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TECHNICAL APPENDIX TO “V-FOLD CROSS-VALIDATION IMPROVED:
V-FOLD PENALIZATION”

By SYLVAIN ARLOT

Université Paris-Sud

This is a technical appendix to “V-fold cross-validation improved:
V-fold penalization”. We present some additional simulation experi-
ments, a few remarks about expectations of inverses, and the proofs
which have been skipped or shortened in the main paper.

Throughout this appendix, we use the notations of the main paper [[Arl0§]. In order to distin-
guish references within the appendix from references to the main paper, we denote the former
ones by (1) or 1, and the latter ones by (1) or 1.

Following the ordering of [[ArI0§], we first present the additional simulation studies mentioned
in Sect. 4. Then, we add a few comments to Appendix A.1l. Finally, we give some technical
proofs.

1. Simulation study. We consider in this section eight experiments (called S1000, Sv/0.1,
S0.1, Svar2, Sqrt, His6, DopReg and Dop2bin) in which we have compared the same procedures
as in Sect. 4, with the same benchmarks, but with only N = 250 samples for each experiment.

Data are generated according to

Y; = s(Xi) + o(Xi)e;

with X; i.i.d. uniform on X = [0;1] and ¢; ~ AN(0,1) independent from X;. The experiments
differ from

e the regression function s:
— 51000, Sv/0.1, S0.1 and Svar2 have the same smooth function as S1 and S2, see Fig. [l.
— Sqrt has s(x) = v/, which is smooth except around 0, see Fig. f.

— His6 has a regular histogram with 5 jumps (hence it belongs to the regular histogram
model of dimension 6), see Fig. §.

— DopReg and Dop2bin have the Doppler function, as defined by Donoho and Johnstone
[DJ95], see Fig. [0
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e the noise level o:

o(x) =1 for S1000, Sqrt, His6, DopReg and Dop2bin.
— o(x) = /0.1 for Sv/0.1.

o(x) = 0.1 for SO.1.

— o(x) = 1,55 for Svar2.

e the sample size n:
— n =200 for Sv/0.1, S0.1, Svar2, Sqrt and His6.
— n = 1000 for S1000.
— n = 2048 for DopReg and Dop2bin.
e the family of models: with the notations introduced in Sect. 4,

— for S1000, S+/0.1, S0.1, Sqrt and His6, we use the “regular” collection, as for S1:

an{llﬁu

— for Svar2, we use the “regular with two bin sizes” collection, as for S2:

Mn:{l}u{l,...,{%(n)J }2 .

— for DopReg, we use the “regular dyadic” collection, as for HSd1:
My ={2" st 0 <k <Iny(n) —1}
— for Dop2bin, we use the “regular dyadic with two bin sizes” collection, as for HSd2:
K 2
My ={1}U{2" st 0<k <lnp(n) -2} .

Notice that contrary to HSd2, Dop2bin is an homoscedastic problem. The interest of considering
two bin sizes for it is that the smoothness of the Doppler function is quite different for small z
and for z > 1/2.

Instances of data sets for each experiment are given in Fig. B-f}, i, § and [L1.

Compared to S1, S2, HSd1 and HSd2, these eight experiments consider larger signal-to-noise
ratio data (S1000, Sv/0.1, S0.1), another kind of heteroscedasticity (Svar2) and other regression
functions, with different kinds of unsmoothness (Sqrt, His6, DopReg and Dop2bin).

We consider for each of these experiments the same algorithms as in Sect. 4, adding to
them Mal*, which is Mallows’ C), penalty with the true value of the variance: pen(m) =
2E [UQ(X)} D,,n~t. Although it can not be used on real data sets, it is an interesting point
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of comparison, which does not have possible weaknesses coming from the variance estimator 2.

