
HAL Id: hal-00239182
https://hal.science/hal-00239182v1

Preprint submitted on 5 Feb 2008 (v1), last revised 7 Feb 2008 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

V-fold cross-validation improved: V-fold penalization
Sylvain Arlot

To cite this version:

Sylvain Arlot. V-fold cross-validation improved: V-fold penalization. 2008. �hal-00239182v1�

https://hal.science/hal-00239182v1
https://hal.archives-ouvertes.fr


ha
l-

00
23

91
82

, v
er

si
on

 1
 -

 5
 F

eb
 2

00
8

Submitted to the Annals of Statistics

V -FOLD CROSS-VALIDATION IMPROVED: V -FOLD PENALIZATION

By Sylvain Arlot

Université Paris-Sud

We study the efficiency of V -fold cross-validation (VFCV) for
model selection from the non-asymptotic viewpoint, and suggest an
improvement on it, which we call “V -fold penalization”.

Considering a particular (though simple) regression problem, we
prove that VFCV with a bounded V is suboptimal for model selec-
tion, because it “overpenalizes” all the more that V is large. Hence,
asymptotic optimality requires V to go to infinity. However, when
the signal-to-noise ratio is low, it appears that overpenalizing is nec-
essary, so that the optimal V is not always the larger one, despite of
the variability issue. This is confirmed by some simulated data.

In order to improve on the prediction performance of VFCV, we
define a new model selection procedure, called “V -fold penalization”
(penVF). It is a V -fold subsampling version of Efron’s bootstrap
penalties, so that it has the same computational cost as VFCV, while
being more flexible. In a heteroscedastic regression framework, assum-
ing the models to have a particular structure, we prove that penVF
satisfies a non-asymptotic oracle inequality with a leading constant
that tends to 1 when the sample size goes to infinity. In particular,
this implies adaptivity to the smoothness of the regression function,
even with a highly heteroscedastic noise. Moreover, it is easy to over-
penalize with penVF, independently from the V parameter. A simu-
lation study shows that this results in a significant improvement on
VFCV in non-asymptotic situations.

1. Introduction. There are typically two kinds of model selection criteria. On the one-
hand, penalized criteria are the sum of an empirical loss and some penalty term, often measuring
the complexity of the models. This is the case of AIC (Akaike [Aka73]), Mallows’ Cp or CL

(Mallows [Mal73]) and BIC (Schwarz [Sch78]), to name but a few. On the other hand, cross-
validation (Allen [All74], Stone [Sto74], Geisser [Gei75]) and related criteria are based on the
idea of data splitting. Part of the data (the training set) is used for fitting each model, and the
rest of the data (the validation set) is used to measure the performance of the models. There
are several versions of cross-validation (CV), e.g. leave-one-out (LOO, also called ordinary CV),
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leave-p-out (LPO, also called delete-p CV) and generalized CV (Craven and Wahba [CW79]).
In practical applications, cross-validation is often computationally very expensive. This is why
less greedy CV algorithms have been proposed, among which V -fold cross-validation (VFCV,
Geisser [Gei75]) and repeated learning testing methods (Breiman et al. [BFOS84]). In this article,
we mainly consider VFCV — which seems to be the most widely used nowadays — when the
goal of model selection is to be efficient, i.e. to minimize the prediction risk among a family of
estimators. Let us emphasize that this is quite different from picking up the “true model”, which
is often recalled as the identification or consistency issue.

The properties of CV (in particular leave-p-out) for prediction and model identification have
been widely studied from the asymptotical viewpoint. It typically depends on the splitting ratio,
i.e. the ratio between the sizes of the validation and training sets (p/(n − p) in the leave-p-out
case; 1/(V − 1) for V -fold cross-validation). This has been shown for instance by Shao [Sha97]
(for regression on linear models) and by van der Laan, Dudoit and Keles [vdLDK04] (for density
estimation). Asymptotic optimality occurs when this ratio goes to zero at infinity, as shown by
Li [Li87] for the leave-one-out, and generalized by Shao [Sha97] for the leave-p-out with p ≪ n,
both in the regression setting, when all the models are linear. Other asymptotic results about
CV in regression can be found in the book by Györfi et al. [GKKW02], and in the paper of
van der Laan, Dudoit and Keles [vdLDK04] for density estimation. Notice that the behaviour
of these procedures changes completely when the goal is consistency; we refer to Yang [Yan07]
and Sect. 5.4 below for references on this problem.

When it comes to practical application, a major question is how to choose the tuning pa-
rameters of CV procedures, since their performance strongly depend on them. In the case of
VFCV, this means choosing V . Basically, there are three competing factors. First, the VFCV
estimator of the prediction error, critVFCV, is biased, and its bias decreases with V . As shown by
Burman [Bur89, Bur90], it is possible to correct this bias; otherwise, V should not be taken too
small. Second, the variance of critVFCV depends on V : it is always decreasing for small values
of V , but then it can either stay decreasing (as in the linear regression case [Bur89]) or start to
increase before V = n (as in some classification problems [Bre96, HTF01, MSP05] or in density
estimation [CR08]; see Sect. 2.3). Third, the computational cost of VFCV is proportional to V ,
so that the theoretic optimum (taking only bias and variability into account) can not always
be computed. More precisely, it is necessary to understand well how the performance of VFCV
depends on V before taking into account the computational cost. This is one of the purposes of
this article.

We here aim at providing a better understanding of some CV procedures (including VFCV)
from the non-asymptotic viewpoint. This may have two major implications. First, non-asymptotic
results are made to handle collections of models which may depend on the sample size n: their
sizes may typically be a power of n, and they may contain models whose complexities grow
with n. Such collections of models are particularly significant for designing adaptive estimators
of a function which is only assumed to belong to some hölderian ball, which may require an
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arbitrarily large number of parameters. Second, in several practical applications, we are in a
“non-asymptotic situation” in the sense that the signal-to-noise ratio is low. We shall see in the
following that it should really be taken into account for an optimal tuning of V . It is worth
noticing that such a non-asymptotic approach is not common in the literature, since most of the
results already mentioned are asymptotic, and none is considering our second point above.

Another important point in our approach is that our framework includes several kinds of
heteroscedastic data. We only assume that the observations (Xi, Yi)1≤i≤n are i.i.d. with

Yi = s(Xi) + σ(Xi)ǫi ,

where s : X 7→ R is the (unknown) regression function, σ : X 7→ R is the (unknown) noise-level,
and ǫi has a zero mean and a unit variance conditionally to Xi. In particular, the noise-level
σ(X) can be strongly dependent from X, and the distribution of ǫ can itself depend from X.
Such data are generally considered as very difficult to handle, because we have no information
on σ, making irregularities of the signal harder to distinguish from noise. Then, simple model
selection procedures such as Mallows’ Cp may not work (see Chap. 4 of [Arl07] for a theoretical
argument), and it is natural to hope that VFCV or other resampling methods may be robust to
heteroscedasticity. In this article, both theoretical and simulation results confirm this fact.

In Sect. 2, we provide a non-asymptotic analysis of the performance of VFCV. The aforemen-
tioned bias turns out into a non-asymptotic negative result (Thm. 1), showing a rather simple
problem for which VFCV can not satisfy an oracle inequality with leading constant smaller than
κ(V ) − ǫn, with κ(V ) > 1 for any V ≥ 2 and ǫn → 0. In particular, VFCV with a bounded V
can not be asymptotically optimal. But our analysis also has a major positive consequence in
some “non-asymptotic” situations. Indeed, by considering VFCV as a penalization procedure,
our previous result can be interpretated as an overpenalization property of VFCV. This should
be related to the fact that the efficiency of penalization methods (like Mallows’ Cp) is often
improved by overpenalization, when the signal-to-noise ratio is small. Then, one can expect the
optimal V for VFCV to be smaller than n, even for least-squares regression, which is confirmed
by the simulation study of Sect. 4. So, it appears that choosing the optimal V for VFCV may
be quite hard. In addition, the optimal choice may not be satisfactory when it corresponds to a
highly variable criterion such as the 2-fold CV one. It is likely that there is some room left here
to improve on VFCV.

This is why we propose in Sect. 3 another V -fold algorithm, that we call “V -fold penalization”
(penVF). It is based upon Efron’s resampling heuristics [Efr79], in the same way as Efron’s
bootstrap penalty [Efr83], but with a V -fold subsampling scheme instead of the bootstrap. It
thus has exactly the same computational cost as the classical VFCV, and our results show that is
has a similar robustness property, in some heteroscedastic regression framework. In addition, it
turns out to be a generalization of Burman’s corrected VFCV [Bur89, Bur90] (at least when the
splitting into V blocks is regular). The main advance of penVF being that it is straightforward
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to overpenalize within any factor when this is required, for instance when the signal-to-noise
ratio seems low.

In the least-square regression framework, when we have to select among histogram models
(see Sect. 2.2 for an accurate definition), we prove that penVF satisfies a non-asymptotic oracle
inequality with a leading constant almost one (Thm. 2). To our knowledge, such a non-asymptotic
result is new for any V -fold model selection procedure. One of its strengths is that it requires
very few assumptions on the noise, allowing in particular heteroscedasticity. It is a strong result
for penVF — which was not built for this particular setting at all — to improve on VFCV for
such difficult problems, where VFCV is among the best procedures overall. As a consequence of
Thm. 2, one can use penVF with the family of regular histograms in order to obtain an estimator
adaptive to the smoothness of the regression function, when the noise is heteroscedastic (while
having no information at all on the distribution of the noise). Notice that we only consider this
result as a first step towards a more general theorem, without the restriction to histograms, as
discussed in Sect. 5.3. The main interest of this toy framework is that we can study it deeply,
and then derive general heuristics for practical use.

As an illustration to our theoretical study, we provide the results of a simulation study in
Sect. 4. It confirms the good performances of penVF against both VFCV and the simpler Mal-
lows’ Cp criterion, in particular for difficult heteroscedastic problems. We also show how useful
may be the flexibility of penVF when the signal-to-noise ratio is low. By decoupling V from the
overpenalization factor, we allowed a significant improvement of the performance of both VFCV
and its bias-corrected version.

Finally, our results are discussed in Sect. 5. The remaining of the paper is devoted to some
probabilistic tools (App. A) and proofs (App. B).

2. Performance of V -fold cross-validation. In this section, we provide a non-asymptotic
study of V -fold cross-validation (VFCV) in the least-squares regression framework. In order to
make explicit computations possible, we focus on the case where each model is an “histogram
model”, i.e. the vector space of piecewise constant functions on some fixed partition of the
feature space. This is only a first theoretical step. We use it to derive heuristics, that should
help the practical user of VFCV in any framework. Notice also that we do not assume that the
regression function itself is piecewise constant.

2.1. General framework. First consider the general prediction setting: X ×Y is a measurable
space, P an unknown probability measure on it and we observe some data (X1, Y1), . . . , (Xn, Yn) ∈
X × Y of common law P . Let S be the set of predictors (measurable functions X 7→ Y) and
γ : S × (X × Y) 7→ R a contrast function. Given a family (ŝm)m∈Mn of data-dependent predic-
tors, our goal is to find the one minimizing the prediction loss Pγ(t) := E(X,Y )∼P [γ(t, (X,Y ))].
Notice that the expectation here is only taken w.r.t. (X,Y ), so that Pγ(t) is random when t is
random (e.g. data-driven). Assuming that there exists a minimizer s ∈ S of the loss (the Bayes
predictor), we will often consider the excess loss l(s, t) = Pγ(t) − Pγ(s) ≥ 0 instead of the loss.
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We assume that each predictor ŝm can be written as a function ŝm(Pn) of the empirical
distribution of the data Pn = n−1∑n

i=1 δ(Xi,Yi). The case-example of such a predictor is the
empirical risk minimizer ŝm ∈ arg mint∈Sm {Pnγ(t)}, where Sm is any set of predictors (called a
model). In the classical version of VFCV, we first choose some partition (Bj)1≤j≤V of the indexes
{1, . . . , n}. Then, we define

P (j)
n =

1

Card(Bj)

∑

i∈Bj

δ(Xi,Yi) ŝ(j)
m = ŝm

(
P (j)

n

)

P (−j)
n =

1

n − Card(Bj)

∑

i/∈Bj

δ(Xi,Yi) ŝ(−j)
m = ŝm

(
P (−j)

n

)
.

The final VFCV estimator is ŝm̂VFCV
(Pn) with

(1) m̂VFCV ∈ arg min
m∈Mn

{critVFCV(m)} and critVFCV(m) :=
1

V

V∑

j=1

P (j)
n γ

(
ŝ(−j)
m

)
.

It is classical to assume that the partition (Bj)1≤j≤V is regular, i.e. that ∀j, |Card(Bj) − n/V | <
1. In order to understand deeply the properties of VFCV, we have to compare precisely critVFCV(m)
to the excess loss l(s, ŝm). A crucial point is to compare their expectations, which is quite hard
in general. This is why we restrict ourselves to a particular framework, namely the histogram
regression one. We describe it in the next subsection.

