(u)E [Nsp(u, v1, v2, t)]du =

1
t

∫ ∞

−∞
g(u)E

[∫
C(u)

ζ(α(s))dσ(s)

]
du

= M

∫ ∞

−∞
g(u)

e−
u2

2m20
√

2πm20
duE

[
1I[v1,v2]

(
∂xtW (0, 0)
∂xxW (0, 0)

)
|∂xxW (0, 0)|

]
,

and by duality it comes that, for almost all u,

E [Nsp(u, v1, v2, t)] = M
e−

u2
2m20

√
2πm20

E
[

1I[v1,v2]

(
∂xtW (0, 0)
∂xxW (0, 0)

)
|∂xxW (0, 0)|

]
. (19)

It can be proved that (19) holds for all u (see [6] and [7]).

Note that at fixed (s, z), in particular at (0, 0), the covariance matrix of the random vector (∂xxW (s, z), ∂xtW (s, z))
can be diagonalized with a rotation matrix of angle β, independent of the point (s, z) because of the sta-
tionarity of the process (∂xxW (., .), ∂xtW (., .)), thus we can write, for fixed (s, z),(

∂xxW (s, z)
∂xtW (s, z)

)
=
(

cosβ − sinβ
sinβ cosβ

)(
η1(s, z)
η2(s, z)

)
, (20)

with (η1(s, z), η2(s, z)) normally distributed N
(

0,
(
λ1 0
0 λ2

))
.

Computing the expectation of the RHS of (19) gives

E
[
1I[v1,v2]

(
∂xtW (0, 0)
∂xxW (0, 0)

)
|∂xxW (0, 0)|

]
=

1
2π
√
λ1λ2

∫ ∞

0

∫ β+arctan v2

β+arctan v1

| cos(θ − β)| r2e−
r2
2 ( cos2 θ

λ1
+ sin2 θ

λ2
)dθdr

=
λ1λ2√

8π

∫ β+arctan v2

β+arctan v1

| cos(θ − β)| 1
(λ1 sin2 θ + λ2 cos2 θ)3/2

dθ,

hence the result for µ given in the lemma. 2

Now we are looking at the Hermite expansion of Nsp(u, v1, v2, t) (defined in (18)) and its asymptotic
behavior as t→∞.

Theorem 3 If W (s, z) ∈ C3, then the Hermite expansion of the functional Nsp(u, v1, v2, t) is given by

Nsp(u, v1, v2, t) =
∞∑
l=0

∑
0≤n+m≤l

Hl−(n+m)

(
u√
m20

)
ϕ
(

u√
m20

)
gn,m

√
m20 [l − (n+m)]!

(21)

×1
t

∫ t

0

∫ M

0

Hl−(n+m)

(
∂xW (s, z)
√
m20

)
Hm

(
η1(s, z)√

λ1

)
Hn

(
η2(s, z)√

λ2

)
dzds,

where (η1(s, z), η2(s, z)) is normally distributed N
(

0,
(
λ1 0
0 λ2

))
with λ1, λ2 defined in Lemma 1,

and where

gn,m =
1

2πn!m!

∫ ∞

0

∫ arctan b2

arctan b1

∣∣∣√λ1 cosβ cos θ −
√
λ2 sinβ sin θ

∣∣∣Hn(ρ cos θ)Hm(ρ sin θ)e−
ρ2

2 ρ2dθdρ, (22)

with

bi :=
√
λ1

λ2

(
vi − tanβ

1 + vi tanβ

)
, i = 1, 2. (23)
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Moreover, assuming that W (t, s) is m-dependent in the time variable t, we have

√
t (Nsp(u, v1, v2, t) − µ) d−→ N (0, σ2(M)), ast→∞,

with µ defined in Lemma 1 and σ2(M) computed in (27) below.

Remark. If W (t, x) is isotropic, the coefficients (22) simplify as

gn,m =
1

2πn!m!

∫ ∞

0

∫ arctan v2

arctan v1

|cos θ|Hn(ρ cos θ)Hm(ρ sin θ)e−
ρ2

2 ρ2dθdρ

=
1

2πn!m!

∫ ∞

0

∫ v2√
1−v2

2

v1√
1−v2

1

Hn(ρ
√

1− x2)Hm(ρx)e−
ρ2

2 ρ2dxdρ.

This last integral could be computed explicitly as done in [14] (see p. 663, proof of Lemma 5).

Proof. The proof of Theorem 3 relies mainly on the application of the co-area formula and follow the
method developed in [14]. Suppose w.l.o.g. E

(
∂2
xW (t, z)

)
= m20 = 1.

i) Hermite expansion for Nsp(u, v1, v2).
It can be shown that

1
h

∫ ∞

−∞
ϕ

(
u− y

h

)[∫
C(y)

ζ(α(s))dσ(s)

]
dy →

h→0

∫
C(u)

ζ(α(s))dσ(s) = tNsp(u, v1, v2), in L2(Ω),

which will be useful to obtain the Hermite expansion of Nsp(u, v1, v2).
Using the co-area formula yields
1
h

∫ ∞

−∞
ϕ

(
u− y

h

)[∫
C(y)

ζ(α(s))dσ(s)

]
dy

=
1
h

∫ t

0

∫ M

0

ϕ

(
u− ∂xW (s, z)

h

)
1I[v1,v2]

(
∂xtW (s, z)
∂xxW (s, z)

)
|∂xxW (s, z)| dzds.

Using (20) allows to write

1I[v1,v2]

(
∂xtW (s, z)
∂xxW (s, z)

)
|∂xxW (s, z)| = 1I[v1,v2](tan(β + η(s, z))) |η1(s, z) cosβ − η2(s, z) sinβ|

= 1Ih v1−tan β
1+v1 tan β ,

v2−tan β
1+v2 tan β

i
(
η2(s, z)
η1(s, z)

)
|η1(s, z) cosβ − η2(s, z) sinβ|

= 1I[b1,b2]

(
Z1(s, z)
Z2(s, z)

) ∣∣∣√λ1 Z1(s, z) cosβ −
√
λ2 Z2(s, z) sinβ

∣∣∣
:= G(Z1, Z2)(s, z)

where η(s, z) := arctan
(
η2(s, z)
η1(s, z)

)
, Zi(s, z) :=

(
ηi(s, z)√

λi

)
, (i = 1, 2), are normally distributed N (0, Id)

for fixed (s, z), and where bi, i = 1, 2, are defined in (23).
The Hermite coefficients gn,m of the functional G(Z1, Z2) can be computed as

gn,m =
1

n!m!