Our estimates of Cy; (and uncertainties for these estimates) for the procedures we consider are
reported in Tab. Il to | (we report here again the results for S1, S2, HSd1 and HSd2 to make
comparisons easier). On the last line of these Tables, we also report

E[infrrenm, I(s,5m)]  Ch E[i(s,5)]
infem, {E[I(s,5m)]} Cor infem, {E[1(s,5n)]}
is the leading constant which appear in most of the classical oracle inequalities. Notice that C/
is always smaller than C,,.

It appears that the choice of V is still difficult for VFCV: V = 2 is optimal in S1000 and Sqrt
and V = 20 in the six other ones. On the contrary, V = n is (almost) always better for penVF
and penVF+, and overpenalization often improves the quality of the algorithm (but not always:
see DopReg and S0.1). These eight experiments mainly show that the assumptions of Thm. 2
are not necessary for penVF to be efficient.

=
where Cop =

For the sake of completeness, we also reported the results for the twelve experiments in terms
of the other benchmark R
Z(S, Sfﬁ)

lnfme_/\/{n l(S, gm)
in Tab. [] to Tab. [g. They are indeed quite similar to the previous ones.

Cpathfor =

2. Addendum to Appendix A.1l. Whereas Lemma 3 is stated for the particular case of
Binomial variables, it is worth noticing that ingredients of its proof can be successfully used in
order to derive non-asymptotic bounds on ez( 7z) OF e%( 2) for several other distributions than the

Binomial one. This has for instance be used in Sect. 6.7 of [ArI07] for the Hypergeometric and
Poisson case.

First, the lower bound in (15) comes from Jensen’s inequality:
ey >P(Z>0)
Second, taking § = 0.16 in the proof of Lemma 3 gives the absolute upper bound
eOZ < kg=1728

instead of the smaller value given by Lemma 4.1 of [GKKWO0Z]. Hence, the proof of Lemma 3
only uses that P(0 < Z < ¢z) = 0 for some ¢z > 0 and that Z satisfies a concentration inequality
similar to Bernstein’s inequality. This covers a wide class of random variables.

Finally, notice that taking § = 31In(A)/A at the end of the proof of Lemma 3, instead of
6 = A~Y/2 leads to an upper bound

In(A
Lt 1(4 E sup { e §
np=

for some numerical constant ks, showing that the rate A=1/4 is far from optimal.
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TABLE 1
Accuracy indexes Cor for experiments S1, S2, HSd1 and HSd2 (N = 1000). Uncertainties reported are empirical
standard deviations divided by \/N

Experiment S1 S2 HSd1 HSd2

s sin(7-) sin(7-) HeaviSine HeaviSine
o(x) 1 x 1 x

n (sample size) 200 200 2048 2048

M regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes
Mal 1.928 +0.04 3.687 £0.07 1.015 £ 0.003 1.373 £ 0.010
Mal+ 1.800 £ 0.03 3.173 £0.07 1.002 % 0.003 1.411 +0.008
Mal* 2.028 £0.04 2.657 £ 0.06 1.044 £ 0.004 1.513 £ 0.005
Mal*+ 1.827 £0.03 2.437 £0.05 1.004 £ 0.003 1.548 £ 0.003
E [pen,,] 1.919 4 0.03 2.296 % 0.05 1.028 4 0.004 1.102 4 0.004
E [penq |+ 1.792 £ 0.03 2.028 £ 0.04 1.003 £+ 0.003 1.089 £ 0.004
2-FCV 2.078 £0.04 2.542 £ 0.05 1.002 % 0.003 1.184 4+ 0.004
5-FCV 2.137£0.04 2.582 £ 0.06 1.014 £ 0.003 1.115 £ 0.005
10-FCV 2.097 £0.04 2.603 £ 0.06 1.021 £+ 0.003 1.109 4+ 0.004
20-FCV 2.088 £0.04 2.578 £ 0.06 1.029 + 0.004 1.105 4+ 0.004
LOO 2.077 £0.04 2.593 £ 0.06 1.034 + 0.004 1.105 + 0.004
pen2-F 2.578 £0.06 3.061 £ 0.07 1.038 + 0.004 1.103 £ 0.004
pen5-F 2.219 £0.05 2.750 £ 0.06 1.037 £ 0.004 1.104 £+ 0.004
penlO-F 2.121 £0.04 2.653 £ 0.06 1.034 + 0.004 1.104 4+ 0.004
pen20-F 2.085 £0.04 2.639 £ 0.06 1.034 £ 0.004 1.105 £ 0.004
penLoo 2.080 £0.04 2.593 £ 0.06 1.034 £ 0.004 1.105 £ 0.004
pen2-F+ 2.175 £ 0.05 2.748 £ 0.06 1.011 £ 0.003 1.106 £+ 0.004
penb-F+ 1.913 +0.03 2.378 £0.05 1.006 % 0.003 1.102 4+ 0.004
penlO-F+ 1.872 £0.03 2.285 £ 0.05 1.005 £ 0.003 1.098 £ 0.004
pen20-F+ 1.898 £ 0.03 2.254 £0.05 1.004 + 0.003 1.098 £ 0.004
penLoo+ 1.844 +0.03 2.215 £ 0.05 1.004 £+ 0.003 1.096 4+ 0.004
Cl./Cor 0.768 0.753 0.999 0.854
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TABLE 2
Accuracy indexes Cor for experiments S1000, Sv/0.1, S0.1 and Svar2 (N = 250). Uncertainties reported are