2.2. The histogram regression case. In the regression framework, the data (Xi, Yi) ∈ X × R

are i.i.d. of common law P . Denoting by s the regression function, we have

(2) Yi = s(Xi) + σ(Xi)ǫi

where σ : X 7→ R is the heteroscedastic noise-level and ǫi are i.i.d. centered noise terms, possibly
dependent from Xi, but with mean 0 and variance 1 conditionally to Xi. In order to simplify
the theory, we will make two main assumptions on the data throughout this paper:

σ(X) ≥ σmin > 0 a.s. and ‖Y ‖∞ ≤ A < +∞ .

Notice that we do not assume σmin and A to be known from the statistician. Moreover, those two
assumptions can be relaxed, as shown by Chap. 6 and Sect. 8.3 of [Arl07]. The feature space X
is typically a compact subset of R

d. We use the least-squares contrast γ : (t, (x, y)) 7→ (t(x)−y)2

to measure the quality of a predictor t : X 7→ Y. As a consequence, the Bayes predictor is the
regression function s, and the excess loss is l(s, t) = E(X,Y )∼P (t(X) − s(X))2. To each model
Sm, we associate the empirical risk minimizer

ŝm := ŝm(Pn) = arg min
t∈Sm

{Pnγ(t)}
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(when it exists and is unique). Define also sm := arg mint∈Sm Pγ ( t).
We now focus on histograms. Each model in (Sm)m∈Mn is the set of piecewise constant

functions (histograms) on some partition (Iλ)λ∈Λm
of X . It is thus a vector space of dimension

Dm = Card(Λm), spanned by the family (1Iλ
)λ∈Λm

. As this basis is orthogonal in L2(µ) for any
probability measure µ on X , we can make explicit computations. The following notations will
be useful throughout this article.

pλ := P (X ∈ Iλ) p̂λ := Pn(X ∈ Iλ) σ2
λ := E

[
(Y − s(X) )2

∣∣∣ X ∈ Iλ

]
.

Remark that ŝm is uniquely defined if and only if each Iλ contains at least one of the Xi, i.e.
minλ∈Λm

{ p̂λ } > 0. Prop. 1 below compares the V -fold criterion and the ideal criterion Pγ(ŝm)
in expectation.

Proposition 1. Let Sm be the model of histograms associated with the partition (Iλ)λ∈Λm

and (Bj ) 1 ≤ j ≤ V some “almost regular” partition of {1, . . . , n}, i.e. such that

max
j

{
Card(Bj)

n

}
≤ cB < 1 and sup

j

{∣∣∣∣
Card(Bj)

n
− 1

V

∣∣∣∣
}
≤ ǫreg

n −−−→
n→∞

0 .

Then, the expectation of the ideal and V -fold criteria are respectively equal to

E [Pγ(ŝm) ] = Pγ(sm) +
1

n

∑

λ∈Λm

(1 + δn,pλ
)σ2

λ(3)

E [critVFCV(m) ] = Pγ(sm) +
V

V − 1
× 1

n

∑

λ∈Λm

(
1 + δ(V F )

n,pλ

)
σ2

λ(4)

where δn,p only depends on (n, p), δ
(V F )
n,p depends on (n, p) and the partition (Bj)1≤j≤V , but both

are small when the product np is large:

|δn,p| ≤ L1 and
∣∣∣δ(V F )

n,p

∣∣∣ ≤ L2

[
ǫreg
n + max

(
(np)−1/4, e−np(1−cB)

)]
,

where L1 is a numerical constant ant L2 only depends on cB.

Remark 1. Since we deal with histograms, ŝm is not defined when minλ∈Λm
p̂λ = 0, which

occurs with positive probability. We then have to take a convention for Pγ ( ŝm ) (on the event
minλ∈Λm

{ p̂λ } = 0, which has generally a very small probability) so that it has a finite expecta-
tion. The same kind of problem occur with critVFCV. See the proof of Prop. 1.

Prop. 1 is consistent with Burman’s asymptotic estimate of the bias of VFCV [Bur89]. The
major advance here is that it is non-asymptotic, and we have explicit upper bounds on the
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remainder terms (see the proof of Prop. 1 in App. B.4). It shows that the classical V -fold cross-
validation overestimates the variance term n−1∑

λ∈Λm
σ2

λ, because it estimates the generalization

ability of ŝ
(−j)
m , which is built upon less data than ŝm. This interpretation is consistent with the

results of Shao [Sha97] on linear regression, and van der Laan, Dudoit and Keles [vdLDK04] in
the density estimation framework.

When V stays bounded as n grows to infinity, it is then natural to think that VFCV is
underfitting, and thus be suboptimal for prediction. Since Prop. 1 is non-asymptotic and quite
accurate, we are now in position to prove such a result.

Theorem 1. Let n ∈ N, (Xi, Yi)1≤i≤n be i.i.d. random variables, with X ∼ U([0, 1]) and
Y = X +σǫ with σ > 0 and ‖ǫ‖∞ < +∞. Let Mn = {1, . . . , n} and ∀m ∈ Mn, Sm be the model
of regular histograms with Dm = m pieces on X = [0, 1]. Let V ∈ {2, . . . , n} and (Bj )1≤j≤V be

some partition of {1, . . . , n} such that for every j,
∣∣Card(Bj) − nV −1

∣∣ < 1.
Then, there is an event of probability at least 1 − K1n

−2 on which

(5) l(s, ŝm̂VFCV
) ≥ (1 + κ(V ) − ln(n)−1/5) inf

m∈Mn

{ l(s, ŝm)} ,

for some constant κ(V ) > 0 depending only on V (and decreasing as a function of V ), and a
constant K1 which depends on σ, A and V .

We now make a few comments:

• In the same framework, using similar arguments, we can prove an upper bound on l(s, ŝm̂VFCV
)

showing that the constant 1 + κ(V ) is exact (up to the ln(n)−1/5 term). In particular,

l(s, ŝm̂VFCV
)

infm∈Mn { l(s, ŝm)}
a.s.−−−−−→

n→+∞
1 + κ(V ) = 1 +

22/3

3

[
1 −

(
V − 1

V

)1/3
]2

> 1 .

• When (Bj )1≤j≤V is not assumed regular, the proof of Prop. 1 shows that the factor

V/(V − 1) becomes
∑V

j=1 n/(n−Card(Bj)) which is always larger, because x 7→ (n−x)−1

is convex. On the other hand, if one chooses a (Xi)1≤i≤n-dependent partition such that for
every λ ∈ Λm, Card {Xi ∈ Iλ and i ∈ Bj } is (almost) independent from j, then a similar

proof shows that δ
(V F )
n,p is made much smaller than the previous upper bound. In a nutshell,

it seems that the best performance of VFCV corresponds in general to the regular partition
case, for which (5) holds.

• Although we restrict in Thm. 1 to a very particular problem, a similar result stays valid
much more generally, possibly with a different value for the constant κ(V ). The only
purpose of our assumptions is to compare very precisely critVFCV(m) and Pγ ( ŝm ) as
functions of m. Since Dm̂VFCV

is smaller than the optimum from a multiplicative factor
independent from n only, this analysis strongly depends on how Pγ ( ŝm ) varies with m.
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• One can easily extend this result to any cross-validation like method, when two conditions
are satisfied. First, the ratio between the size of the training set and n has to be upper-
bounded by 1− V −1 < 1 (uniformly in n). Second, the number of training sets considered
has to be bounded by Bmax (from which K1 may depend). This includes for instance the
hold-out case, and repeated learning-testing methods. Notice that the second assumption
is mainly technical; if we were able to prove the corresponding concentration inequalities,
the leave-p-out with p ∼ n/V should have approximately the same properties.

2.3. How to choose V .

2.3.1. Classical analysis. There are three well-known factors to take into account in order to
choose V :

• bias: when V is too small, critVFCV overestimates the variance term in Pγ ( ŝm ), which
leads to underfitting and suboptimal model selection (Thm. 1).

• variability: the variance of critVFCV(m) is a decreasing function of V , at least in the linear
regression framework (see Burman [Bur89] for an asymptotic expansion of this variance).
In general, V = 2 is known to be quite variable because of the single split. When the
prediction algorithm (Xi, Yi )1≤i≤n 7→ ŝm is unstable (e.g. classification with CART, as
noticed by Hastie, Tibshirani and Friedman [HTF01]; see also Breiman [Bre96]), the leave-
one-out criterion (i.e. V = n) is also known to be quite variable, but this phenomenon
seems to disappear when ŝm is more stable (Molinaro, Simon and Pfeiffer [MSP05]). In
particular, in the least-squares regression framework, the variance of critVFCV(m) should
decrease with V .

• computational complexity: V -fold cross-validation needs to compute at least V empirical
risk minimizers for each model.

In the least-squares regression setting, V has to be chosen large in order to improve accuracy
(by reducing bias and variability); on the contrary, computational issues arise when V is too big.
This is why V = 5 and V = 10 are very classical and popular choices.

2.3.2. The non-asymptotic need for overpenalization. We now come to some particularity of
the non-asymptotic viewpoint. Indeed, our proof of Thm. 1 shows that the asymptotic behaviour
of hold-out and cross-validation criterions only depend on their bias, because all these criterions
are sufficiently close to their expectations asymptotically. However, this is not true when the
sample size is fixed, and even the less variable criterions are far from being deterministic. As a
consequence, using an unbiased estimator is no longer a guarantee of being optimal, since it can
still lead to choosing a very poor model with a positive probability.

In order to analyze this phenomenon, it is useful to take the penalization viewpoint. The idea
of penalization for model selection is to define

(6) m̂ ∈ arg min
m∈Mn

{Pnγ ( ŝm ) + pen(m)} ,
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Fig 1. The non-asymptotic need for overpenalization: the prediction performance Cor (defined in Sect. 4.1) of
the model selection procedure (6) with pen(m) = CovE [ penid(m) ] is represented as a function of Cov. Data and
models are the ones of experiment (S1): n = 200, σ ≡ 1, s(x) = sin(πx). See Sect. 4 for more details.

where pen(m) is chosen so that Pnγ ( ŝm ) + pen(m) is close to the prediction error Pγ ( ŝm ). In
other words, the “ideal penalty” is

(7) penid(m) := (P − Pn)γ(ŝm) .

According to Prop. 1 and (38) (which follows its proof), in the histogram regression case, we
can compute the expectation of the ideal penalty:

(8) E [penid(m) ] =
1

n

∑

λ∈Λm

(2 + δn,pλ
)σ2

λ ,

which is close to Mallows’ Cp penalty 2σ2Dmn−1 in the homoscedastic case. The point is that
overpenalization (that is, taking pen larger than penid, even in expectation) can improve the
prediction performance of ŝm̂ when the signal-to-noise ratio is small. This can be seen on Fig. 1,
according to which the optimal overpenalization constant C⋆

ov seems to be between 1.2 and 1.7 for
this particular model selection problem. See also [Arl07] for a longer discussion of this problem.

2.3.3. Choosing V in the non-asymptotic framework. Since V -fold cross-validation is choosing
the model m̂VFCV which minimizes some criterion critVFCV, it can be written as a penalization
procedure: it satisfies (6) with

penVFCV(m) := critVFCV(m) − Pnγ ( ŝm ) .
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Using again Prop. 1 and (38), we can compute its expectation:

E [penVFCV(m) ] =
1

n

∑

λ∈Λm

[
1 +

V

V − 1

(
1 + δ(V F )

n,pλ

)]
σ2

λ.

Compared to (8), this shows that V -fold cross-validation is overpenalizing within a factor 1 +
1/(2(V − 1)).

We can now revisit the question of choosing V for optimal prediction, in such a non-asymptotic
situation:

• the overpenalization factor is 1 + 1/(2(V − 1)).
• the variance of critVFCV roughly decreases with V .
• the computational complexity of computing critVFCV is roughly proportional to V .

First, take only the prediction performance into account. The variability question should be
less crucial than overpenalization, because the variance of critVFCV depends only on V through
second order terms, according to the asymptotic computations of Burman [Bur89]. Since the
optimal overpenalization constant is C⋆

ov > 1, the performance of V -fold cross-validation should
be optimal for some V ⋆ < n. This analysis is confirmed by the simulation study of Sect. 4, where
V = 2 provides better performance than V = 5 and V = 10 for several different experiments.

Now, if computational cost comes into the balance, or if we consider less stable prediction
algorithms than least-squares regression estimators, the optimal V may be even smaller. What-
ever the framework, it seems quite difficult to find the optimal V , even if C⋆

ov was known (which
is far from being the case in general). It would be at least necessary to understand well how the
variance of critVFCV depends on V in the non-asymptotic framework. This is a difficult practical
problem, since “there is no universal (valid under all distributions) unbiased estimator of the
variance of V -fold cross-validation” (Bengio and Grandvalet [BG04]). In the density estimation
framework, this question has been tackled recently by Celisse and Robin [CR08].