∫
IR2

G(z1, z2)Hn(z1)Hm(z2)ϕ(z1)ϕ(z2)dz1dz2

=
1

2πn!m!

∫ ∞

0

∫ 2π

0

G(ρ cos θ, ρ sin θ)Hn(ρ cos θ)Hm(ρ sin θ)e−
ρ2

2 ρdθdρ

=
1

2πn!m!

∫ ∞

0

∫ arctan b2

arctan b1

∣∣∣√λ1 cosβ cos θ −
√
λ2 sinβ sin θ

∣∣∣Hn(ρ cos θ)Hm(ρ sin θ)e−
ρ2

2 ρ2dθdρ,
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i.e. (22). So we obtain
1
h

∫ ∞

−∞
ϕ

(
u− v

h

)[∫
C(v)

ζ(α(s))dσ(s)

]
du

=
∞∑
l=0

∑
0≤n+m≤l

cl−(n+m)(u, h)gn,m
[l − (n+m)]!

∫ t

0

∫ M

0

Hl−(n+m)(∂xW (s, z))Hm (Z1(s, z))Hn (Z2(s, z)) dzds,

where the Hermite coefficients ck(y, h) of the function
1
h
ϕ

(
. − y

h

)
are given by

ck(y, h) =
1
k!

∫ ∞

−∞
ϕ(v)Hk(y − hv)ϕ(y − hv)dv →

h→0

Hk(y)ϕ(y)
k!

. (24)

Now we can deduce the Hermite expansion of Nsp(u, v1, v2, t) as in [14], namely

1
h t

∫ ∞

−∞
ϕ

(
u− y

h

)[∫
C(y)

ζ(α(s))dσ(s)

]
dy →

h→0
Nsp(u, v1, v2), in L2(Ω),

where Nsp(u, v1, v2, t) =

∞∑
l=0

∑
0≤n+m≤l

Hl−(n+m)(u)ϕ(u)gn,m
[l − (n+m)]!

1
t

∫ t

0

∫ M

0

Hl−(n+m)(∂xW (s, z))Hm

(
η1(s, z)√

λ1

)
Hn

(
η2(s, z)√

λ2

)
dzds.

ii) CLT for Nsp(u, v1, v2, t).
Suppose that the field W (s, x) is m-dependent in time, that is its correlation function satisfies r(s, x) = 0
whenever s > m, for all x.
According to our general method (see [14]), the proof consists mainly in studying the asymptotic behavior
of an L2-approximation of Nsp(u, v1, v2, t) defined by the finite expansion

NQ
sp(u, v1, v2, t) :=

Q∑
l=0

∑
0≤n+m≤l

Hl−(n+m)(u)ϕ(u)gn,m
(l − (n+m))!

(25)

×1
t

∫ t

0

∫ M

0

Hl−(n+m)(∂xW (s, z))Hm

(
η1(s, z)√

λ1

)
Hn

(
η2(s, z)√

λ2

)
dzds.

NQ
sp(u, v1, v2, t) can be written in terms of the occupation functional

St(M) =
∫ t

0

∫ M

0

FQ(W(s, z))dzds =
∫ t

0

∫ M

0

FQ ◦Σ1/2(Y(s, z))dzds,

where FQ is a polynomial function of order Q, W is the Gaussian random field defined by W(t, x) =
(∂xW (t, x), ∂xxW (t, x), ∂txW (t, x))t and where

Y(t, x) := Σ−1/2W(t, x),

with R(t, x) := E [W(t, x)(W(0, 0))t] and Σ := R(0, 0) = E [W(0, 0)(W(0, 0))t].
Note that FQ ◦Σ1/2 is also a polynomial function and that the field Y(t, x) := (Yi(t, x), i = 1, 2, 3) thus
defined is m-dependent in time.
Given that FQ ◦Σ1/2 ∈ L2(φ(x1)φ(x2)φ(x3)dx1dx2dx3), we have

St(M) =
∑
|k|≤Q

ck

∫ t

0

∫ M

0

Hk1(Y1(s, z))Hk2(Y2(s, z))Hk3(Y3(s, z))dzds,

where k = (k1, k2, k3), |k| = k1 + k2 + k3 and ck are the Hermite coefficients of FQ ◦Σ1/2.
Let us check that

St(M)
t

−→
t→∞

c0 in probability. (26)
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Defining
I(|k|, k2, k3, s, z) := H|k|−(k2+k3)(Y1(s, z))Hk2(Y2(s, z))Hk3(Y3(s, z)),

we can write

St(M) =
Q∑

|k|=0

∑
0≤ k2+k3≤|k|

c(|k|−(k2+k3), k2, k3)

∫ t

0

∫ M

0

I(|k|, k2, k3, s, z)dzds.

The random variables (Yi(0, 0), 1 ≤ i ≤ 3) being independent standard Gaussian, Parseval’s equality
gives

E
(
[FQ ◦Σ1/2(Y(0, 0))]2

)
=
∑
|k|≤Q

c2kk1!k2!k3! <∞.

Therefore, using the Diagram formula and the Dominated Convergence Theorem, we obtain for t > m

σ2(M) := tE

[(
St(M)
t

− c0

)2
]

= 2
Q∑

|k|=1

∑
0≤ k2+k3≤|k|

∑
0≤ l2+l3≤|k|

c(|k|−(k2+k3), k2, k3)c(|k|−(l2+l3), l2, l3)

∫ m

0

∫ M

0

(M − z)E[I(|k|, k2, k3, s, z)I(|k|, l2, l3, 0, 0)]dzds. (27)

Hence the result (26).
It can be proved that the almost sure convergence holds too.

Let us study the weak limit of the sequence
√
t

(
St(M)
t

− c0

)
.