empirical standard deviations divided by v/ N.

Experiment $1000 Sv0.1 S0.1 Svar2

s sin(7r-) sin(7r-) sin(7r+) sin(7r-)

o(x) 1 V0.1 0.1 To>1/2

n (sample size) 1000 200 200 200

M regular regular regular 2 bin sizes
Mal 1.667 £ 0.04 1.611 £ 0.03 1.400 £ 0.02 5.643 £0.22
Mal+ 1.619 £+ 0.03 1.593 £ 0.03 1.426 £+ 0.02 4.647 £0.22
Mal* 1.745 £+ 0.05 1.925 +£0.03 3.204 +0.05 4.481 +0.21
Mal*+ 1.617 £0.03 2.073 £0.04 3.641 £0.07 3.544 £0.17
E [peny, | 1.745 £+ 0.05 1.571 £0.03 1.373 £0.02 2.409 +£0.13
E [penyq |+ 1.617 £ 0.03 1.554 £ 0.03 1.392 £ 0.02 2.005 +0.10
2-FCV 1.668 £ 0.04 1.663 £+ 0.04 1.394 £ 0.02 2.960 +0.15
5-FCV 1.756 £ 0.07 1.693 £ 0.04 1.393 £ 0.02 2.950 £ 0.16
10-FCV 1.746 £ 0.04 1.684 £+ 0.04 1.385 £ 0.02 2.681 £0.14
20-FCV 1.774 £ 0.05 1.645 £+ 0.03 1.382 £ 0.02 2.742 +£0.16
LOO 1.768 £ 0.05 1.639 £ 0.04 1.379 £ 0.02 2.641 £0.15
pen2-F 2.066 +0.08 1.809 £ 0.05 1.390 £+ 0.02 3.209 +£0.18
pen5-F 1.816 £ 0.05 1.638 £ 0.04 1.400 £ 0.02 2.749 £0.15
penlO-F 1.783 £ 0.05 1.706 £+ 0.04 1.374 £0.02 2.598 +0.15
pen20-F 1.801 £ 0.05 1.657 £ 0.03 1.385 £ 0.02 2.684 +0.15
penLoo 1.776 £ 0.05 1.641 £ 0.04 1.379 £ 0.02 2.656 +0.15
pen2-F+ 1.809 £ 0.05 1.714 £ 0.04 1.416 £ 0.02 2.808 +£0.16
pen5-F+ 1.683 £+ 0.04 1.616 £+ 0.03 1.399 £+ 0.02 2.460 +0.14
penl0-F+ 1.627 £ 0.04 1.613 +£0.03 1.385 £ 0.02 2.398 £0.14
pen20-F+ 1.644 £0.04 1.583 £ 0.03 1.390 £ 0.02 2.316 £0.13
penLoo+ 1.626 £+ 0.03 1.587 £ 0.03 1.401 £ 0.02 2.349 +£0.13
Cor/Cor 0.8 0.801 0.816 0.779
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TABLE 3
Accuracy indezes Cor for experiments Sqrt, His6, DopReg and Dop2bin (N = 250). Uncertainties reported are