The conclusion of this section is that choosing V for V -fold is a very complex issue in practice,
even independently from the cost of computing critVFCV. Moreover, it seems unsatisfactory to
select a model according to a criterion as variable as the 2-fold cross-validation one when V ⋆ = 2
because of the need for overpenalization. Finally, when the signal-to-noise ratio is large, we would
like to obtain a nearly unbiased procedure without having to take V very large, which can be
computationally too heavy.

In other words, we would like to decouple the choice of an overpenalization factor from the
variability issue (which is essentially linked with complexity). The drawback of V -fold cross-
validation is that they both depend on the V parameter. As we shall see in the next section,
such a decoupling can be naturally obtained through the use of penalization.

3. An alternative V -fold algorithm: V -fold penalties. There are several ways to de-
fine V -fold cross-validation like penalization procedures with a tunable overpenalization factor,
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independent from the V parameter. A first idea may be to multiply penVFCV(m) by a constant
i.e. to use (6) with the penalty

pen(m) = Cov

(
1 +

1

2(V − 1)

)−1

(critVFCV(m) − Pnγ ( ŝm )) .

From the proof of Thm. 1 (see also the one of Thm. 2 below), it is clear that when Cov ∼ 1,
this procedure satisfies with large probability a non-asymptotic oracle inequality with leading
constant 1 + ǫn, and more generally an oracle inequality with leading constant K(Cov) ≥ 1.
However, this may seem a little artificial, and strongly dependent from the histogram regression
framework in which the computations of Prop. 1 work.

In this section, we consider another approach, that we call “V -fold penalization”, which seems
more natural to us. We shall see below that it is closely related to an idea of Burman [Bur89,
Bur90] for correcting the bias of V -fold cross-validation. However, Burman did not consider his
method as a penalization one. His goal was only to obtain an unbiased estimate of the prediction
error, so that it is not straightforward to choose an overpenalization factor different from 1 with
his method. This is a major difference with our approach.

3.1. Definition of V -fold penalties.

3.1.1. General framework. We come back to the general setting of Sect. 2.1. Recall that
each predictor ŝm can be written as a function ŝm(Pn) of the empirical distribution of the data
Pn = n−1∑n

i=1 δ(Xi,Yi). We want to build a penalization method, i.e. choose m̂ according to
(6), so that the prediction error of ŝm̂ is as small as possible. This could be done exactly if
we knew the ideal penalty penid(m) = (P − Pn)γ(ŝm(Pn)), but this quantity depends on the
unknown distribution P . Following a heuristics due to Efron [Efr79], we propose to define pen
as the resampling estimate of penid, according to a V -fold subsampling scheme. We first recall
the general form of this heuristics.

Basically, the resampling heuristics tells that one can mimic the relationship between P and
Pn by building a n-sample of common distribution Pn (the “resample”). PW

n denoting the em-
pirical distribution of the resample, the pair (P,Pn) should be close (in distribution) to the pair
(Pn, PW

n ) (conditionally to Pn for the latter distribution). Then, the expectation of any quantity

of the form F (P,Pn) can be estimated by EW

[
F (Pn, PW

n )
]
, where EW [ · ] denotes expectation

w.r.t. the resampling randomness. In the case of penid, this leads to Efron’s bootstrap penalty
[Efr83]. Later on, this heuristics has been generalized to other resampling schemes, with the ex-
changeable weighted bootstrap (Mason and Newton [MN92], Præstgaard and Wellner [PW93]).
The empirical distribution of the resample then has the general form

PW
n :=

1

n

n∑

i=1

Wiδ(Xi,Yi) with W ∈ R
n an exchangeable weight vector,

independent from the data (W is said to be exchangeable when its distribution is invariant
by any permutation of its coordinates). Fromont [Fro07] used it successfully (with a particular
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upper bound on penid) to build global penalties in the classification framework. Exchangeable
resampling penalties (generalizing Efron’s bootstrap penalty) have also been recently proposed,
and studied in the regression framework [Arl07]. The idea of V -fold penalties is to use a V -fold
subsampling scheme instead, i.e. take Wi = V

V −11i/∈BJ
with J ∼ U({1, . . . , V }) independent

from the data (U(E) denotes the uniform distribution over the set E). Then, PW
n = P

(−J)
n and

we obtain the following algorithm.

Algorithm 1 (V -fold penalization).

1. Choose a partition (Bj)1≤j≤V of {1, . . . , n}, as regular as possible.
2. Choose a constant C ≥ CW,∞ = V − 1.
3. Compute the following resampling penalty for each m ∈ Mn:

pen(m) = penVF(m) :=
C

V

V∑

j=1

[
Pnγ

(
ŝm

(
P (−j)

n

))
− P (−j)

n γ
(
ŝm

(
P (−j)

n

))]
.

4. Choose m̂ according to (6).

Remark 2 (About the constant C). Contrary to Efron’s resampling heuristics, we have to
put a constant C 6= 1 in front of the penalty (pen being an unbiased estimator of penid when
C = CW,∞). This is because each Wi has a variance (V −1)−1 6= 1 (we only normalized W so that
E [Wi ] = 1 for every i). According to Lemma 8.4 of [Arl07], the right normalizing constant can
be derived from the exchangeable case. As a consequence, from Theorem 3.6.13 in [vdVW96],

CW,∞ ∼n→∞

(
n−1

n∑

i=1

E (Wi − 1)2
)−1

∼n→∞ V − 1 .

The asymptotic value of CW,∞ can also be derived from the computations of Burman [Bur89] in
the linear regression framework. Indeed, with our notations, Burman’s criterion (formula (2.3)
in [Bur89]) is

critcorr.VF(m) := critVFCV(m) + Pnγ ( ŝm ) − 1

V

V∑

j=1

Pnγ
(
ŝ(−j)
m

)

= Pnγ ( ŝm ) +
1

V

V∑

j=1

[(
P (j)

n − Pn

)
γ
(
ŝ(−j)
m

)]
.

If all the blocks of the partition have the same size n/V , then P
(j)
n −Pn = (V −1)(Pn−P

(−j)
n ), so

that Burman’s corrected VFCV coincides exactly with V -fold penalization when C = V −1. Since
critcorr.VF(m) is an asymptotically unbiased estimator of Pγ ( ŝm ) (at least for linear regression),
the result follows. From the non-asymptotic viewpoint, we prove in Sect. 3.2 below that V − 1
also leads to an unbiased estimator of penid in the histogram regression case.
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Notice also that we do not assume that C = CW,∞, but only C ≥ CW,∞. This is a major
quality of V -fold penalization (penVF): it is straightforward to choose any overpenalization
factor, independently from V . Further comments about the choice of C and V are made in
Sect. 5.

3.1.2. The histogram regression case. We now come back to the framework of Sect. 2.2, in
which we can analyze deeper Algorithm 1. Remind that histograms are not our final goal, but
only a convenient setting from which we can derive heuristics for practical use of penVF in any
framework. From now on, (Sm )m∈Mn

is a collection of histogram models and ( ŝm )m∈Mn
the

associated collection of least-squares estimators. We first introduce some more notations:

sm =
∑

λ∈Λm

βλ1Iλ
and ŝm =

∑

λ∈Λm

β̂λ1Iλ
with βλ = E [Y | X ∈ Iλ ] and β̂λ =

1

np̂λ

∑

Xi∈Iλ

Yi

p̂W
λ := PW

n (X ∈ Iλ) = p̂λWλ with Wλ :=
1

np̂λ

∑

Xi∈Iλ

Wi

and ŝW
m := arg min

t∈Sm

PW
n γ(t) =

∑

λ∈Λm

β̂W
λ 1Iλ

with β̂W
λ :=

1

np̂W
λ

∑

Xi∈Iλ

WiYi .

Assuming that minλ∈Λm
p̂λ > 0 (otherwise, the model m should clearly not be chosen), we

can compute the ideal penalty (see (37) and (38) in Sect. B.4) and its resampling estimate:

penid(m) = (P − Pn)γ(ŝm) =
∑

λ∈Λm

(pλ + p̂λ )
(
β̂λ − βλ

)2
+ (P − Pn)γ(sm)

EW

[
(Pn − PW

n )γ(ŝW
m )
]

=
∑

λ∈Λm

EW

[(
p̂λ + p̂W

λ

)(
β̂W

λ − β̂λ

)2
]

,(9)

since
∑

i E[Wi] = 1 implies that EW

[
(Pn − PW

n )γ(ŝm)
]

= 0. The penalty (9) is well-defined if

and only if ŝW
m is a.s. uniquely defined, i.e. Wλ > 0 for every λ ∈ Λm a.s. This is why we modified

the definition of the weights in algorithm 1, so that this problem does not occur.

Algorithm 2 (V -fold penalization for histograms).

1. Replace Mn by M̂n = {m ∈ Mn s.t. minλ∈Λm
{np̂λ } ≥ 3}.

2. Choose a constant C ≥ CW,∞ = V − 1.

3. For every m ∈ M̂n, choose a partition (Bj)1≤j≤V of {1, . . . , n} such that

∀λ ∈ Λm, ∀1 ≤ j ≤ V,

∣∣∣∣Card (Bj ∩ { i s.t. Xi ∈ Iλ }) − np̂λ

V

∣∣∣∣ < 1 .

4. Compute the following resampling penalty for each m ∈ Mn:

(10) pen(m) = penVF(m) :=
C

V

V∑

j=1

[
Pnγ

(
ŝ(−j)
m

)
− P (−j)

n γ
(
ŝ(−j)
m

)]
.
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5. Choose m̂ according to (6).

At step 3, we choose a different partition for each model m. Our choice is consistent with the
proposal of Breiman et al. [BFOS84] (see also Burman [Bur90], Sect. 2) to stratify the data and
choose a partition which respects the stratas. In the histogram case, natural stratas are the sets
{ i s.t. Xi ∈ Iλ }. In particular, steps 1 and 3 of Algorithm 2 ensure that minλ∈Λm

Wλ > 0 for
every m ∈ M̂n, so that (10) is well-defined.

Other modifications of algorithm 1 are possible. For instance, keep the same regular partition
(Bj)1≤j≤V for all the models, and take

(11) penVF(m) = C
∑

λ∈Λm

(
EW

[
p̂λ

(
β̂W

λ − β̂λ

)2
∣∣∣∣ Wλ > 0

]
+ EW

[
p̂W

λ

(
β̂W

λ − β̂λ

)2
])

instead of (9). This is what we did in the simulations of Sect. 4, and a short theoretical study
of this method is done in Sect. 8.4.1 of [Arl07]. It confirms that the two algorithms should have
very similar performances in practical applications.

3.2. Expectations. We now come to the expectation of V -fold penalties, in the histogram
regression framework.

Proposition 2. Let Sm be the model of histograms associated with some partition (Iλ )λ∈Λm

and pen = penVF be defined as in Algorithm 2. Then, if minλ∈Λm
{np̂λ } ≥ 3,

(12) E
Λm [penVF(m) ] =

1

n

∑

λ∈Λm

(
2C

V − 1
+

C

V − 1
δ
(penV)

n,p̂λ

)
σ2

λ

with E
Λm [ · ] = E

Λm

[
·
∣∣∣ (1Xi∈Iλ

)1≤i≤n, λ∈Λm

]
and 2

np̂λ−2
≥ δ

(penV)

n,p̂λ
≥ 0.

Comparing (12) with (8), it appears that penVF is an (almost) unbiased estimator of penid

when C = V − 1. Indeed, when minλ∈Λm
{npλ } goes to infinity faster than some constant

times ln(n), so does minλ∈Λm
{np̂λ } with a large probability. Moreover, following the proof of

Lemma 3, we can show that

E

[
δ
(penV)

n,p̂λ
1np̂λ≥3

]
≤ κmin

(
1, (npλ)−1/4

)
−−−−−→
npλ→∞

0

for some absolute constant κ > 0. This is consistent with the asymptotic computations of Burman
[Bur89]. The main novelty of Prop. 2 is that we have an explicit non-asymptotic upperbound on
the remainder term. This is crucial to derive oracle inequalities for Algorithm 2.
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3.3. Oracle inequalities and asymptotic optimality. We are now in position to state the main
result of this section: V -fold penalties (Algorithm 2) satisfy a non-asymptotic oracle inequality
with a leading constant close to 1, on a large probability event. This implies the asymptotic
optimality of Algorithm 2 in terms of excess loss. For this, we assume the existence of some
non-negative constants αM, cM, crich, η such that:

(P1) Polynomial complexity of Mn: Card(Mn) ≤ cMnαM .
(P2) Richness of Mn: ∃m0 ∈ Mn s.t. Dm0 ∈ [

√
n; crich

√
n ].

(P3) The constant C is well chosen: η(V − 1) ≥ C ≥ V − 1.

Theorem 2. Assume that the (Xi, Yi)’s satisfy the following:

(Ab) Bounded data: ‖Yi‖∞ ≤ A < ∞.
(An) Noise-level bounded from below: σ(Xi) ≥ σmin > 0 a.s.
(Ap) Polynomial decreasing of the bias: there exists β1 ≥ β2 > 0 and C+

b , C−
b > 0 such that

C−
b D−β1

m ≤ l(s, sm) ≤ C+
b D−β2

m .