Defining S̃(s,M) =
Q∑

|k|=1

∑
0≤ k2+k3≤|k|

c(|k|−(k2+k3), k2, k3)

∫ M

0

I(|k|, k2, k3, s, z)dz, we have

√
t

(
St(M)
t

− c0

)
=

1√
t

[t]∑
k=1

∫ k

(k−1)

S̃(s,M)ds+
1√
t

∫ t

[t]

S̃(s,M)ds

=
1√
t

[t]∑
k=1

θk−1 ◦
∫ 1

0

S̃(s,M)ds+
1√
t

∫ t

[t]

S̃(s,M)ds, (28)

when introducing the time shift operator θh.
Thus (28) appears as a sum of m-dependent random variables having second moment, to which the
Hoeffding-Robbins Theorem (see [10]) can be applied, providing

√
t

(
St(M)
t

− c0

)
d−→ N (0, σ2(M)) as t→∞,

where c0 = µ and σ2(M) is defined in (27),

i.e.
√
t
(
NQ
sp(u, v1, v2, t)− µ

) d−→ N (0, σ2(M)) as t→∞. (29)

To conclude the proof we verify that

lim sup
Q→∞

lim sup
t→∞

E
(
[
√
t
(
Nsp(u, v1, v2, t)−NQ

sp(u, v1, v2, t)
)
]2
)

= 0. (30)

Indeed, we can write

√
t
(
Nsp(u, v1, v2, t)−NQ

sp(u, v1, v2, t)
)

=
1√
t

[t]∑
k=1

θk−1 ◦ YQ(M) +
1√
t
I2(t), (31)

13



where

YQ(M) =
∞∑

l=Q+1

∑
0≤n+m≤l

Hl−(n+m)(u)ϕ(u)gn,m
(l − (n+m))!

∫ 1

0

∫ M

0

Hl−(n+m)(∂xW (s, z))Hm

(
η1(s, z)√

λ1

)
Hn

(
η2(s, z)√

λ2

)
dzds

and

I2(t) :=
∞∑

l=Q+1

∑
0≤n+m≤l

Hl−(n+m)(u)ϕ(u)gn,m
(l − (n+m))!

∫ t

[t]

∫ M

0

Hl−(n+m)(∂xW (s, z))Hm

(
η1(s, z)√

λ1

)
Hn

(
η2(s, z)√

λ2

)
dzds,

The first term in (31) is a sum of m-dependent random variables whose asymptotic variance tends to zero
as Q tends to infinity; the second term in (31) tends also to zero as t→∞ uniformly in Q since we have

V ar(I2(t)) ≤ E
[
(Nsp(u, v1, v2, 0))2

]
= O(1).

Hence (30) is satisfied. 2

Remark. Note that the proportion Nsp(u,v1,v2,t)
N[0,M]

of the number of specular points with a given velocity
(e.g. between −v2 and v1) among the number of specular points can be shown to converge to a Gaussian
r.v. as it was done in [13] for the number of maxima.

4 Remark

We are pursuing our study on characteristics of sea waves, in particular on twinkles. Longuet-Higgins has
shown in [18] that the specular points evolve until a certain time up to the vanishing of the curvature.
The number of images seen by the observer is not constant; specular points may appear or disappear, the
images move. The creation or annihilation of specular points may be called a twinkle. At such a twinkle,
the water surface is not only oriented to reflect light into the eye, but is curved so as to focuse it there,
which can be mathematically translated as{

Y1(t, x) = ∂xf(t, x) = 0 : to have a specular point
Y2(t, x) = ∂xxf(t, x) = 0 : to have a singularity in the curvature,

when introducing the function f(t, x) = W (t, x) +
1
2
κx2, (t, x) ∈ Q(t,M), and where W (t, x) is the

process whose spectral representation is given in (10).
Using a multidimensional Rice formula to count the number of roots of a nonlinear system of equations
having the same number of equations and variables (see [6], p.80, or [3]) and introducing a regression
model allowed us to compute explicitly the mean number of twinkles at fixed time t and when M →∞,

as E[NTW ] =
t√
2π3

√
m60 (m40m22 −m2

31)
κ m40

e−
κ2

2m40

[
e−

a2
2 + a

∫ a

0

e−
v2
2 dv

]
, where mpq is defined in (17)

and a :=
m31√

m40 (m40m22 −m2
31)

. Note that it corresponds to Longuet-Higgins’s heuristic formula (see

[18], p.853), except to a factor 2 that would correspond in our case to work on [0, t] × [−M,M ] rather
than on Q(t,M), with M →∞.
Computing the variance and looking for a CLT is still an ongoing research.

Appendix

A1 - Proof of Proposition 1

As already mentioned, we follow the main approach we proposed in [12] to obtain the result for a fixed
level. Technical tools developed recently in [15] allow, now, to generalize this result to differentiable
curves.
The proof can be sketched in four main steps, outlined below for the paper to be self-contained.
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• Smooth approximation of Xt.
Consider a twice differentiable even density function φ with support in [−1, 1] and define the continuous
twice differentiable smoothed process as

Xε
t =

1
ε

∫ ∞

−∞
φ

(
t− u

ε

)
Xu du.

Let Nψ
ε, t denote the number of ψεt - crossings by Xε

t :

Nψ
ε, t = card{s ≤ t : Xε

s = ψεs}, where ψεt =
1
ε

∫ ∞

−∞
φ

(
t− u

ε

)
ψu du.

Let B be a complex Brownian motion such that E
[
B(dλ)B(dλ′)

]
= F (dλ)1I(λ=λ′), F being the spectral

measure.
We can write

Xt =
∫ ∞

−∞
eitλB(dλ) and Xε

t =
∫ ∞

−∞
eitλφ̂(ελ)B(dλ),

where φ̂ denotes the Fourier transform of φ.

The correlation function of the process Xε
t given by rε(τ) =

∫ ∞

−∞
eiτλ|φ̂(ελ)|2F (dλ) satisfies

rε(0) →
ε→0

r(0) =
∫ ∞

−∞
F (dλ) = 1,

and

rε(τ) = rε(0) +
r′′ε (0)

2
τ2 + θXε(τ),

with θXε satisfying the same conditions as θ in (1).

We will work with the normalized process X̃ε
t =

Xε
t

σε
, where σε :=

√
rε(0), since the number of ψ̃εt -

crossings by X̃ε
t is the number of ψεt - crossings by Xε

t :

card{s ≤ t : X̃ε
s = ψ̃εs} = Nψ

ε, t, where ψ̃εt =
ψεt
σε
.

Note that X̃ε
t is of variance 1 and correlation function ρε such that

ρε(τ) = 1 +
ρ′′ε (0)

2
τ2 + θε(τ),

where ρ′′ε (τ) =
r′′ε (τ)
rε(0)

and θε(τ) =
θXε(τ)
rε(0)

.