empirical standard deviations divided by \/N

Experiment Sqrt His6 DopReg Dop2bin

s V- Hise Doppler Doppler
o(x) 1 1 1 1

n (sample size) 200 200 2048 2048

M regular regular dyadic, regular dyadic, 2 bin sizes
Mal 2.295 +0.11 1.969 £ 0.11 1.039 £ 0.01 1.052 £0.01
Mal+ 1.989 4+ 0.08 1.799 4+ 0.09 1.090 £ 0.00 1.047 £0.01
Mal* 2.483 +0.12 2.021 +0.11 1.013 £ 0.01 1.061 £0.01
Mal*+ 2.075 +0.09 1.836 £ 0.10 1.070 £ 0.00 1.041 £0.01
E [peny, | 2.365 +0.11 1.805 £+ 0.10 1.025 £+ 0.01 1.056 £ 0.01
E [penq |+ 2.012 +0.09 1.632 £ 0.08 1.083 £ 0.00 1.040 £ 0.01
2-FCV 2.489 +0.12 2.788 +0.13 1.097 4 0.00 1.165 £ 0.01
5-FCV 2.777+0.16 2.316 +0.12 1.064 £ 0.01 1.049 £ 0.01
10-FCV 2.571 +£0.13 2.074 £ 0.11 1.043 £ 0.01 1.051 £0.01
20-FCV 2.561 +0.12 2.071 +0.11 1.034 £+ 0.01 1.053 £0.01
LOO 2.695 +£0.14 2.059 +0.11 1.026 £ 0.01 1.058 £0.01
pen2-F 4.088 +0.23 3.210 £0.14 1.048 £ 0.01 1.062 £ 0.01
pen5-F 3.024 +0.18 2.485+0.13 1.033 £ 0.01 1.055 £ 0.01
penl0-F 3.009 +0.18 2.192 +0.12 1.029 £+ 0.01 1.056 £ 0.01
pen20-F 2.723 £0.14 2.150 £ 0.12 1.031 £ 0.01 1.056 £ 0.01
penLoo 2.695 +£0.14 2.063 +0.12 1.026 £ 0.01 1.058 £0.01
pen2-F+ 3.015 £ 0.17 2.728 +0.12 1.084 £ 0.00 1.084 £ 0.01
penb-F+ 2.409 +0.13 2.080 4 0.09 1.080 £ 0.00 1.063 £ 0.01
penl0-F+ 2.305 +0.11 1.869 £ 0.09 1.082 £ 0.00 1.050 £ 0.01
pen20-F+ 2.180 +0.10 1.832 £ 0.09 1.079 £ 0.00 1.052 £0.01
penLoo+ 2.152 +0.10 1.858 +0.10 1.082 4 0.00 1.048 £ 0.01
Cl/Cor 0.795 0.996 0.998 0.977
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TABLE 4
Accuracy indezes Cpath—or for experiments S1, S2, HSd1 and HSd2 (N = 1000). Uncertainties reported are