(ArX
ℓ ) Lower regularity of the partitions for L(X): Dm minλ∈Λm

pλ ≥ cX
r,ℓ > 0.

Let m̂ be the model chosen by algorithm 2 (under restrictions (P1 − 3), with η = 1). Then,
there exists a constant K2 and a sequence ǫn converging to zero at infinity such that

(13) l(s, ŝm̂) ≤ (1 + ǫn ) inf
m∈Mn

{ l(s, ŝm)}

with probability at least 1 − K2n
−2. Moreover, we have the oracle inequality

(14) E
[
l(s, ŝm̂)

] ≤ (1 + ǫn ) E

[
inf

m∈Mn

{ l(s, ŝm)}
]

+
A2K2

n2
.

The constant K2 may depend on V and constants in (Ab), (An), (Ap), (ArX
ℓ ) and (P1 − 3),

but not on n. The term ǫn is smaller than ln(n)−1/5 for instance; it can also be taken smaller
than n−δ for any 0 < δ < δ0(β1, β2), at the price of enlarging K2.

We first make a few comments on our assumptions.

1. When assumption (P3) is satisfied with η > 1, the same result holds with a leading
constant 2η − 1 + ǫn instead of 1 + ǫn in (13) and (14).

2. In Thm. 2, we assume that V is fixed when n grows. A careful look at the proof shows that
we only need V ≤ ln(n) for n large enough. With a few more work, we could go up to V of
order nδ for some δ > 0 depending on the assumptions of Thm. 2, but we can not handle
the leave-one-out case (V = n). This is probably a technical restriction, since a similar
result for several exchangeable weights (including leave-one-out) is proven in Chap. 6 of
[Arl07].
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3. (Ab) and (An) are rather mild (and neither A nor σmin need to be known from the
statistician). In particular, they allow quite general heteroscedastic noises. They can even
be relaxed, for instance thanks to results proven in Chap. 6 and Sect. 8.3 of [Arl07], allowing
the noise to vanish or to be unbounded.

4. (ArX
ℓ ) is satisfied for “almost regular” histograms when X has a lower bounded density

w.r.t. Leb, as for instance all the simulation experiments of Sect. 4.
5. The upper bound in (Ap) holds when (Iλ)λ∈Λm

is regular and s α-hölderian with α ∈
(0, 1]. The lower bound may seem more surprising, since it means that s is not too well
approximated by the models Sm. However, it is classical to assume that l(s, sm) > 0 for
every m ∈ Mn for proving the asymptotic optimality of Mallows’ Cp (e.g. by Shibata
[Shi81], Li [Li87] and Birgé and Massart [BM06]). We here make a stronger assumption
because we need a non-asymptotic lower bound on the dimension of both the oracle and
selected models. The reason why it is not too restrictive is that non-constant α-hölderian
functions satisfy (Ap) with

β1 = k−1 + α−1 − (k − 1)k−1α−1 and β2 = 2αk−1 ,

when (Iλ)λ∈Λm
is regular and X has a lower-bounded density w.r.t. the Lebesgue measure

on X ⊂ R
k (cf. Sect. 8.10 in [Arl07] for more details). Notice also that Stone [Sto85] and

Burman [Bur02] used the same assumption in the density estimation framework.

Theorem 2 has at least two major consequences. First, V -fold penalties provide an asymptoti-
cally optimal model selection procedure, at least in the histogram regression framework, as soon
as C ∼ V −1. This should be compared to Thm. 1, where we proved that V -fold cross-validation
is suboptimal for a rather mild homoscedastic problem. Notice that a slight modification of the
proof of Thm. 2 shows that several other cross-validation like methods (even with the same
computational cost) have similar theoretical properties. We discuss this point in Sect. 5.

Second, Thm. 2 can handle several kinds of heteroscedastic noises, while Algorithm 2 does
not need any knowledge about σ, ‖Y ‖∞ or the smoothness of s. Even the tuning of C and
V can be made (at least at first order) without any information on the distribution P of the
data. This shows that V -fold penalization is a naturally adaptive algorithm, as long as Mn allows
adaptation. The point here is that when s belongs to some hölderian ball H(α,R) (with α ∈ (0, 1]
and R > 0), we can choose Mn as the family of regular histograms on X ⊂ Rk to obtain such
an adaptivity result. Then, from Thm. 2, we can build an estimator adaptive to (α,R) in a
heteroscedastic framework (see [Arl07] for more details). If moreover the noise-level σ satisfies
some regularity assumption, we can show that this estimator attains the minimax estimation
rate, up to some numerical constant, when α = k = 1.

Notice also that a similar adaptation result could be obtained with V -fold cross-validation,
which also satisfies (13) and (14) with leading constants K(V ) > 1, under similar assumptions.
The advance with V -fold penalization is that we have simultaneously the adaptivity property of
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V -fold cross-validation, its mild computational cost (when V is chosen small), and asymptotic
optimality (contrary to VFCV).

Finally, we would like to emphasize that building such estimators is not the final goal of
penVF. As a matter of fact, there are several procedures that are adaptive to the smoothness of
s and the heteroscedasticity of the noise (e.g. by Efromovich and Pinsker [EP96] or Galtchouk
and Pergamenshchikov [GP05]), and they may have better performances than both VFCV and
penVF in this particular framework. Contrary to these ad hoc procedures, particulary built
for dealing with heteroscedasticity, VFCV and penVF are general-purpose devices. What our
theoretical results show is that they behave quite well in this framework, for which they were
not built in particular.

4. Simulation study. As an illustration of the results of the two previous sections, we
compare the performances of VFCV, penVF (for several values of V ) and Mallows’ Cp on some
simulated data.

4.1. Experimental setup. We consider four experiments, called S1, S2, HSd1 and HSd2. Data
are generated according to

Yi = s(Xi) + σ(Xi)ǫi

with Xi i.i.d. uniform on X = [0; 1] and ǫi ∼ N (0, 1) independent from Xi. The experiments
differ from the regression function s (smooth for S, see Fig. 2; smooth with jumps for HS, see
Fig. 3), the noise type (homoscedastic for S1 and HSd1, heteroscedastic for S2 and HSd2) and
the number n of data. Instances of data sets are given by Fig. 4 to 7. Their last difference lies
in the families of models. Defining

∀k, k1, k2 ∈ N\ {0} , (Iλ )λ∈Λk
=

([
j

k
;
j + 1

k

))

0≤j≤k−1
and

(Iλ )λ∈Λ(k1,k2)
=

([
j

2k1
;
j + 1

2k1

))

0≤j≤k1−1
∪
([

1

2
+

j

2k2
;
1

2
+

j + 1

2k2

))

0≤j≤k2−1
,

the four model families are indexed by m ∈ Mn ⊂ (N\ {0}) ∪ (N\ {0})2:

S1 regular histograms with 1 ≤ D ≤ n(ln(n))−1 pieces, i.e.

Mn =

{
1, . . . ,

⌊
n

ln(n)

⌋}
.

S2 histograms regular on [0; 1/2 ] (resp. on [1/2; 1 ]), with D1 (resp. D2) pieces, 1 ≤ D1,D2 ≤
n(2 ln(n))−1. The model of constant functions is added to Mn, i.e.

Mn = {1} ∪
{

1, . . . ,

⌊
n

2 ln(n)

⌋}2

.
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Fig 2. s(x) = sin(πx)
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Fig 3. s(x) = HeaviSine(x) (see [DJ95])
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Fig 4. S1: s(x) = sin(πx), σ ≡ 1, n = 200
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Fig 5. S2: s(x) = sin(πx), σ(x) = x, n = 200

HSd1 dyadic regular histograms with 2k pieces, 0 ≤ k ≤ ln2(n) − 1, i.e.

Mn =
{

2k s.t. 0 ≤ k ≤ ln2(n) − 1
}

.

HSd2 dyadic regular histograms with bin sizes 2−k1 and 2−k2 , 0 ≤ k1, k2 ≤ ln2(n) − 2 (dyadic
version of S2). The model of constant functions is added to Mn, i.e.

Mn = {1} ∪
{

2k s.t. 0 ≤ k ≤ ln2(n) − 2
}2

.

Notice that we choose models that can approximately fit the true shape of σ(x) in experiments
S2 and HSd2. This choice makes the oracle model even more efficient, hence the model selection
problem more challenging.

We compare the following algorithms:
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Fig 6. HSd1: HeaviSine, σ ≡ 1, n = 2048
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Fig 7. HSd2: HeaviSine, σ(x) = x, n = 2048

VFCV Classical V -fold cross-validation, defined by (1), with V ∈ {2, 5, 10, 20}.
LOO Classical Leave-one-out (i.e. VFCV with V = n).

penVF V -fold penalty, with V ∈ {2, 5, 10, 20}. C = CW,∞ = V − 1. The partition (Bj) is chosen
once, as in Algorithm 1, and penVF is defined by (11). In practice, this is almost the same
as Algorithm 2.

penLoo V -fold penalty, with V = n. C = CW,∞ = n − 1.

Mal Mallows’ Cp penalty: pen(m) = 2σ̂2Dmn−1, where σ̂2 = 2n−1d2
(
Y1...n, Sn/2

)
is the clas-

sical variance estimator (d being the Euclidean distance on R
n, Sn/2 any vector space of

dimension n/2 of R
n and Y1...n = (Y1, . . . , Yn) ∈ R

n). The non-asymptotic validity of this
procedure for model selection in homoscedastic regression has been assessed by Baraud
[Bar00].

E [penid ] Ideal deterministic penalty: pen(m) = E [penid(m) ]. We use it as a witness of what is a
good performance in each experiment.

For each penalization procedure, we also consider the same penalty multiplied by 5/4 (denoted
by a + symbol added after its shortened name). This intends to test for overpenalization (the
choice of the factor 5/4 being arbitrary and certainly not optimal).

In each experiment, for each simulated data set, we replace Mn by M̂n as in step 1 of
Algorithm 2. Then, we compute the least-squares estimators ŝm for each m ∈ M̂n. Finally, we
select m̂ ∈ M̂n using each algorithm and compute its true excess loss l(s, ŝm̂) (and the excess

loss l(s, ŝm) for every m ∈ M̂n). We simulate N = 1000 data sets, from which we can estimate
the model selection performance of each procedure, through the two following benchmarks:

Cor =
E
[
l(s, ŝm̂)

]

E [ infm∈Mn l(s, ŝm) ]
and Cpath−or = E

[
l(s, ŝm̂)

infm∈Mn l(s, ŝm)

]
.

Basically, Cor is the constant that should appear in an oracle inequality like (14), and Cpath−or

corresponds to a pathwise oracle inequality like (13). As Cor and Cpath−or approximatively give
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the same rankings between algorithms, we only report Cor in Tab. 1.

4.2. Results and comments. First of all, our experiments show the interest of both penVF
and VFCV in several difficult framework, with relatively small sample sizes. Although it can not
compete with simple procedures such as Mallows’ Cp from the computational viewpoint, it is
much more efficient when the noise is heteroscedastic (S2 and HSd2). In these hard frameworks,
the performances of penVF and VFCV are comparable to those of the “ideal deterministic
penalty” E [penid ]. On the other hand, they perform slighlty worse than Mallows’ for the easier
problems (S1 and HSd1), which we interpretate as the unavoidable price for robustness.

Secondly, in the four experiments, the best procedures are always the overpenalizing ones:
many of them even beat the perfectly unbiased E [penid ], showing the crucial need to overpenal-
ize. This is mainly due to the small sample size compared to the high noise-level, since it is no
the case when σ is smaller, and less obvious when n is larger (see respectively experiments S0.1
and S1000 in Chap. 5 of [Arl07]). We would like to insist on the importance of this phenomenon,
which is seldom mentioned because it it vanishes in the asymptotic framework, and it is quite
hard to find from theoretical results.

We can now come back to the discussion of Sect. 2.3 on the choice of V for VFCV, which
is enlightened by the results of Tab. 1. In the first three experiments, and more clearly in
HSd1, V = 2 has comparable or better performances than V ∈ {5, 10, 20, n}. This is highly
non intuitive, unless we consider the need for overpenalization in those experiments where the
signal-to-noise ratio is quite low. It appears that the variability issue is less important in those
three cases. This is not because the variance of critVFCV is negligible in front of its bias, but
mainly because its dependence on V is only mild. Hence, whatever V , it has to be compensate
by overpenalizing. On the contrary, the best choices are V = 20 and V = n in experiment HSd2,
where overpenalization seems to be less needed. The main conclusion here should be that one
really has to take into account both overpenalization and variance for choosing an optimal V .
The larger V is not always the better one, so that a larger computation time does not always
improve the accuracy. The main difficulty here is that it does not seem straightforward to choose
V from the data only.