The smoothed process Xε
t has the fourth derivative of its correlation function rε finite in 0, and so does

X̃ε
t , since these processes are twice differentiable:

r(iv)ε (0) <∞ and ρ(iv)
ε (0) <∞,

• Hermite expansion for Nψ
ε, t.

By using the same approach as in [12], the Hermite expansion for Nψ
ε, t is obtained as Nψ

ε, t = lim
h→0

NXε

t, h(ψ),

where

NXε

t, h(ψ) :=
1
h

∫ t

0

ϕ

(
X̃ε
s − ψ̃εs
h

)
|Ẋε

s − ψ̇εs |
σε

ds =
ηε
hσε

∫ t

0

ϕ

(
X̃ε
s − ψ̃εs
h

)∣∣∣∣∣Ẋε
s

ηε
− ψ̇εs
ηε

∣∣∣∣∣ ds,
with ϕ the standard Gaussian density, ηε :=

√
−r′′ε (0) and h > 0.

We can write in L2(Ω),

NXε

t, h(ψ) =
ηε
σε

∞∑
q=0

∫ t

0

[
q∑
l=0

cq−l(ψ̃εs , h)al

(
ψ̇εs
ηε

)
Hq−l(X̃ε

s )Hl

(
Ẋε
s

ηε

)]
ds, (32)
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where the Hermite coefficients al(m) are defined in (4) and ck(y, h) in (24).
The expansion of Nψ

ε, t follows by taking h→ 0 in (32):

Nψ
ε, t =

ηε
σε

∞∑
q=0

∫ t

0

q∑
l=0

Hq−l

(
ψε

s

σε

)
ϕ
(
ψε

s

σε

)
(q − l)!

al

(
ψ̇εs
ηε

)
Hq−l

(
Xε
s

σε

)
Hl

(
Ẋε
s

ηε

)
ds. (33)

• Convergence in L2(Ω) of Nψ
ε, t to NX

t (ψ) as ε→ 0.
To get this L2- convergence, we will show that

lim
ε→0

E[Nψ
ε, t]

2 = E[NX
t (ψ)]2 (34)

and

lim
ε→0

E[NX
t (ψ)Nψ

ε, t] = E[NX
t (ψ)]2. (35)

Proving (34) only requires some work since (35) is easily obtained as in [12] (p.245).
It comes back to prove the convergence of the second factorial moment since we have, by using (33) and
the uniform convergence,

E[Nψ
ε, t] =

ηε
σε

∫ t

0

ϕ

(
ψεs
σε

)
a0

(
ψ̇εs
ηε

)
ds →

ε→0
η

∫ t

0

ϕ(ψs)a0

(
ψ̇s
η

)
ds = E[NX

t (ψ)].

The second factorial moment Mε, ψ
2 of the number of ψ̃ε-crossings by X̃ε can be deduced from the one of

the number of zero-crossings by Y (see [9], p.209), namely

Mε, ψ
2 =

∫ t

0

∫ t

0

dt1dt2

∫
IR2

∣∣∣ẋ1 − ˙̃
ψεt1

∣∣∣ ∣∣∣ẋ2 − ˙̃
ψεt2

∣∣∣ pεt1, t2 (ψ̃εt1 , ẋ1, ψ̃
ε
t2 , ẋ2

)
dẋ1dẋ2 ,

where pεt1, t2(x1, ẋ1, x2, ẋ2) is the joint density of the vector (X̃ε
t1 ,

˙̃Xε
t1 , X̃

ε
t2 ,

˙̃Xε
t2).

The formula holds whether Mε, ψ
2 is finite or not.

It can also be expressed as

Mε, ψ
2 = 2

∫ t

0

∫ t

t1

Iε(t1, t2)dt2dt1 = 2
∫ t

0

∫ t−t1

0

Iε(t1, t1 + τ)dτdt1,

where

Iε(t1, t2) :=
∫
IR2

|ẋ1 − ˙̃
ψεt1 ||ẋ2 − ˙̃

ψεt2 |p
ε
t1, t2(ψ̃

ε
t1 , ẋ1, ψ̃

ε
t2 , ẋ2)dẋ1dẋ2

= pεt1, t2(ψ̃
ε
t1 , ψ̃

ε
t2)E

[
| ˙̃Xε

t1 −
˙̃
ψεt1 ||

˙̃Xε
t2 −

˙̃
ψεt2 |

∣∣∣ X̃ε
t1 = ψ̃εt1 , X̃

ε
t2 = ψ̃εt2

]
,

where pεt1, t2(x1, x2) is the joint density of the Gaussian vector (X̃ε
t1 , X̃

ε
t2).

By using the following regression model:

(R)

{
˙̃Xε
t1 = ζε + α1X̃

ε
t1 + α2X̃

ε
t2

˙̃Xε
t2 = ζ∗ε − β1X̃

ε
t1 − β2X̃

ε
t2

where α1(t2 − t1) = β2(t2 − t1) =
ρ′ε(t2 − t1)ρε(t2 − t1)

1− ρ2
ε(t2 − t1)

, α2(t2 − t1) = β1(t2 − t1) = − ρ′ε(t2 − t1)
1− ρ2

ε(t2 − t1)
,

and (ζε, ζ∗ε ) is jointly Gaussian such that σ2
ε(t2 − t1) = V ar(ζε) = V ar(ζ∗ε ) = −ρ′′ε (0)− (ρ′ε(t2 − t1))2

1− ρ2
ε(t2 − t1)

and Cov(ζε, ζ∗ε ) = −ρ′′ε (t2 − t1)−
(ρ′ε(t2 − t1))2ρε(t2 − t1)

1− ρ2
ε(t2 − t1)

,
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we obtain

Iε(t1, t1+τ) = pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E

[
|ζε + α1(τ)ψ̃εt1 + α2(τ)ψ̃εt1+τ −

˙̃
ψεt1 ||ζ

∗
ε − α2(τ)ψ̃εt1 − α1(τ)ψ̃εt1+τ −

˙̃
ψεt1+τ |

]
.

For each τ > 0 and by using the uniform convergence, we have

lim
ε→0

Iε(t1, t1 + τ) = I(t1, t1 + τ) :=
∫
IR2

|ẋ1 − ψ̇t1 ||ẋ2 − ψ̇t1+τ |pt1,t1+τ (ψt1 , ẋ1, ψt1+τ , ẋ2)dẋ1dẋ2,

and thus lim
ε→0

∫ t

0

∫ t

δ

Iε(t1, t1 + τ)dτdt1 =
∫ t

0

∫ t

δ

I(t1, t1 + τ)dτdt1.