empirical standard deviations divided by \/N

Experiment S1 S2 HSd1 HSd2

s sin(7-) sin(7r-) HeaviSine HeaviSine
o(x) 1 x 1 x

n (sample size) 200 200 2048 2048

M regular 2 bin sizes dyadic, regular dyadic, 2 bin sizes
Mal 2.064 £0.04 4.129 £0.10 1.015 £ 0.002 1.316 £0.010
Mal+ 1.921 £0.03 3.500 £+ 0.09 1.002 £ 0.001 1.354 £ 0.008
Mal* 2.168 +0.04 2.907 £ 0.07 1.045 £ 0.003 1.453 £ 0.006
Mal*+ 1.941 £0.03 2.645 £ 0.06 1.004 £ 0.001 1.487 £ 0.005
E [peny, | 2.053 £ 0.04 2.458 £+ 0.06 1.029 £ 0.003 1.050 £ 0.002
E [penyq |+ 1.903 £+ 0.03 2.142 +£0.04 1.003 £ 0.001 1.038 £ 0.002
2-FCV 2.230 +£0.05 2.755 £ 0.06 1.002 £ 0.001 1.134 £ 0.004
5-FCV 2.290 +£0.05 2.827 +£0.08 1.014 £ 0.002 1.064 £ 0.003
10-FCV 2.237+0.05 2.832 £ 0.08 1.021 £ 0.002 1.057 £ 0.002
20-FCV 2.225 +0.05 2.794 £ 0.07 1.029 £ 0.003 1.054 £ 0.002
LOO 2.212+£0.05 2.832 £ 0.08 1.034 £ 0.003 1.053 £ 0.002
pen2-F 2.770 £0.07 3.340 £0.08 1.039 £ 0.003 1.052 £ 0.003
pens-F 2.383 £0.06 2.982 £ 0.08 1.038 £ 0.003 1.053 £ 0.002
penlO-F 2.256 +0.05 2.867 £ 0.07 1.035 £ 0.003 1.053 £ 0.002
pen20-F 2.219+£0.05 2.869 £+ 0.08 1.035 £ 0.003 1.053 £ 0.002
penLoo 2.215+£0.05 2.832+£0.08 1.034 £ 0.003 1.053 £ 0.002
pen2-F+ 2.328 £0.05 2.979 £0.07 1.011 £ 0.002 1.056 £ 0.003
pen5-F+ 2.050 £ 0.04 2.540 £ 0.06 1.006 £ 0.001 1.052 £ 0.002
penl0-F+ 1.997 £ 0.03 2.436 +0.05 1.005 £ 0.001 1.048 £ 0.002
pen20-F+ 2.018 £0.04 2.416 £ 0.06 1.004 £ 0.001 1.047 £ 0.002
penLoo+ 1.959 £+ 0.03 2.397 £ 0.06 1.004 £ 0.001 1.045 £ 0.002
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TABLE 5
Accuracy indezes Cpath—or for experiments S1000, Sv/0.1, S0.1 and Svar2 (N = 250). Uncertainties reported are

empirical standard deviations divided by v/ N.

Experiment S1000 Sv0.1 S0.1 Svar2

s sin(7r-) sin(7r-) sin(7r+) sin(7r-)