Finally, let us compare the performances of V -fold cross-validation and V -fold penalization in
Tab. 1. At first glance, it seems that penVF with V < 20 performs worse than VFCV in the first
three experiments, and not clearly better in the last one. The point is that it matches exactly
with the experiments for which overpenalization is crucial. But looking at the performance of
penVF+, we have evidence for the advantage conferred to penVF by its flexibility. In three over
four experiments, penVF+ with any V ∈ {5, 10, 20, n} does better than VFCV with any choice
of V ; and it is almost the case for HSd1. This comes from the overpenalizing ability of V -fold
penalization, which is crucial in such non-asymptotic situations.

Moreover, choosing the optimal V for penVF or penVF+ is much simpler than for VFCV: it
is always the largest V . Remark that V = n does not always perform significantly better than
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Table 1

Accuracy indexes Cor for each algorithm in four experiments, ± a rough estimate of uncertainty of the value
reported ( i.e. the empirical standard deviation divided by

√
N). In each column, the more accurate algorithms

(taking the uncertainty into account; E [ penid ] and E [ penid ] + are not taken into account there) are bolded.

Experiment S1 S2 HSd1 HSd2

s sin(π·) sin(π·) HeaviSine HeaviSine
σ(x) 1 x 1 x

n (sample size) 200 200 2048 2048
Mn regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes

E [ penid ] 1.919 ± 0.03 2.296 ± 0.05 1.028 ± 0.004 1.102 ± 0.004
E [ penid ] + 1.792 ± 0.03 2.028 ± 0.04 1.003 ± 0.003 1.089 ± 0.004
Mal 1.928 ± 0.04 3.687 ± 0.07 1.015 ± 0.003 1.373 ± 0.010
Mal+ 1.800 ± 0.03 3.173 ± 0.07 1.002 ± 0.003 1.411 ± 0.008

2−FCV 2.078 ± 0.04 2.542 ± 0.05 1.002 ± 0.003 1.184 ± 0.004
5−FCV 2.137 ± 0.04 2.582 ± 0.06 1.014 ± 0.003 1.115 ± 0.005
10−FCV 2.097 ± 0.05 2.603 ± 0.06 1.021 ± 0.003 1.109 ± 0.004
20−FCV 2.088 ± 0.04 2.578 ± 0.06 1.029 ± 0.004 1.105 ± 0.004
LOO 2.077 ± 0.04 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

pen2−F 2.578 ± 0.06 3.061 ± 0.07 1.038 ± 0.004 1.103 ± 0.005

pen5−F 2.219 ± 0.05 2.750 ± 0.06 1.037 ± 0.004 1.104 ± 0.004
pen10−F 2.121 ± 0.05 2.653 ± 0.06 1.034 ± 0.004 1.104 ± 0.004
pen20−F 2.085 ± 0.04 2.639 ± 0.06 1.034 ± 0.004 1.105 ± 0.004
penLoo 2.080 ± 0.05 2.593 ± 0.06 1.034 ± 0.004 1.105 ± 0.004

pen2−F+ 2.175 ± 0.05 2.748 ± 0.06 1.011 ± 0.003 1.106 ± 0.004
pen5−F+ 1.913 ± 0.03 2.378 ± 0.05 1.006 ± 0.003 1.102 ± 0.004

pen10−F+ 1.872 ± 0.03 2.285 ± 0.05 1.005 ± 0.003 1.098 ± 0.004

pen20−F+ 1.898 ± 0.04 2.254 ± 0.05 1.004 ± 0.003 1.098 ± 0.004

penLoo+ 1.844 ± 0.03 2.215 ± 0.05 1.004 ± 0.003 1.096 ± 0.004
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V = 20 or V = 10, which can be considered as almost optimal choices. For the practical user,
the choice of V thus reduces to a trade-off between computational complexity and performance
(the latter being governed by the variability of the V -fold penalties). Then, once V is chosen, C
has to be taken equal to (V − 1) times the overpenalization factor (and estimating it from the
data remains an open question).

We conclude this section by some additional remarks, concerning some particular points of
our simulation study.

• We also performed Mallows’ Cp (and its overpenalized version Mal+) with the true mean
variance E

[
σ2(X)

]
instead of σ̂2 (which would not be possible on a real data set). It

gave worse performance for all experiments but S2, in which Cor(Mal) = 2.657 ± 0.06 and
Cor(Mal+) = 2.437±0.05. This shows that overpenalization is really crucial in experiment
S2, even more than the shape of the penalty itself. But once we overpenalize, penVF+
remains significantly better than Mallows’ Cp (critVFCV being too variable for small V
to do better than Mallows). The ability to overpenalize with penVF while keeping the
variability low (i.e. V large) thus appears to be crucial in this case. In addition, it can be
proved that Mallows’ Cp penalty (and, more generally, any penalty of the form K̂Dm) leads
to suboptimal model selection in some heteroscedastic framework. See [Arl07], Chap. 4.
This should be compared to Thm. 2, which can be applied in that framework.

• In experiment HSd1, 2-fold cross-validation appears to be among the best model selection
procedures overall. This should be linked with the fact that Mn only consists on histograms
on dyadic partitions of [0, 1], so that the assumptions of Thm. 1 are not fulfilled. More
precisely, our computations may show that the model which minimize E [critVFCV(m) ] with
V = 2 is the oracle model for arbitrarily large values of n. This emphasizes the fact that
VFCV is not universally suboptimal for model selection for prediction. It is only unable to
make the right choice among estimators whose excess losses are within a constant factor
smaller than some K(V ) > 1.

• Eight additional experiments are reported in Chap. 5 of [Arl07], showing similar results
with various n, σ and s (the assumptions of Thm. 2 not being always satisfied). Notice
that overpenalization is not always necessary, in particular when the signal-to-noise ratio
is larger. In such situations, V = 20 or V = n is generally optimal for VFCV.

5. Discussion.

5.1. V -fold cross-validation vs. V -fold penalties. Time has come for us to give an accurate
answer to this practical (but quite hard) question: how to use V -fold?

Firstly, the classical V -fold cross-validation is biased and asymptotically suboptimal for pre-
diction in some “easy framework” (i.e. with a smooth regression function and an homoscedastic
Gaussian noise). It thus has to be corrected, and we suggest a V -fold penalization algorithm that
provides such a correction. This algorithm is asymptotically optimal in theory, quite efficient on
some simulated data, and has the same computational cost as VFCV.
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Secondly, a non-asymptotic phenomenon is likely to arise, that make the problem harder: when
the sample size is small and the noise-level large, overpenalizing procedures are more efficient
than unbiased ones. Then, our V -fold penalization method allows to choose an overpenalizing
factor, whereas VFCV imposes it (through V ) and a corrected VFCV forbids it. This flexibility
is the main reason why we suggest to use penVF instead of VFCV or Burman’s corrected VFCV.
Otherwise, V has to be chosen very carefully, taking into account variability, bias and the possible
need for some bias.

We shall now explain how to use V -fold penalties. It depends on two tuning parameters: the
number V of folds and the overpenalization factor C/(V − 1). The choice of V depends on the
trade-off between variability and computational complexity. If the latter one does not matter,
the optimal choice is close to V = n (at least for least-squares regression). Otherwise, the choice
has to be done by the final user. We refer to asymptotic computations of Burman [Bur89, Bur90]
(in linear regression) and the recent work of Celisse and Robin [CR08] (in density estimation)
for quantitative measures of variability according to V . Further research in that direction would
be very useful for practical use of V -fold model selection criteria.

The question of choosing the overpenalization factor is probably harder to solve. According to
our simulation study, the optimal one depends at least on the sample size, the noise level and the
smoothness of the regression function. Since the first criterion is that the penalty almost never
underestimates the ideal one, a wise choice of C depends on the fluctuations of both the V -fold
penalty and the ideal penalty. We thus need a better understanding of the variability of penVF.
Another idea would be to replace the conditional expectation in (7) by a quantile, in order
to build a simultaneous confidence region for the prediction errors (Pγ ( ŝm ) )m∈Mn

. Then, we
could deduce a confidence set, to which the oracle model should belong. Defining m̂ as the more
parcimonious model in this confidence set, we would have done the work of overpenalization by
choosing the probability coverage of the confidence region. We refer to [Arl07] (Sect. 6.6 and
11.3.3) for further discussions about overpenalization.

5.2. Other cross-validation methods. In this paper, we focused on VFCV and penVF, among
many other cross-validation like methods: hold-out, repeated learning-testing methods [BFOS84],
leave-p-out, etc. However, it follows from our proofs that the asymptotic performances of these
methods mainly depends on their bias, which is itself a function of the ratio between the size of
the learning set and the sample size. It is thus possible to have asymptotic optimality with any
complexity cost, even without using penVF.

Let us fix for instance the computational complexity to the one of 2-fold cross-validation. We
may use 2-fold cross-validation, Burman’s corrected 2-fold CV, 2-fold penalization or repeated
learning-testing methods (with 2 splits of the data and a learning set of size equivalent to the
sample size n). Asymptotically, the first one is suboptimal (Thm. 1), while the three other
ones are optimal (Thm 2 and the proof of Thm. 1). We have already seen in Sect. 5.1 that
Burman’s corrected 2-fold can not overpenalize when needed, which can be a serious drawback
in non-asymptotic situations. Repeated learning-testing does not have this drawback, since it is
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possible to overpenalize within any factor C ≥ 1 by choosing a learning set of size ∼ n/(2C −1).
However, there remains a strong argument in favour of 2-fold penalization. When C has to

be taken close to 1 (which is the asymptotic situation), repeating learning-testing requires the
size of the learning set to be very close to n. Hence, if we can only make two splits, most of the
data remains in both learning sets. This makes the final criterion much variable, since it strongly
depends on the few data which belong to the union of the two training sets. On the contrary,
with 2-fold penalization (as well as 2-fold cross-validation and its corrected version), each data
point belongs is used once for learning and once for training.

Finally, it seems to us that V -fold penalization should be preferred, because of its versatility:
it is asymptotically optimal, quite flexible (for non-asymptotic situations) and makes use of all
the data for both learning and training.

5.3. Prediction in other frameworks. In order to make theoretical computations feasible, we
restricted ourselves to the histogram regression framework in this article. Of course, this is only
a first step towards a more general study of V -fold methods for model selection. Although all
our proofs strongly rely on some particular features of histograms (in particular for computing
expectations), we conjecture than most of our conclusions stay valid much more generally. The
main argument supporting this claim is that part of our concentration inequalities are still valid
in a general framework, including bounded regression and binary classification. Accurate state-
ments and proofs are to be found in Chap. 7 of [Arl07]. In addition, penVF is built upon the
same general heuristics as VFCV, and was never designed particularly for the heteroscedastic
histogram regression problem. Hence, it should have at least the same robustness and adaptivity
properties as VFCV, while its flexibility should allow better performance in terms of multiplica-
tive constants (which may be crucial, when the sample size is small).

Let us now point out some expected changes in our analysis in the general case. First, the no-
overpenalization constant CW,∞ may not stay equal to V −1. Although me mentioned an asymp-
totic theoretical argument, it may break down when one considers models with a large number
of parameters (that is, dependent from n). If this occurs, we suggest to use a data-dependent
procedure for estimating CW,∞, based upon the so-called “slope heuristics” [BM06, AM08]. Basi-
cally, it states that CW,∞ is twice the constant under which Dm̂ blows up dramatically. We refer
to the above papers for a detailed statement of this algorithm, as well as theoretical insights.

Second, the influence of V on variability may also be quite different. For instance, in clas-
sification, it is often noticed that the leave-one-out is much more variable than VFCV with
smaller values of V [HTF01]. According to Molinaro, Simon and Pfeiffer [MSP05], this seems
to disappear when the algorithm producing ŝm is stable. In addition, in the density estimation
framework, Celisse and Robin [CR08] also report that the variance of critVFCV increases for large
V . We believe that an extensive study of this variability issue in all those frameworks should
be made, considering that it is a crucial point for choosing V for VFCV. It would also be quite
interesting to determine whether the variability of penVF depends on V in the same way or not.
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5.4. Consistency. We focused in this article on prediction, but one often uses model selection
for identification. In this framework, one assumes that s ∈ Sm⋆ (and maybe also to some more
complex models), and the goal of a model selection procedure is to catch m⋆ as often as possible,
whatever the prediction risk of ŝm⋆ . Asymptotic optimality there become consistency, i.e.

P (m̂ = m⋆ ) −−−→
n→∞

1 .

There is a huge amount of papers about model selection for identification; we refer to the
introduction of papers by Yang [Yan06, Yan07] for references about the consistency of cross-
validation in the regression and classification settings.

The main point for consistency is that overpenalization is needed, even from the asymptotic
viewpoint. This is the main reason why BIC is roughly the AIC criterion multiplied by a constant
times ln(n). See also Aerts, Claeskens and Hart [ACH99] about this question. Our penalization
interpretation of VFCV (and more generally, any cross-validation like method) then enlightens
several theoretical and empirical results about the consistency issue.

With VFCV, the overpenalization factor is bounded from above by 3/2 (which corresponds
to V = 2). Hence, V -fold cross-validation may be inconsistent in general for any V (although
it can sometimes be used, when one compares sufficiently different models, see Yang [Yan07]).
Moreover, the better choice is often V = 2 as remarked by Zhang [Zha93], Dietterich [Die98] and
Alpaydin [Alp99]. On the contrary, V -fold penalties could work, by choosing C ∝ (V − 1) ln(n)
(for instance). We conjecture that such a method would be consistent, whatever V .