We now have to prove that

lim sup
δ→0

lim sup
ε→0

∫ t

0

∫ δ

0

Iε(t1, t1 + τ) dτdt1 = 0.

We can write ∫ t

0

∫ δ

0

Iε(t1, t1 + τ) dτdt1 ≤
3∑
i=1

4∑
j=1

∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[IiJj ]dτdt1,

where

I1 =
∣∣∣∣ζε − ρ′ε(τ)

1 + ρε(τ)
ψ̃εt1

∣∣∣∣ , I2 =
∣∣∣∣(1 +

τρ′ε(τ)
1− ρ2

ε(τ)

)
˙̃
ψεt1+ητ

∣∣∣∣ , I3 = | ˙̃
ψεt1+ητ −

˙̃
ψεt1 |

and

J1 =
∣∣∣∣ζ∗ε +

ρ′ε(τ)
1 + ρε(τ)

ψ̃εt1

∣∣∣∣ , J2 =
∣∣∣ρε(τ)(1 + τρ′ε(τ)

1−ρ2ε(τ)

) ˙̃
ψεt1+ντ

∣∣∣ ,
J3 = |(ρε(τ)− 1) ˙̃

ψεt1+ντ |, J4 = | ˙̃
ψεt1+ντ −

˙̃
ψεt1+τ |,

with 0 ≤ η , ν ≤ 1.
Let C be some positive constant which may vary from equation to equation.
First we have∫ t

0

∫ δ

0

pετ (ψ
ε
t1 , ψ

ε
t1+τ )E[I1J1]dτdt1 ≤ C

∫ δ

0

fε(τ)
1
τ

(
σ2
ε(τ) +

(
ρ′ε(τ)

1 + ρε(τ)

)2
)
dτ, (36)

where fε(τ) :=
τ√

1− ρε(τ)
.

Note that

fε(τ) =
(
−ρ′′ε (0)

2
− θε(τ)

τ2

)−1/2

→
ε→0

τ√
1− r(τ)

.

By similar techniques as the ones introduced to prove the lemmas in [15], it can be shown that
fε is uniformly bounded when ε→ 0 in [0, δ], δ > 0,

fε(τ) ≤ C, (37)

that

σ2
ε(τ)
τ

≤ C
τθ′ε(τ)− θε(τ)

τ3
≤ C L(τ),

therefore, under the Geman condition, by applying (37) and the Dominated Convergence Theorem, that

lim
ε→0

∫ δ

0

σ2
ε(τ)√

1− ρε(τ)
dτ =

∫ δ

0

σ2(τ)√
1− r(τ)

dτ, with σ2(τ) := −r′′(0)− r′ 2(τ)
1− r2(τ)

, (38)

17



which tends to zero as δ → 0.
It can also be proved that

lim
δ→0

lim
ε→0

∫ δ

0

1√
1− ρε(τ)

(
ρ′ε(τ)

1 + ρε(τ)

)2

dτ = 0, (39)

by using the uniform bound (37) for fε(τ), and the fact that τ
(
ρ′ε(τ)
τ

)2

≤ Cτ(r′′(0))2.

We can conclude by combining (36), (37), (38) and (39).

Now let us study
∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[I1J2]dτdt1.

We have∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[I1J2]dτdt1 ≤ C

{∫ δ

0

fε(τ)dτ +
∫ δ

0

(fε(τ))3/2
(
θ′′(τ)
τ

+
θ(τ)
τ3

)
dτ

}
.

Again, the uniform bound (37) for fε(τ) and the Geman condition allow to conclude that

lim
δ→0

lim
ε→0

∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[I1J2]dτdt1 = 0.

The term
∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[I2J1]dτdt1 can be bounded in the same way.

Now, since pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ ) J3 ≤ C(

√
1− ρε(τ) ), we obtain

3∑
i=1

lim
δ→0

lim
ε→0

∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[IiJ3]dτdt1 = 0.

Finally, the fact that | ˙̃
ψεt+τ −

˙̃
ψεt | ≤ Cγ(τ) and pετ (ψ̃

ε
t1 , ψ̃

ε
t1+τ )I3 ≤ C fε(τ)

γ(τ)
τ

implies

3∑
i=1

lim
δ→0

lim
ε→0

∫ t

0

∫ δ

0

pετ (ψ̃
ε
t1 , ψ̃

ε
t1+τ )E[IiJ4]dτdt1 = 0.

Hence the result (34).

• Conclusion.
Since, by Fatou lemma, for each Q positive,

Q∑
q=0

E

(∫ t

0

q∑
l=0

Hq−l(ψs)ϕ(ψs)
(q − l)!

al

(
ψ̇s√
−r′′(0)

)
Hq−l(Xs)Hl

(
Ẋs√
−r′′(0)

)
ds

)2


≤ lim
ε→0

E

(√−r′′ε (0)
rε(0)

Nψ
ε, t

)2
 = E[(

√
−r′′(0)NX

t (ψ))2],

the formal expansion in the right hand side of (5) defines a random variable in L2(Ω), denoted by Nt.
Moreover

E

[(
1
η
NX
t (ψ)−Nt

)2
]

≤ 2

E

[
NX
t (ψ)√
−r′′(0)

−

√
rε(0)
−r′′ε (0)

Nψ
ε, t

]2

+ E

[√
rε(0)
−r′′ε (0)

Nψ
ε, t −Nt

]2
 .

The first term of the right hand side, tends to zero as shown in the previous step. For the second term,
an argument of continuity for the projections into the chaos entails the result (see [12]).
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Note that we considered the case where r(0) = 1; it can be easily generalized to a process X satisfying
E[X2

t ] = r(0) when noticing thatNX
t (ψ) = NY

t/
√
r(0)

(0), where Ys = 1√
r(0)

(
X
(
s
√
r(0)

)
− ψ

(
s
√
r(0)

))
.

2

A2 - Proof of Theorems 1 and 2

1) Periodic curve

We will consider the case t = np, where p is the curve’s periodicity.
It will be straightforward to deduce the general case.

We can write

NX
t (ψ)− E[NX

t (ψ)] =

√
−r′′(0)
r(0)

∞∑
q=1

∫ t

0

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
ds.