o(x) 1 V0.1 0.1 To>1/2

n (sample size) 1000 200 200 200

M regular regular regular 2 bin sizes
Mal 1.704 £ 0.04 1.654 £ 0.03 1.407 £ 0.02 7.212 +£0.40
Mal+ 1.670 £0.03 1.636 £ 0.03 1.436 £ 0.02 5.740 £ 0.34
Mal* 1.793 £ 0.04 2.018 £0.04 3.273 £ 0.06 5.597 +0.33
Mal*+ 1.664 £ 0.03 2.175+£0.05 3.719 £0.08 4.284 +0.25
E [penyy] 1.793 £0.04 1.611 £ 0.03 1.378 £0.01 2.785 +0.19
E [peny, |+ 1.194 £ 0.02 1.177 £ 0.02 1.128 £ 0.01 1.337 £0.07
2-FCV 1.721 £0.04 1.723 £0.04 1.400 £ 0.02 3.507 £0.19
5-FCV 1.801 £ 0.06 1.740 £ 0.04 1.399 £+ 0.02 3.486 +0.24
10-FCV 1.802 £0.05 1.735 £ 0.04 1.388 £0.02 3.149 +£0.20
20-FCV 1.832 £ 0.05 1.687 £ 0.03 1.388 £ 0.02 3.257 +£0.23
LOO 1.815 £ 0.05 1.685 £+ 0.04 1.385 £ 0.01 3.1274+0.24
pen2-F 2.108 £ 0.07 1.864 £+ 0.05 1.394 £ 0.02 3.839 +£0.27
pens-F 1.852 £0.05 1.675 £ 0.04 1.404 £ 0.02 3.237+0.23
penlO-F 1.812 £ 0.05 1.767 £ 0.04 1.381 £0.01 3.093 +£0.23
pen20-F 1.839 £+ 0.05 1.706 £+ 0.03 1.391 £ 0.01 3.123 £0.23
penLoo 1.825 £0.05 1.687 £ 0.04 1.385 £ 0.01 3.152+0.24
pen2-F+ 1.852 £0.05 1.765 £ 0.05 1.420 £ 0.02 3.336 £0.23
pend-F+ 1.732 £0.04 1.664 £ 0.03 1.408 £ 0.02 2.890 £ 0.22
penl0-F+ 1.663 £+ 0.04 1.657 £ 0.03 1.394 £ 0.02 2.810 £ 0.21
pen20-F+ 1.680 £ 0.04 1.623 £ 0.03 1.397 £0.01 2.657 £0.19
penLoo+ 1.673 £0.03 1.624 £ 0.03 1.409 £ 0.02 2.659 £0.18
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TABLE 6
Accuracy indezes Cpath—or for experiments Sqrt, His6, DopReg and Dop2bin (N = 250). Uncertainties reported
are empirical standard deviations divided by vV N.

Experiment Sqrt His6 DopReg Dop2bin

s V- Hise Doppler Doppler
o(x) 1 1 1 1

n (sample size) 200 200 2048 2048

M regular regular dyadic, regular dyadic, 2 bin sizes
Mal 2.557 £0.12 2.356 £0.18 1.040 + 0.00 1.049 £ 0.00
Mal+ 2.232 +0.10 2.041 £ 0.12 1.094 4+ 0.00 1.045 £0.01
Mal* 2.838 £0.15 2.533 £0.21 1.013 £ 0.00 1.057 £ 0.00
Mal*+ 2.349 £0.11 2.168 £0.16 1.073 £ 0.00 1.038 £ 0.00
E [peny, | 2.678 £0.14 2.182 £0.17 1.026 £ 0.00 1.053 £ 0.00
E [penyq |+ 1.348 £0.07 1.230 £ 0.06 1.050 £ 0.00 1.038 £ 0.00
2-FCV 2.974 £0.17 3.713£0.25 1.100 £ 0.00 1.164 £ 0.01
5-FCV 3.209 £0.21 2977 +£0.24 1.066 + 0.00 1.046 £ 0.00
10-FCV 2.912 £0.16 2.639 £0.21 1.045 + 0.00 1.047 £ 0.00
20-FCV 2.889 £0.15 2.584 £ 0.20 1.035 £ 0.00 1.050 £ 0.00
LOO 3.061 £0.17 2.568 £ 0.21 1.027 + 0.00 1.055 £ 0.00
pen2-F 5.062 £ 0.37 4.462 +0.30 1.050 % 0.00 1.059 £ 0.01
pen5-F 3.595 £0.25 3.458 £0.28 1.034 + 0.00 1.052 £ 0.00
penl0-F 3.445 £0.22 2.744 £ 0.21 1.031 £ 0.00 1.053 £ 0.00
pen20-F 3.120 £0.17 2.670 £0.21 1.032 + 0.00 1.053 £ 0.00
penLoo 3.063 £0.17 2.571 £0.21 1.027 £ 0.00 1.055 £ 0.00
pen2-F+ 3.723 £0.29 3.777£0.26 1.087 + 0.00 1.082 £ 0.01
pen5-F+ 2.790 £0.18 2.698 £0.19 1.083 £ 0.00 1.061 £ 0.01
penlO-F+ 2.653 £0.14 2.364 £0.20 1.085 £ 0.00 1.047 £ 0.01
pen20-F+ 2.497£0.13 2.318 £0.20 1.082 %+ 0.00 1.049 £0.01
penLoo+ 2.437£0.12 2.218 £0.18 1.085 £ 0.00 1.045 £ 0.00
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3. Additional proofs.