More generally, it has been noticed several times that the consistency of cross-validation
requires the size of the learning set to be chosen negligible in front of the sample size. In the linear
regression framework, this has be shown by Shao [Sha93, Sha97]. In the classification setting,
this is called the “cross-validation paradox” by Yang [Yan06]. With penVF, we believe that we
may have proposed a way of solving this paradox, by allowing to choose the overpenalization
factor independently from the size of the learning set.

APPENDIX A: PROBABILISTIC TOOLS

In this section, we give some probability theory results that we need to prove our main result,
while being of self-interest. In the rest of the paper, for any a, b ∈ R, we denote by a ∧ b the
minimum of a and b, and by a ∨ b the maximum of a and b.

A.1. Expectations of inverses of binomials. For any non-negative random variable Z,
define

e+
Z = e+

L(Z) := E [Z ] E
[
Z−1

∣∣∣ Z > 0
]

.

Non-asymptotic bounds on this quantity when Z has a binomial distribution are required in the
proof of Prop. 1, which is at the core of our main results. Former results concerning e+

Z can be
found in papers by Lew [Lew76] (for general Z) or Znidaric [Žni05] (for the binomial case), but
they are either asymptotic or not accurate enough. The following lemma solves this issue.
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Lemma 3. For any n ∈ N\ {0} and p ∈ (0; 1], B(n, p) denotes the binomial distribution with
parameters (n, p), κ3 = 5.1 and κ4 = 3.2. Then, if np ≥ 1,

(15) κ4 ∧
(
1 + κ3(np)−1/4

)
≥ e+

B(n,p) ≥ 1 − e−np .

In particular, e+
B(n,p) → 1 when np → ∞, which can be derived from [Žni05].

A.2. Concentration of inverses of multinomials. Let (Xλ)λ∈Λm
∼ M(n; (pλ)λ∈Λm

) be
a multinomial random vector, (aλ)λ∈Λm

a family of non-negative real numbers, and define for
every T ∈ (0, 1]

Zm,T :=
∑

λ∈Λm

aλ min
(
T,X−1

λ

)
.

Such a quantity naturally appears in our setting, mainly because of the randomness of the
design. Unfortunately, classical concentration inequalities for sums of random variables can not
be applied to Zm,T because the Xλ are not independent. Using that they are negatively associated
[JDP83], we can use the Cramér-Chernoff method [DR98] to obtain the following lemma. Its
complete proof can be found in Sect. 8.8 of [Arl07].

Lemma 4. Assume that minλ∈Λm
{npλ} ≥ Bn ≥ 1 and T ∈ (0, 1]. Define c1 = 0.184,

c2 = 0.28, c3 = 9.6, c4 = 0.09, c5 = 10.5, and for every t ≥ 0, ϕ1(t) = max(t, 1)e−max(t,1).

1. Lower deviations: for every x ≥ 0, with probability at least 1 − e−x,

(16) E [Zm,1 ] − Zm,1 ≤ ϕ1(c1Bn)

c1

∑

λ∈Λm

aλ

npλ

+ 3
√

2

√√√√
∑

λ∈Λm

a2
λ

(npλ)2

√
4Dm exp(−c1Bn) + x

2. Upper deviations: for every x ≥ 0, with probability at least 1 − e−x,

Zm,T − E [Zm,T ] ≤ ϕ1 (c2Bn)

c2

∑

λ∈Λm

(
aλ

npλ

)

+

√√√√ ∑

λ∈Λm

(
aλ

npλ

)2

(Dme−c4Bn + x) × c3 ∨




c5T
√

x + e−c4Bn

n minλ∈Λm

{
pλ

aλ

}√∑
λ∈Λm

(
aλ

npλ

)2




(17)

A.3. Moment inequalities for some U-statistics. There are several papers about con-
centration or moment inequalities for U-statistics, e.g. [GLZ00, Ada05]. It appears that our main
results strongly rely on concentration properties for a particular kind of U-statistics of order 2,
which are given by the following lemma. It can be derived either from the aforementioned papers,
or from [BBLM05], as we did in Sect. 8.9 of [Arl07].
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Lemma 5. Let (aλ)λ∈Λm
and (bλ)λ∈Λm

be two families of real numbers, (rλ)λ∈Λm
a family

of integers. For all λ ∈ Λm, let (ξλ,i)1≤i≤rλ
be independent centered random variables admitting

2q-th moments m2q,λ,i for some q ≥ 2. We define Sλ,1, Sλ,2 and Z as follows:

(18) Z =
∑

λ∈Λm

(
aλSλ,2 + bλS2

λ,1

)
with Sλ,1 =

rλ∑

i=1

ξλ,i and Sλ,2 =
rλ∑

i=1

ξ2
λ,i .

Then, there is a numerical constant κ ≤ 1.271 such that, for every q ≥ 2,

‖Z − E[Z]‖q ≤ 4
√

κ
√

q

√√√√ ∑

λ∈Λm

(
(aλ + bλ)2

rλ∑

i=1

m4
2q,λ,i

)
+ 8

√
2κq

√√√√√
∑

λ∈Λm


b2

λ

∑

1≤i6=j≤rλ

m2
2q,λ,im

2
2q,λ,j


 .

APPENDIX B: PROOFS

B.1. Notations. Before starting the proofs, we introduce some notations or conventions:

• The letter L will be used to design “some positive numerical constant, possibly different
from some place to another”. In the same way, a constant which depends on c1, . . . , ck will
be denoted Lc1,...,ck

, and if (A) denotes a set of assumptions, L(A) will be any constant
that depends on the parameters appearing in (A).

• For any non-negative random variable Z, we define e0
L(Z) := E [Z ] E

[
Z−11Z>0

]
.

• For every model m ∈ Mn, and every j ∈ {1, . . . , V },

p1(m) := P (γ(ŝm) − γ(sm)) p2(m) := Pn (γ(sm) − γ(ŝm) )

p
(−j)
1 (m) := P

(
γ(ŝ(−j)

m ) − γ(sm)
)

p
(−j)
2 (m) := P (−j)

n

(
γ(sm) − γ(ŝ(−j)

m )
)

δ(m) := (Pn − P ) (γ(sm) − γ(s) ) δ
(j)

(m) := (P (j)
n − P )

(
γ(ŝ(−j)

m ) − γ(s)
)

.

• Histograms-specific notations: for any random variable Z, q > 0, m ∈ Mn and λ ∈ Λm:

E
Λm [Z ] := E

[
Z | (1Xi∈Iλ

)1≤i≤n, λ∈Λm

]
‖Z‖(Λm)

q := E
Λm [ |Z|q ]1/q

Sλ,1 :=
∑

Xi∈Iλ

(Yi − βλ ) and Sλ,2 :=
∑

Xi∈Iλ

(Yi − βλ)2 .

• Conventions for p1 and p2 when ŝm is not well-defined (in the histogram framework):

(19) p̃1(m) = p̃1
(0)(m) +

∑

λ∈Λm

pλ (σλ)
2 1

p̂λ=0
with p̃1

(0)(m) =
∑

λ∈Λm

pλ1p̂λ>0

(np̂λ)2
S2

λ,1 .

p̃2(m) := p2(m) +
1

n

∑

λ∈Λm

(σλ)2 1np̂λ=0
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Notice that whatever the convention we choose (and even if we keep their original defi-
nition), p1 and p2 have the same value when ŝm is uniquely defined, and we will always
remove from Mn the other models. The choice we make here is only important when writ-
ing expectations, so it is merely technical. In the following, we will often write simply p1

(resp. p2) instead of p̃1 (resp. p̃2).

B.2. Proof of Thm. 1. The idea of the proof is to show that crit1(m) = Pγ ( ŝm ) and
crit2(m) = critVFCV(m) − ĉ (for some random quantity ĉ independent from m) satisfy the
assumptions of Lemma 6 below, on an event of large probability. To this aim, we will use Prop. 1
as well as concentration inequalities of Sect. B.5.

First, we have to be more precise about what we do with models m such that ŝ
(−j)
m is not well

defined for at least one j ∈ {1, . . . , V }. Denote En(m) this event. By (56) in Lemma 12, En(m)
has a probability smaller than n−2 as soon as Dm ≤ Ln(ln(n))−1, so that all the reasonable
conventions will have the same effect. For the sake of simplicity, we choose in this proof is
to eliminate such models from Mn. Notice that this removes automatically models such that
minλ∈Λm

{np̂λ} ≤ 1, in particular all models of dimension strictly larger than n/2.

Denote ĉ = V −1∑V
j=1 P

(j)
n γ (s). Then, for every m ∈ Mn,

(20) crit2(m) := critVFCV(m) − ĉ = l(s, sm) +
1

V

V∑

j=1

(
p
(−j)
1 (m) + δ

(j)
(m)

)
+ ∞1En(m) .

First, notice that for every j, conditionally to (Xi, Yi)i/∈Bj
, ŝ

(−j)
m is deterministic. In addition,

‖Y ‖∞ ≤ A := 1 + σ ‖ǫ‖∞ < ∞ by assumption. So, Lemma 10 can be applied with t = ŝ
(−j)
m and

n changed into Card(Bj) ≥ Ln/V . More precisely, for every m ∈ Mn such that En(m) does
not hold, for every j ∈ {1, . . . , V }, taking x = 4 ln(n) and η = ln(n)−1, there is an event of
probability 1 − Ln−4 on which

(21)
∣∣∣δ(j)

(m)
∣∣∣ ≤ l(s, ŝ

(−j)
m )

ln(n)
+

LV A2 ln(n)2

n
.

A union bound shows that these inequalities hold uniformly over j and m on an event of prob-
ability at least 1 − Ln−2. Combined with (20), this gives

(22) crit2(m) ≥
(
1 − ln(n)−1

)

 l(s, sm) +

1

V

V∑

j=1

p
(−j)
1 (m)


− LV A2 ln(n)2

n
+ ∞1En(m)

and a similar upper bound.

A second key remark is that for every j, p
(−j)
1 has the distribution of p1 with a sample size

n − Card(Bj) instead of n. We can then apply Prop. 9 (with γ = 4) to get that on an event of
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probability 1 − Ln−2, for every j ∈ {1, . . . , V } and m ∈ Mn such that En(m) does not hold,

p
(−j)
1 (m) ≤ E

[
p
(−j)
1 (m)

]
+ LA,σ

[
ln(n)2D−1/2

m +
√

Dme−LnD−1
m

]
E

[
p
(−j)
2 (m)

]
(23)

p
(−j)
1 (m) ≥ E

[
p
(−j)
1 (m)

]
− LA,σ

[
ln(n)2D−1/2

m + e−LnD−1
m

]
E

[
p
(−j)
2 (m)

]
(24)

p
(−j)
1 (m) ≥

(
L ln(n)−1 − LA,σ ln(n)2D−1

m

)
E

[
p
(−j)
2 (m)

]
.(25)

Finally, since s(x) = x, X is uniform and the models are regular histograms on X = [0, 1], we
can compute exactly for each model the bias and the variance term (when the sample size is n):

(26) l(s, sm) =
1

12D2
m

and E [p2(m) ] =
σ2Dm

n
+

1

12Dmn
.

We now explain how this can be used to check the assumptions of Lemma 6. Let c1 and κ1

be positive constants to be chosen later.

Small models. First, assume that Dm < ln(n)κ1 . Combining (22), (24), (26) and using that

E

[
p
(−j)
1 (m)

]
≥ 0, crit2(m) is roughly of the order of the bias term. Hence, condition (29) holds

with c3 = L and κ3 = 2κ1 when n ≥ LA,σ,V,κ1. Notice that this holds for every κ1 > 0.

Intermediate models. We now consider models of dimension ln(n)κ1 ≤ Dm ≤ c1n(ln(n))−1. As
already noticed, En(m) does not hold true for any of them, with a large probability.

From (22) (and the similar upper bound), (24), (23) and (26), it follows that condition (28)
holds with a = 1/12, b = σ2, C = V/(V − 1), c2 = LA,V,σ and κ2 = 1, as soon as n ≥ LA,σ,V ,
c1 ≤ L and κ1 ≥ 6. Very similar (and somehow simpler) arguments prove that the condition
(27) holds with the same parameters.

Large models. Finally, let m ∈ Mn be such that Dm > c1n(ln(n))−1. Combining (22), (25) and

(26), crit2(m) is roughly of the order of the variance term LE

[
p
(−j)
2 (m)

]
when n ≥ LA,σ,V,c1.

As a result, condition (30) holds with c4 = Lc1σ
2 and κ4 = 2, for n ≥ LA,σ,V,c1.

Choosing now c1 ≤ L and κ1 = 6, the conclusion directly follows from Lemma 6 below. Notice
that we have assumed several times that n ≥ n0 = LA,σ,V . These conditions can be dropped by
choosing K1 ≥ n2

0.