Let define

Y kQ :=
∞∑

q=Q+1

∫ kp

(k−1)p

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
ds,

=
∞∑

q=Q+1

∫ p

0

q∑
l=0

κql(u)Hq−l

(
Xu+(k−1)p√

r(0)

)
Hl

(
Ẋu+(k−1)p√
−r′′(0)

)
du (by periodicity).

We have
n∑
k=1

Y kQ =
∞∑

q=Q+1

∫ np

0

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
ds.

(i) Let us prove that

lim
Q→∞

lim
n→∞

1
n

E

( n∑
k=1

Y kQ

)2
 = 0. (40)

We have

E[(Y kQ)2] =
∞∑

q=Q+1

E

[∫ p

0

q∑
l=0

κql(u)Hq−l

(
Xu√
r(0)

)
Hl

(
Ẋu√
−r′′(0)

)
du

]2
 = E[(Y 1

Q)2],

by using the orthogonality of the chaos, the stationarity and the p-periodicity.
Therefore we obtain

1
n

n∑
k=1

E[(Y kQ)2] = E[(Y 1
Q)2] → 0 as Q→∞. (41)

Suppose now that k > m and write

E
[
Y kQY

m
Q

]
=

∞∑
q=Q+1

∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(k −m,u, v)dudv,

where Iql1l2(k −m,u, v) is defined for k > m by

Iql1l2(k −m,u, v) = E

[
Hq−l1

(
Xu+(k−m)p√

r(0)

)
Hl1

(
Ẋu+(k−m)p√

−r′′(0)

)
Hq−l2

(
Xv√
r(0)

)
Hl2

(
Ẋv√
−r′′(0)

)]
. (42)
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Thus we have∑
k 6=m

E[Y kQY
m
Q ] = 2

∑
k>m

∞∑
q=Q+1

∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(k −m,u, v)dudv

= 2n
n−1∑
j=1

(1− j

n
)

∞∑
q=Q+1

∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(j, u, v)dudv. (43)

By hypothesis we have
∫∞
0
χ(u)du < ∞. The continuity of the functions defining χ implies that there

exists a positive integer a such that χ(v) < ρ for v > a.
So (43) can be rewritten as ∑

k 6=m

E[Y kQY
m
Q ] = 2(Ia1 + Ia2), (44)

with Ia1 :=
a∑
j=1

(
1− j

n

) ∞∑
q=Q+1

∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(j, u, v)dudv

and Ia2 :=
n−1∑
j=a+1

(
1− j

n

) ∞∑
q=Q+1

∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(j, u, v)dudv.

On one hand we have

Ia1 ≤
a∑
j=1

(
1− j

n

) ∞∑
q=Q+1

E

[∫ p

0

q∑
l1=0

κql1(u)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)
du

]2
 →

Q→∞
0. (45)

On the other hand, Ia2 can be bounded as

Ia2 ≤
n−1∑
j=a+1

(
1− j

n

) ∞∑
q=Q+1

∫ p

0

∫ p

0

χq(u+ jp− v) E1/2

[ q∑
l1=0

κql1(u)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2


×E1/2

[ q∑
l1=0

κql1(v)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2
 dvdu

≤
∞∑

q=Q+1

∫ p

0

∫ u+np

u+ap

χq(w) E1/2

[ q∑
l1=0

κql1(u)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2


×E1/2

[ q∑
l1=0

κql1(u− w)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2
 dwdu

≤
∞∑

q=Q+1

ρq−2

∫ ∞

ap

χ2(w)
∫ p

0

E1/2

[ q∑
l1=0

κql1(u)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2


×E1/2

[ q∑
l1=0

κql1(u− w)Hq−l1

(
X0√
r(0)

)
Hl1

(
Ẋ0√
−r′′(0)

)]2
 dudw,

by using Arcones inequality (see [1] or [23]), then the change of variables w = u+ jp− v and finally the
periodicity of κql.
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This last upper bound tends to 0 as Q→∞ since

E

[ q∑
l=0

κql(u)Hq−l(
X0√
r(0)

)Hl(
Ẋ0√
−r′′(0)

)

]2
 =

1
2π

∫
R2

(
q∑
l=0

κql(u)Hq−l(x1)Hl(x2)

)2

e−
x2
1+x2

2
2 dx1dx2

= κ2
ql(u) (q − l)! l!

=
q∑
l=0

H2
q−l

(
ψs√
r(0)

)
ϕ2

(
ψs√
r(0)

)
(q − l)!

a2
l

(
ψ̇s√
−r′′(0)

)
l!

≤ C E

(Z +
ψ̇s√
−r′′(0)

)2
 ≤ 2C

(
1 +

||ψ̇||2∞
−r′′(0)

)
,

with C some constant independent of q, as a consequence of Proposition 3 in Imkeller et al. (see [11]).
Hence Ia2 −→

Q→∞
0, which combined with (45), (44) and (41) provide (40).

(ii) We are now interested in the asymptotical variance of Fn :=
NX
np(ψ)− E[NX

np(ψ)]
√
n

.

We have

σ2
n := var(Fn) =

−r′′(0)
r(0)

∞∑
q=1

σ2
n(q), with

σ2
n(q) :=

1
n

E

[∫ np

0

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
ds

]2
 .

Note that the Fatou lemma implies that

∞∑
q=2

lim
n→∞

σ2
n(q) ≤ lim

n→∞

1
n

E

( n∑
k=1

Y k1

)2
 = E[(Y 1

1 )2] <∞.

Let us study the asymptotical behavior as n→∞ of each component σ2
n(q).

We can write

σ2
n(q) =

1
n

E

( n∑
k=1

∫ p

0

q∑
l=0

κql(u)Hq−l

(
Xu+(k−1)p√

r(0)

)
Hl

(
Ẋu+(k−1)p√
−r′′(0)

)
du

)2


:=
1
n

E

( n∑
k=1

Zqk

)2
 = E

[
(Zq1)2

]
+

2
n

n−1∑
k1=1

n∑
k2=k1+1

E[Zqk1Z
q
k2

].