3.1. Proof of Lemma 6. In this proof, we denote by L any constant that may depend on a,
b, (¢i)1<j<q> (Ki)i<i<qs Cricn and C, possibly different from one place to another.
First of all, there is a model mq € M,, such that

1/3 1/3
In(n) < (2anb_1) / < Dp, < (2anb_1) / + Crien < ern(In(n)) ™!

(at least for n > L). As a consequence, (27) implies that

1/3
(1) crity (my) < a'/3p?/3n72/3 (3 x 2723 4 Crien <i> ) (14 coln(n)™"?)
an

With a similar argument, for n > L, there exists a model my € M,, such that

1/3
(2) crity(mg) < a'/? (bC)Y/3 023 (3 x 2723 4 cien <§> ) (1+coln(n)="2)
an

We will now derive from (B) some tight bounds on D, . First, the upper bound in @) is smaller
than the lower bounds in both (29) and (30) for n > L. This proves that

cn
1 Ml < D~ < .
n(n)™ < D < In(n)

1/3
Then, according to (49), we have for every m € M, of dimension D,, = (Qba—cn) / (149)
(which is between In(n)" and 151(2) forn>1L,aslongas1 <4 > —1):

crita(m) > a'/3 (bC)?/3 n=2/3 (2—2/3(1 +0) 242301+ 5)) (1 —cpIn(n)™"2)

1 —coln(n)="2 f(9)
1 + coIn(n)—r2 % _ vo \ /3
3x225+qm( )

an

> crity (mg)

with f defined by f(8) = 272/3(1 4 6)~2 + 2/3(1 + ). Using Lemma [[ below, we then have

crito(m) Jl-o In(n)=—"2 " 3x 2723 43 x 2713 (2 A1)
crito(ma) — 1+ coln(n)=*2 3% 2-2/3 1 e <b0)1/3

an

This lower bound is strictly larger than 1 as soon as 62 > ln(n)_’”/2 and n > L, so that

o (58)" (o) <a () (o)
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We can now use (27) in order to bound crit;(m). For n > L, using again Lemma [

m
2/3 1/3
crity (m) > al/3p2/3,,-2/3 <( ) ( ) ) 1 _ Lln(n)"”“‘)
g (0 1) (1 Lingn) )
> q!/3y2/3y,72/3 (3 x 2723 4 (0—1/3 - 1)2) (1 - Lln(n)_mM)
> crity(my) (1 4+92/3 371 (0*1/3 _ 1)2 _ ln(n)liz/t')) :
which proves (31). O

REMARK 1. A similar argument proves that for n > L,
2
crity (m) < crity(mq) (1 +92/3 « 371 (0*1/3 _ 1) + Lln(n)mM)

Moreover, if crity satisfies (ii) and (iii), we prove in a similar way that if n > ng, for every
m € arg min,,e p,, crite(m),

4) crity (m) < (1 + K(C) + ln(n)f’”/g’) mler}\f/tn {crity(m) } .

This justifies our first comment behind Thm. 1.

LEMMA 1. Let f: (—1,400) — R be defined by f(zx) = 27231 + 2)~2 4+ 2Y/3(1 + z). Then,
for every x > —1,
fl@) >3 x 273 4 3% 2715 (22 A1)

PROOF OF LEMMA [l We apply the Taylor-Lagrange theorem to f (which is infinitely differ-
entiable) at order two, between 0 and x. The result follows since f(0) = 3 x 2723, f/(0) = 0 and
') =6x2723 x (14t)"*>3x 237 4if t <1.If t > 1, the result follows from the fact that
f'>0on [0,+00). O

3.2. End of the proof of Prop. 2. We here compute R, V~V(n,]3,\) and RZﬁ/(n’ﬁ)‘) when V
does not divide npy, that we have skipped in Appendix B.4.2.