Lemma 6. Let a, b, (ci )1≤i≤4 , (κi )1≤i≤4 , crich > 0 and C > 1 be some constants, n ∈ N

and Mn a set of indexes. Assume that for every m ∈ Mn, Dm ∈ [1, n], and moreover that
∀x ∈ [1, n − crich], ∃m ∈ Mn such that Dm ∈ [x, x + crich]. Let crit1 and crit2 be some functions
Mn 7→ R satisfying the following conditions:
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(i) for every m ∈ Mn,

crit1(m) =

(
a

D2
m

+
bDm

n

)
(1 + ǫ1,m )(27)

crit2(m) =

(
a

D2
m

+
CbDm

n

)
(1 + ǫ2,m )(28)

with maxi=1,2 supm∈Mn s.t. ln(n)κ1≤Dm≤ c1n

ln(n)
|ǫi,m| ≤ c2 ln(n)−κ2 .

(ii) for every m ∈ Mn such that Dm < ln(n)κ1,

(29) crit2(m) ≥ c3 ( ln(n))−κ3 .

(iii) for every m ∈ Mn such that Dm ≥ c1n
ln(n) ,

(30) crit2(m) ≥ c4 ( ln(n))−κ4 .

Then, there is some constant K(C) = 22/3 × 3−1
(
C−1/3 − 1

)2
> 0 and some n0 > 0

(depending on a, b, (ci )1≤i≤4, (κi )1≤i≤4, crich and C) such that, if n ≥ n0, for every m̂ ∈
arg minm∈Mn crit2(m),

(31) crit1(m̂) ≥
(
1 + K(C) − ln(n)−κ2/5

)
inf

m∈Mn

{crit1(m)} .

sketch of the proof of Lemma 6. We skip this proof which is only technical. The main
arguments are the following. First, there is a model m1 of dimension close to (2an)1/3 b−1/3,
so that crit1(m1) is close to 3 × 2−2/3a1/3b2/3n−2/3. Second, any model m̂ which minimizes

crit2(m) must have a dimension close to (2an)1/3 (bC )−1/3. This implies that crit(m̂) is larger
than (1 + K(C) − ln(n)−κ2/5) crit1(m1), and the result follows.

B.3. Proof of Thm. 2. In this section, L(pVF) denotes a constant that depends only
on the set of assumptions of Thm. 2, including V . For every m ∈ Mn, define pen′

id(m) =
p1(m) + p2(m)− δ(m) = penid(m) + (P − Pn)γ(s). Then, by definition of penid and m̂, we have
for every m ∈ M̂n,

(32) l(s, ŝm̂) − (pen′
id(m̂) − pen(m̂)

) ≤ l(s, ŝm) +
(
pen(m) − pen′

id(m)
)

.

The idea of the proof is to show that pen− pen′
id is negligible in front of l(s, ŝm) for “reasonable”

models (i.e., those which are likely to be either selected by penVF, or an oracle model) with a
large probability. We will prove it by using Prop. 1 and 2, as well as the concentration inequalities
of Sect. B.5.

For every m ∈ Mn, define An(m) = minλ∈Λm
{np̂λ } and Bn(m) = minλ∈Λm

{npλ }. We now
define the event Ωn on which the concentration inequalities of Prop. 9 and 11 and Lemma 10
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and 12, hold with γ = αM + 2 (or similarly x = (αM + 2) ln(n)), for every m ∈ Mn. Using
assumption (P1), the union bound gives P (Ωn ) ≥ 1 − LcMn−2.

First, let c > 0 be a constant to be chosen later, and consider M̃n, the set of models m ∈ Mn

such that ln(n)6 ≤ Dm ≤ cn(ln(n))−1. According to (ArX
ℓ ), this implies Bn(m) ≥ cX

r,ℓc
−1 ln(n),

so that (56) ensures that An(m) ≥ ln(n) if c ≤ LcX
r,ℓ

,αM
. In particular, m ∈ M̂n on Ωn. Now,

using both bounds on Dm, by construction of Ωn,

max
{
|p̃1(m) − E [ p̃1(m) ]| , |p2(m) − E [p2(m) ]| ,

∣∣∣δ(m)
∣∣∣ ,
∣∣∣pen(m) − E

Λm [pen(m) ]
∣∣∣
}

is smaller than L(pVF) ln(n)−1 ( l(s, sm) + E [p2(m) ]) on this event, at least if c ≤ LcX
r,ℓ

(to ensure

that Bn(m) is large enough). We now fix c = LcX
r,ℓ

,αM
that satisfies those two conditions. Using

Prop. 2, Lemma 7 and the lower bound on Bn(m), we have for every m ∈ M̃n

−L(pVF)

ln(n)1/4
l(s, ŝm) ≤ (pen− pen′

id)(m) ≤
[
2(η − 1) +

L(pVF)

ln(n)1/4

]
l(s, ŝm) .

as soon as n ≥ L(pVF) (this restriction is necessary because the bounds are in terms of excess loss
of ŝm instead of l(s, sm)+E [p2 ]). Combined with (32), this gives: if n ≥ L(pVF) and c ≤ LcX

r,ℓ
,αM

,

(33) l(s, ŝm̂)1
m̂∈M̃n

≤
[
2η − 1 +

L(pVF)

ln(n)1/4

]
× inf

m∈M̃n

{ l(s, ŝm)} .

Second, we prove that any minimizer m̂ of crit belongs to M̃n on the event Ωn. Define, for
every m ∈ Mn, crit′(m) = crit(m) − Pnγ (s), which has the same minimizers over M̂n as crit.
According to (P2), there exists m0 ∈ Mn such that

√
n ≤ Dm0 ≤ crich

√
n. If n ≥ L(pVF),

m0 ∈ M̃n, from which we deduce (using (Ap))

(34) crit′(m0) ≤ l(s, sm0) +
∣∣∣δ(m0)

∣∣∣+ pen(m0) ≤ L(pVF)

(
n−β2/2 + n−1/2

)
.

On the other hand, if Dm < ln(n)6, we have

(35) crit′(m) ≥ l(s, sm) −
∣∣∣δ(m)

∣∣∣− p2(m) ≥ C−
b ( ln(n))−6β1 − LA

√
ln(n)

n
− L(pVF)

ln(n)7

n

on Ωn. In addition, if Dm > cn(ln(n))−1 and m ∈ M̂n, by Prop. 2, E
Λm [pen(m) − p2(m) ] ≥

E
Λm [p2(m) ]. As a consequence, by construction of Ωn, we have pen(m) − p2(m) ≥ (1 −

L(pVF)n
−1/4)E [p2(m) ] on it, so that

(36) crit′(m) ≥ pen(m) − p2(m) −
∣∣∣δ(m)

∣∣∣ ≥ L(pVF) ln(n)−1



32 ARLOT, S.

when n ≥ L(pVF). Comparing (34), (35) and (36), it follows that m̂ ∈ M̃n on Ωn, provided that
n ≥ L(pVF).

Finally, we show that the infimum can be extended to Mn in the right-hand side of (33), with
the convention l(s, ŝm) = +∞ if An(m) = 0. Using similar arguments as above (as well as the defi-

nition of Ωn, in particular (45) for large models), we have l(s, ŝm0) ≤ L(pVF)

(
n−β2/2 + n−1/2

)
on

Ωn. On the other hand, for every m ∈ Mn, if Dm < ln(n)6, l(s, ŝm) ≥ l(s, sm) ≥ L(pVF) ln(n)−6β1

while if Dm > cn(ln(n))−1, l(s, ŝm) ≥ L(pVF) ln(n)−2 on Ωn as soon as n ≥ L(pVF). Hence, if

n ≥ L(pVF), no model m /∈ M̃n can contribute to the infimum in the right-hand side of (33).

To conclude the proof of (13), we notice that L(pVF) ln(n)−1/4 ≤ ǫn = ln(n)−1/5 if n ≥ L(pVF).

All the conditions of the kind n ≥ n0 can finally be removed by enlarging K1 so that K1n
−2
0 ≥ 1.

The final remark concerning ǫn holds true because we can replace the threshold dimensions
ln(n)6 and cn(ln(n))−1 for “small” and “large” models by some powers of n, as soon as the
exponents are not taken too far from 0 (resp. 1).

We now get the more classical oracle inequality (13) by noticing that l(s, ŝm) ≤ A2 a.s., so
that

E
[
l(s, ŝm̂)

] ≤ E
[
l(s, ŝm̂)1Ωn

]
+
∥∥l(s, ŝm̂)

∥∥
∞ P (Ωc

n )

≤
[
2η − 1 + ln(n)−1/5

]
E

[
inf

m∈Mn

{ l(s, ŝm)}
]

+
A2K1

n2
.

B.4. Expectations.

B.4.1. Proof of Prop. 1.

Ideal criterion. We have to compute E [Pγ ( ŝm ) − Pγ (sm ) ] = E [p1(m) ]. Assume that ŝm is
well-defined, i.e. minλ∈Λm

p̂λ > 0. Using that sm minimizes Pγ(t) over t ∈ Sm, we have

(37) p1(m) =
∑

λ∈Λm

pλ

(
βλ − β̂λ

)2

=
∑

λ∈Λm

1

n2p̂λ

pλ

p̂λ

S2
λ,1 so that E

Λm [p1(m) ] =
1

n

∑

λ∈Λm

pλ

p̂λ

(σλ)
2

.

The result (3) follows, with δn,pλ
= e0

B(n,pλ)−1 if p1 = p̃1
(0), or δn,pλ

= e0
B(n,pλ)−1+npλ(1−pλ)n

if p1 = p̃1. In each case, the proof of Lemma 3 gives non-asymptotic bounds on δn,pλ
.

V -fold criterion. By definition (1), on the event on which ŝ
(−j)
m is well-defined for every j,

critVFCV(m) =
1

V

V∑

j=1

[
p
(−j)
1 (m) +

(
P (j)

n − P
)

γ
(
ŝ(−j)
m

)]
.

The second term is centered conditionally to (Xi, Yi)i/∈Bj
, so that we only have to compute

E

[
p
(−j)
1

]
for every j. Since (Xi, Yi)i/∈Bj

is an i.i.d. sample of size n − Card(Bj), we can apply
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the above computation of E [p1 ]. Using a convention similar to p̃1
(0) (which can be used on real

data, since it does not depend on P ), the result (4) holds with

δ(V F )
n,pλ

=
1

V

V∑

j=1

[
n − n/V

n − Card(Bj)

(
e0
B(n−Card(Bj),pλ) − 1

)
+

Card(Bj)

n − Card(Bj)
− 1

V − 1

]
.

From Lemma 3, we deduce that if n−1 maxj Card(Bj) ≤ cB < 1, then

−1

1 − cB
e−npλ( 1−cB ) − Lǫreg

n ≤ δ(V F )
n,pλ

≤ L

(1 − cB )5/4
(npλ)−1/4 + Lǫreg

n .

Similarly to the computation of p1(m), when minλ∈Λm
p̂λ > 0, we have

(38) p2(m) =
∑

λ∈Λm

p̂λ

(
βλ − β̂λ

)2

=
∑

λ∈Λm

S2
λ,11np̂λ>0

n2p̂λ

so that E
Λm [p2(m) ] =

1

n

∑

λ∈Λm

(σλ)
2

.

Notice that E
Λm [p2(m) ] = E [ p̃2(m) ] on this event. Using Lemma 3, this proves the following.

Lemma 7. If minλ∈Λm
{npλ } ≥ B ≥ 1,

(39)
(
1 − e−B

)
E [ p̃2(m) ] ≤ E

[
p̃1

(0)(m)
]
≤ E [ p̃1(m) ] ≤

(
1 + sup

np≥B
δn,p

)
E [ p̃2(m) ]

where δn,p comes from Prop. 1. A similar result holds with p2 instead of p̃2 inside the expectation.

B.4.2. Proof of Prop. 2. First of all, notice that all this proof is made conditionally to
(1Xi∈Iλ

)1≤i≤n, λ∈Λm
. The outline of the proof is to prove that E

Λm [penVF ] can be derived
from the case where W satisfies an exchangeability condition, for which we can use Lemma 8

below. This is why we consider more generally the penalty penW

(
m, (Xi, Yi )1≤i≤n

)
, defined by

(11) for a general weight vector W ∈ R
n, strengthening its dependence on the distribution of W

and the data. When W is the subsampling weight vector of interest, penW coincides with the
definition of penVF in Algorithm 2.