But

E
[
(Zq1)2

]
= 2
∫ p

0

∫ u

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(u− z)E

[
Hq−l1

(
Xz√
r(0)

)
Hl1

(
Ẋz√
−r′′(0)

)
Hq−l2

(
X0√
r(0)

)
Hl2

(
Ẋ0√
−r′′(0)

)]
dzdv,

and, by stationarity, E[Zqk1Z
q
k2

] =
∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(k2 − k1, u, v)dudv,

Iql1l2 being defined in (42),
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thus it comes

1
n

n−1∑
k1=1

n∑
k2=k1+1

E[Zqk1Z
q
k2

] =
n−1∑
j=1

(
1− j

n

)∫ p

0

∫ p

0

q∑
l1=0

q∑
l2=0

κql1(u)κql2(v)Iql1l2(j, u− v, 0)dudv

=
∫ p

0

n−1∑
j=1

(
1− j

n

)∫ u+jp

u+(j−1)p

q∑
l1=0

q∑
l2=0

κql1(u)κql2(u− z)Iql1l2(0, z, 0)dzdu

=
∫ p

0

∫ ∞

u

n−1∑
j=1

(
1− j

n

)
1I[u+(j−1)p,u+jp ](z)

q∑
l1=0

q∑
l2=0

κql1(u)κql2(u− z)Iql1l2(0, z, 0)dzdu,

with the change of variables z = u− v + jp, and using the periodicity and stationarity of κql.

Notice that
n−1∑
j=1

(
1− j

n

)
1I[u+(j−1)p,u+jp ](z) →

n→∞
1I[u,∞)(z).

On the other hand, we can apply the Dominated Convergence Theorem, splitting the inner integral into
two parts, namely on the interval [u, a], with a chosen such that χ(z) < ρ < 1 for z > a, and on [a,∞]
respectively.
Finally we obtain

1
n

∑
k1 6=k2

E[Zqk1Z
q
k2

] →
n→∞

2
∫ p

0

∫ ∞

u

q∑
l1=0

q∑
l2=0

κql1(u)κql2(u− z) Iql1l2(0, z, 0) dzdu,

hence

σ2
n(q) →

n→∞
2
∫ ∞

0

q∑
l1=0

q∑
l2=0

(∫ p

0

κql1(u)κql2(u− z)du
)
Iql1l2(0, z, 0) dz,

namely

σ2(q) := lim
n→∞

σ2
n(q) = 2

∫ ∞

0

q∑
l1=0

q∑
l2=0

κ̃ql1 ∗ κql2(z) Iql1l2(0, z, 0) dz, (46)

with the notation h̃(u) := h(−u) and h ∗ g(u) :=
∫ p

0

h(u− v)g(v)dv.

As in [14] (p.653), we can conclude that

E
[
F2
n

]
:= E

(NX
np(ψ)− ENX

np(ψ)
√
n

)2
 −→

n→∞

−r′′(0)
r(0)

∞∑
q=1

σ2(q), σ2(q) satisfying (46).

(iii) CLT for Fn under the hypothesis of m-dependence on X.
Let us define

FQ,n :=
1√
n

∫ np

0

gQ(s,Xs, Ẋs) ds,

with gQ(s,Xs, Ẋs) :=

√
−r′′(0)
r(0)

Q∑
q=0

q∑
l=0

κql(s)Hq−l

(
Xs√
r(0)

)
Hl

(
Ẋs√
−r′′(0)

)
.

By using (40), it holds that

lim
Q→∞

lim
n→∞

E
[
(Fn −FQ,n)2

]
= 0.

As pointed out in [14], we just have to show that FQ,n satisfies a CLT to obtain the same result for Fn.
Since can write

FQ,n =
1√
n

n∑
k=1

∫ p

0

gQ(s,Xs+(k−1)p, Ẋs+(k−1)p)ds :=
1√
n

n∑
k=1

Yk =
1√
n

n∑
k=1

θ(k−1)pY1,
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where θt denotes the shift operator of path t associated to X and where the random variables Yk are,
under the m-dependence condition on X, (mp + 1)-dependent and identically distributed,
then an immediate application of the Hoeffding-Robbins CLT for m-dependent sequences (see [10]) pro-
vides

FQ,n
d−→

n→∞
N (0,

Q∑
q=1

σ2
m(q)), with σ2

m(q) = 2
∫ m

0

q∑
l1=0

q∑
l2=0

κ̃ql1 ∗ κql2(z) Iql1l2(0, z, 0) dz,

with the notation (42).

(iv) Generalization.
The result can be extended now under the more general weak dependence assumption (8), aproaching in
L2(Ω) the process X by a m-dependent process, as t→∞ (see [14], Lemma 3). 2

2) Linear curve and specular points

Since the correlation function of ∂xW (0, x) is −r′′(x), Proposition 1 provides the Hermite expansion of
N[0,x] under the Geman condition (13), from which the expectation is deduced:

E[N[0,x]] =
γ

η

∫ x

0

ϕ

(
κs

η

)
a0

(
−κ
γ

)
ds, i.e. (15),

as well as the variance.
Let us study the limit of the variance of N[0, x] as x → ∞, under the m-dependence assumption on
∂xW (0, x).
As a consequence of the diagram formula (see [5]) and the Dominated Convergence Theorem , we obtain
for each q ≥ 1

lim
x→∞

∫ x

0

∫ x−s

0

E
[
Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
Fq

(
s+ τ,

∂xW (0, s+ τ)
η

,
∂xxW (0, s+ τ)

γ

)]
dτds

=
∫ ∞

0

∫ m

0

E
[
Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
Fq

(
s+ τ,

∂xW (0, s+ τ)
η

,
∂xxW (0, s+ τ)

γ

)]
dτds,

Fq being defined in Theorem 2.
We shall study the asymptotic behavior as x→∞ of the second moment of N[0,x].
First let us prove that the second factorial moment Mψ

2 (x) of N[0,x] is finite as x→∞.
For ease of notation we shall suppose bellow that −r′′(0) = 1.

We have Mψ
2 (x) = 2

∫ x

0

∫ x−s

0

pτ (−κs,−κ(s+ τ))G(s, τ)dτds, where

G(s, τ) = E
(∣∣∣∣ζ − r′′′(τ)r′′(τ)

1− (r′′(τ))2
κs− r′′′(τ)

1− (r′′(τ))2
κ(s+ τ) + κ

∣∣∣∣ ∣∣∣∣ζ∗ +
r′′′(τ)

1− (r′′(τ))2
κs+

r′′′(τ)r′′(τ)
1− (r′′(τ))2

κ(s+ τ) + κ

∣∣∣∣),

ψ(x) = −κx, pτ is the density of (∂xW (0, s), ∂xW (0, s+ τ)) and (ζ, ζ∗) is defined in the same way as in
(R) given in the proof of Proposition 1. Then

Mψ
2 (x) = 2

∫ x

0

∫ x−s

δ

pτ (−κs,−κ(s+ τ))G(s, τ)dsdτ + 2
∫ x

0

∫ δ

0

pτ (−κs,−κ(s+ τ))G(s, τ)dsdτ.

By using the Cauchy-Schwarz inequality, we have

G(s, τ) ≤ C

[
Eζ2 +

(
r′′′(τ)r′′(τ)
1− (r′′(τ))2

)2

+
(
r′′′(τ)r′′(τ)
1− (r′′(τ))2

)2

+ κ2

]
(s2 + (s+ τ)2).

Moreover, we can write

pτ (−κs,−κ(s+ τ)) =
1

2π
√

1− (r′′(τ))2
e
− κ2

1−r′′(τ) (s+ 1
2 τ)

2

e
− κ2τ2

4(1+r′′(τ)) ,
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providing pτ (−κs,−κ(s+ τ)) ≤ C e
− κ2

1−r′′(τ) (s+
1
2 τ)

2

, if τ ∈ [δ, x− s].
Thus applying the Dominated Convergence Theorem provides

lim
x→∞

∫ x

0

∫ x−s

δ

pτ (−κs,−κ(s+ τ))G(s, τ)dsdτ =
∫ ∞

0

∫ m

δ

pτ (−κs,−κ(s+ τ))G(s, τ)dsdτ.

When working in the interval [0, δ], we proceed as in the proof of Proposition 1 when bounding the terms
E[IiJi], to bound all terms defining G(s, τ) by functions belonging to L2[0, δ] in order to be able to apply
the Dominated Convergence Theorem.

The we can conclude that lim
x→∞

Mψ
2 (x) = 2

∫ ∞

0

∫ m

0

pτ (−κs,−κ(s+ τ))G(s, τ)dsdτ <∞.

Now applying the Fatou lemma gives

∞ > lim
x→∞

η

γ
E(N2

[0,x]) ≥ lim
x→∞

V ar

(
η

γ
N[0,x]

)
≥ 2

∞∑
q=1

∫ ∞

0

∫ m

0

E
[
Fq

(
s,
∂xW (0, s)

η
,
∂xxW (0, s)

γ

)
Fq

(
s+ τ,

∂xW (0, s+ τ)
η

,
∂xxW (0, s+ τ)

γ

)]
dsdτ.

But N[0,x] ↑ N[0,∞] and so E(N2
[0,x]) → E(N2

[0,∞]), as x→∞.
We can then conclude to (16) of Theorem 2. 2
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[3] J-M. Azäıs and M. Wschebor, On the Distribution of the Maximum of a Gaussian Field with d
Parameters. Ann. of Applied Probab. 15 (1A) (2005), 254-278.

[4] M.V. Berry and M.R. Dennis, Phase singularities in isotropic random waves. Proc. Roy. Soc. Lond.
A 456 (2000), 2059-2079.

[5] J. Breuer and P. Major, Central limit theorems for non-linear functionals of Gaussian fields. J Mult.
Anal. 13 (1983), 425-444.

[6] E. Cabaña, Esperanzas de Integrales sobre Conjuntos de Nivel aleatorios. Actas del 2 Congreso
Latinoamericano de Probabilidad y Estadistica Matemát́ıca, Editor: Sociedad Bernoulli sección de
Latinoamerica, Caracas (1985), 65-82.

[7] E. Cabaña, Affine process: a test of isotropy based on level sets. SIAM J. App. Math. 47, No. 4
(1987), 886-891.

[8] L. Callenbach, P. Hänggi, S. Linz. Oscillatory systems driven by noise: Frequency and phase synchro-
nization. Physical Review E 65 (2002), 051110-1 – 051110-11.

[9] H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes. New York, Wiley
(1967).

[10] W. Hoeffding and H. Robbins, The Central Limit Theorem for dependent random variables. Duke
Math. J. 15 (1948), 773-780.

[11] P. Imkeller, V. Perez-Abreu and J. Vives, Chaos expansion of double intersection local time of
Brownian motion in Rd and renormalization. Stoch. Proc. Applic. 56 (1995), 1-34.

24



[12] M. Kratz and J. León, Hermite polynomial expansion for non-smooth functionals of stationary
Gaussian processes: crossings and extremes. Stoch. Proc. Applic. 66 (1997) 237-252.

[13] M. Kratz and J. León, Central limit theorems for the number of maxima and some estimator of the
second spectral moment of a stationary Gaussian process. Applications in hydroscience. Extremes 3:1
(2000), 57-86 .

[14] M. Kratz and J. León, Central limit theorems for level functionals of stationary Gaussian processes
and fields. J. Theoretical Probab. 14 (2001), 639-672.

[15] M. Kratz and J. León, On the second moment of the number of crossings by a stationary Gaussian
process. Ann. Probab. 34, No. 4 (2006), 1601-1607.

[16] M. Kratz, Level crossings and other level functionals of stationary Gaussian processes. Probability
Surveys Vol. 3 (2006), 230-288.

[17] G. Lindgren, Slepian models for the stochastic shape of individual Lagrange sea waves. Adv. in Appl.
Probab. 38:2 (2006), 430-450.

[18] M. S. Longuet-Higgins, Reflection and refraction at a random surface. I, II, III, Journal of the Optical
Society of America 50, No.9 (1960), 838-856.

[19] M. S. Longuet-Higgins, The statistical geometry of random surfaces. Proc. Symp. Appl. Math. Vol.
XIII, AMS Providence R.I. (1962), 105-143.

[20] V. Piterbarg and O. Rychlik, Central Limit Theorem for Wave-Functionals of Gaussian Processes,
Adv. in Appl. Probab. 31:1 (1999), 158-177.

[21] S.O. Rice, Mathematical analysis of random noise. Bell System Tech. J. 23 (1944), 282-332.

[22] E. Slud, MWI representation of the number of curve-crossings by a differentiable Gaussian process,
with applications. Ann. Probab. 22, No.3 (1994), 1355-1380.

[23] P. Soulier, Moment bounds and central limit theorem for functions of Gaussian vectors. Stat. Prob.
Letters 54 (2001), 193-203.

Marie Kratz José R. León
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