Let σ be a random permutation of {1, . . . , n}, independent from W and the data, and uniform

over the permutations that leave (1Xi∈Iλ
)1≤i≤n, λ∈Λm

invariant. Defining W̃ =
(
Wσ(i)

)
1≤i≤n

,

E
Λm

[
pen

W̃

(
m, (Xi, Yi )1≤i≤n

)]
= E

Λm

[
penW

(
m,
(
Xσ−1(i), Yσ−1(i)

)
1≤i≤n

)]

= E
Λm

[
penW

(
m, (Xi, Yi )1≤i≤n

)]

since the penalty does not depend on the order of (Wi,Xi, Yi)Xi∈Iλ
(for the first equality), and

(Xi, Yi)Xi∈Iλ
is exchangeable (for the second equality). Moreover, for every λ ∈ Λm, (W̃i)Xi∈Iλ
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is exchangeable and independent from (Xi, Yi)Xi∈Iλ
. We can thus use Lemma 8 to compute

pen
W̃

(m). Then,

E
Λm [pen(m) ] =

C

n

∑

λ∈Λm

(
R

1,W̃
(n, p̂λ) + R

2,W̃
(n, p̂λ)

)
(σλ)2 .

It now remains to compute R
1,W̃

and R
2,W̃

. If V divides np̂λ, then Wλ = 1 a.s. and R
1,W̃

=

R
2,W̃

= (V − 1)−1. For the general case, see the proof of Prop. 5.2 in [Arl07] (Sect. 5.7.2).

Lemma 8 (Lemma 5.7 of [Arl07]). Let Sm be the model of histograms adapted to some
partition (Iλ )λ∈Λm

, W ∈ [0;∞)n be a random vector such that for every λ ∈ Λm, (Wi)Xi∈Iλ
is

exchangeable and independent from (Xi, Yi)Xi∈Iλ
. Define the Resampling Penalty for histograms

as (11), and assume minλ∈Λm
{np̂λ } ≥ 2. Then,

pen(m) =
C

n

∑

λ∈Λm

(R1,W (n, p̂λ) + R2,W (n, p̂λ) )
np̂λSλ,2 − S2

λ,1

np̂λ − 1
, where(40)

R1,W (n, p̂λ) = E
Λm

[
(Wiλ − Wλ)2

W 2
λ

∣∣∣∣∣ Wλ > 0

]
R2,W (n, p̂λ) = E

Λm

[
(Wiλ − Wλ)2

Wλ

]
.(41)

and iλ is any index such that Xiλ ∈ Iλ.

B.5. Concentration results. In order to prove Thm. 1 and 2, we need to combine Prop. 1
and 2 with concentration inequalities, which are the purpose of the present section. Let Sm be
the model of histograms associated with some partition (Iλ )λ∈Λm

, and assume that both (Ab)
and (An) are satisfied (see the statement of Thm. 2).

Our first result has to deal with p1 and p2, which are the main components of the ideal penalty.
Whereas concentration for p2 can be obtained in a general framework (see [Arl07], Chap. 7),
lower bounds on p1 are completely new, up to our best knowledge.

Proposition 9. Let γ > 0 and assume that minλ∈Λm
{npλ} ≥ Bn. Then, if Bn ≥ 1, on an

event of probability at least 1 − Ln−γ,

p̃1(m) ≥ E [ p̃1(m) ] − LA,σmin,γ

[
ln(n)2D−1/2

m + e−LBn

]
E [p2(m) ](42)

p̃1(m) ≤ E [ p̃1(m) ] + LA,σmin,γ

[
ln(n)2D−1/2

m +
√

Dme−LBn

]
E [p2(m) ](43)

|p2(m) − E[p2(m)]| ≤ LA,σmin,γD−1/2
m ln(n)E [p2(m) ] .(44)

In addition, if Bn > 0, there is an event of probability at least 1 − Ln−γ on which

(45) p̃1(m) ≥
(

1

2 + (γ + 1)B−1
n ln(n)

− LA,σmin,γ ln(n)2D−1/2
m

)
E [ p̃2(m) ] .
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proof of Prop. 9. According to the explicit expressions (37) and (38), p̃1(m) and p2(m)
are both U-statistics of order 2 conditionally to (1Xi∈Iλ

)(i,λ). Then, we use Lemma 5, with
ξi,λ = Yi−βλ, aλ = 0, bλ = pλ(np̂λ)−2 for p̃1 and bλ = (n2p̂λ)−1 for p2. This proves, for all q ≥ 2,

∥∥∥p̃1(m) − E
Λm[p̃1(m)]

∥∥∥
(Λm)

q
≤ max

λ∈Λm

{
pλ

p̂λ
1p̂λ>0

}
LA,σmin

D−1/2
m qE [p2(m) ](46)

‖p2(m) − E[p2(m)]‖(Λm)
q ≤ LA,σmin

D−1/2
m qE [p2(m) ] .(47)

We deduce conditional concentration inequalities from those moment inequalities (for instance
by Lemma 8.9 of [Arl07]), with a deterministic probability bound 1 − Le−x = 1 − n−γ . Hence,
we deduce unconditional concentration inequalities, and the result follows for p2. To control the
remainder term for p̃1, we use 54 in Lemma 12.

We now have to control the distance between E
Λm [ p̃1 ] and E [ p̃1 ]. First, if Bn ≥ 1, we can

use Lemma 4: taking Xλ = np̂λ and aλ = pλ (σλ)2, according to (37), we have p̃1(m) = Zm,1 and
the concentration inequality for p̃1 follows. On the other hand, if we only know that Bn > 0,
instead of using Lemma 4, we remark that

E
Λm [ p̃1(m) ] ≥ min

λ∈Λm

{
pλ

p̂λ

}
E

Λm [p2(m) ] ,

and the result follows thanks to (55) in Lemma 12.

We mention here a much classical result, which is a consequence of Bernstein’s inequality,
since it deals with sums of independent variables. We refer to [AM08] for a detailed proof.

Lemma 10 (Prop. 3, [AM08]). Let t be any deterministic predictor. For every x ≥ 0, there
is an event of probability at least 1 − 2e−x on which

∀η > 0, |(P − Pn) (γ (t) − γ (s))| ≤ ηl(s, t) +

(
4

η
+

8

3

)
A2x

n
.(48)

Finally, we consider the V -fold penalties defined by Algorithm 2.

Proposition 11. Let pen(m) be defined by (10) with the weights W defined in Algorithm 2
and γ > 0. There is an event of probability at least 1 − n−γ on which, if minλ∈Λm

p̂λ > 0,

∣∣∣pen(m) − E
Λm [pen(m) ]

∣∣∣ ≤ C

(
1

minλ∈Λm
{np̂λ }

∨ 1

V

)
LA,σmin,γD−1/2

m ln(n)E [p2(m) ] .(49)

proof of Prop. 11. By definition (10), pen(m) = EW [Z ] with

Z =
∑

λ∈Λm

(
p̂λ + p̂W

λ

)(
β̂λ − β̂W

λ

)2
=

∑

λ∈Λm

1 + Wλ

n2p̂λW 2
λ


 ∑

Xi∈Iλ

(Wλ − Wi ) (Yi − βλ )




2

.(50)
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For every q ≥ 1, using Jensen inequality and the independence between W and the data
(conditionally to (1Xi∈Iλ

)i,λ),

∥∥∥pen(m) − E
Λm [pen(m) ]

∥∥∥
(Λm)

q
≤
∥∥∥Z − E

Λm [Z | W ]
∥∥∥
(Λm)

q

≤ sup
W0∈supp(W )

{∥∥∥Z − E
Λm [Z | W = W0 ]

∥∥∥
(W0,Λm)

q

}
(51)

where supp(W ) is the support of the resampling weight vector W distribution (conditionally to

(1Xi∈Iλ
)i,λ) and ‖·‖(W0,Λm)

q denotes the q-th moment conditionally to (1Xi∈Iλ
)(i,λ) and W = W0.

In other words, the deviations of pen are smaller than those of the worse case with a deterministic
weight vector W0 ∈ supp(W ).

From now on, we work conditionally to (1Xi∈Iλ
)(i,λ) and assume that W ∈ R

n is deterministic,
among those authorized by Algorithm 2. Denote by X(1,λ), . . . ,X(np̂λ,λ) the data such that Xi ∈
Iλ. According to (50), Lemma 5 with rλ = np̂λ, aλ = 0, bλ = (1 + Wλ)(n2p̂λW 2

λ )−1 and

ξi,λ =
(
W(i,λ) − Wλ

) (
Y(i,λ) − βλ

)
shows that

∥∥∥Z − E
Λm [Z ]

∥∥∥
(W,Λm)

q
≤ LA2q

n

√√√√√
∑

λ∈Λm


 1 + Wλ

np̂λW 2
λ

np̂λ∑

i=1

(
W(i,λ) − Wλ

)2




2

.

We now fix some λ ∈ Λm and write np̂λ = aV + b ≥ 1 with a, b ∈ N and 0 ≤ b ≤ V − 1. Since
W is in the support of the V -fold weights distribution of Algorithm 1, there is an ǫ ∈ {0, 1}
such that

{Wi s.t. Xi ∈ Iλ } =

{
0 repeated a + ǫ times,

V

V − 1
repeated rλ − a − ǫ times

}
.

Hence,

Wλ = 1 +
b − V ǫ

(V − 1)(aV + b)
and

rλ∑

i=1

(
W(i,λ) − Wλ

)2
≤ L ×

[
1 ∨ np̂λ

V

]
,

so that for every q ≥ 2,

∥∥∥pen(m) − E
Λm [pen(m) ]

∥∥∥
(Λm)

q
≤ LA2q

[
1

minλ∈Λm
{np̂λ }

∨ 1

V

]
E

Λm [p2(m) ] .

The classical link between moment and concentration inequalities (e.g. Lemma 8.9 in [Arl07])
gives (49) conditionally to (1Xi∈Iλ

)i,λ. We can remove this conditioning since the probability

bound 1 − n−γ is deterministic.
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B.6. Expectation of inverses of binomials (proof of Lemma 3). Let Z ∼ B(n, p). By
Jensen inequality,

e+
Z ≥ P(Z > 0) = 1 − (1 − p)n ≥ 1 − e−np .

For the upper bound, define

(52) e0
L(Z) := E [Z ] E

[
Z−11Z>0

]
= e+

ZP(Z > 0) ,

so that we can focus on e0
B(n,p).

The bound by κ4 follows from Lemma 4.1 of [GKKW02], according to which

(53) ∀n ∈ N, ∀p ∈ [0, 1], e0
B(n,p) ≤

2np

(n + 1)p
≤ 2 .

We can now assume that np ≥ A ≥ 29.17 since otherwise, 1 + κ3(np)−1/4 ≥ κ4. Using that
P(1 > Z > 0) = 0, we have for every α > 0,

e0
B(n,p) = npE

[
Z−11αE[Z]>Z>0

]
+ npE

[
Z−11Z≥αE[Z]

]
≤ npP (αnp > Z > 0) + α−1 .

We now bound the probability on the right-hand side thanks to Bernstein’s inequality (e.g.
Prop. 2.9 of [Mas07]):

∀θ > 0, P

(
Z ≤

(
1 −

√
2θ − θ

3

)
np

)
≤ e−θnp ,

and θ = A−1/2. Straightforward computations shows that

sup
np≥A

{e+
B(n,p)} ≤

[
1

1 −
√

2A−1/4 − 1
3A−1/2

+ Ae−
√

A

]
1

1 − e−A
,

from which the result follows.

B.7. A technical lemma. Because of the randomness of the design, we have to ensure
that the empirical frequencies np̂λ are not too far from the expected ones npλ.

Lemma 12. Let (pλ)λ∈Λm
be non-negative real numbers of sum 1, (np̂λ)λ∈Λm

a multinomial
vector of parameters (n; (pλ)λ∈Λm

), γ > 0. Assume that Card(Λm) ≤ n and minλ∈Λm
{npλ } ≥

Bn > 0. There is an event of probability at least 1−Ln−γ on which the following three inequalities
hold.

max
λ∈Λm

{
pλ

p̂λ
1p̂λ>0

}
≤ L × (γ + 1) ln(n)(54)

min
λ∈Λm

{
pλ

p̂λ

}
≥ 1

2 + (γ + 1)B−1
n ln(n)

(55)

min
λ∈Λm

{np̂λ } ≥ minλ∈Λm
{npλ }

2
− 2(γ + 1) ln(n)(56)
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proof of Lemma 12. Those three results come from Bernstein’s inequality (e.g. Prop. 2.9
of [Mas07]) applied to np̂λ: for every λ ∈ Λm, there is a set of probability 1− 2n−(γ+1) on which

npλ −
√

2npλ(γ + 1) ln(n) − (γ + 1) ln(n)

3
≤ np̂λ ≤ npλ +

√
2npλ(γ + 1) ln(n) +

(γ + 1) ln(n)

3
.

For (54), if npλ ≥ 8(γ + 1) ln(n), the lower bound gives the result. Otherwise, remark only that
(pλ/p̂λ)1p̂λ>0 ≤ npλ ≤ 8(γ + 1 ln(n). For (55), use the upper bound and remark that npλ(γ +

1) ln(n)B−1
n ≥ (γ+1) ln(n). For (56), use the lower bound and remark that

√
2npλ(γ + 1) ln(n) ≤

(npλ)/2 + (γ + 1) ln(n). Finally, the union bound gives the result since Card(Λm) ≤ n.
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[GKKW02] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory of non-
parametric regression. Springer Series in Statistics. Springer-Verlag, New York, 2002.
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