Since (W;)x,er, is exchangeable and W; takes only two values,
Vv v
Wi =Ew [Wi| W] V1 <W V_l‘WA)
Thus,

\%4 _
L(Wi| Wx) = 57— B(x W)
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so that 1 v
RQJ/V(”,]/?\)\) = m and RLw(n,ﬁ)\) = mE (W;l) -1 .

There exists a,b € N such that 0 < b <V — 1 and np) = aV + b. Then,
— -1 - _ —1)+b-1
PO%:VWW )+m) % bam.POw:VMV )+ b »_b

(V —1)(aV +b) v V-1V +b) )V
so that
— 1 VbV -=1(@V+b b (V-1)(aV +b)
Ewﬁ]: V ViV -0+0b) VV@V-Dtb-1)
L b N (V —=1)(aV +b)b
V@V -1)+b)  V2a(V-1)+b—1)(a(V-1)+b)
We deduce
P L 1 b (aV—i—b)b
i (1. Dx) = V-1 V-1V -1 +b) + V(a(V-1)+b—-1)(a(V-1)+0b)

The result follows with
n —1 D. 2
gloenv) _ b (V w — P —1)6[0;A7] O
TP npy —a V npy—a—1 npx — 2
3.3. Proof of Lemma 8. Although this lemma can be found in [[Arl07] (where it is called

Lemma 5.7), we recall here its proof for the sake of completeness.

First, split the penalty (without the constant C') into these two terms:

(5) pi(m) = > Ew []3,\ (@\/V - 3,\)2 Wy > 0]
AEA,

(6) pa(m)= > Ew [ﬁKV (BXV — B,\)Q]
AEA,

This split into two terms is the equivalent of the split of pen;y into p; and ps (plus a centered
term).
We first compute this quantity, which appears in both p; and ps: let A € A,,, and W, > 0,

Ew {ﬁx (BKV—B,\)Q‘ W)\] =Ew | Da (% > (Yi—B) (1_ I‘//I‘//;))Q Wi

A X, eIy

o R [Z m—m)?EW[(l—VVgi)Q

2/\
L2 X, €Ty

> (Y; = B\)(Y; — Br)Ew Kl— 3//;) (1— %) } W)\H .

2/\
n
PX iz xieln Xsely

3

1
+
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Since the weights are exchangeable, (W;)x,cr, is also exchangeable conditionally to W) and
(Xi)1<i<n. Thus, the “variance” term

Ry (n,npx, Wx, L(W)) = Ew [ (W; = W))? ’ W]
does not depend from i (provided that X; € I)), and the “covariance” term
Ro(n,npx, Wx, LW)) := Ew [(Wi = W) (W; = Wx) | W)]

does not depend from (7, j) (provided that i # j and X;, X; € I). Moreover,

0=Ey ( > (Wi—WA)> W)

X, el
= nprRy (n,npx, Wy, LW)) + npx (npy — 1) Re(n, npx, W, LIW))
so that, if npy > 2,

® )

Rc(n,n@\, W)\, W) = ’I’Lﬁ)\ — 1Rv(n,n]3>\, W)\, ﬁ(W)) and Rv(n, 1, W)\,[,(W)) =0 .

Combining ([) and (f), we obtain

w5 \2 Ry (n,npx, Wy, L(W))
(9) Ew {p)\ (ﬂKV _ﬂ)\) ‘ W)\] = W>\7”L2ﬁ)\ npa>2
npx _ 1 2 }
% [’I’L]/)\)\ — 1S>\’2 npy — 15)\’1

Combining () and () (resp. (f) and ({)), we have the following expressions for p; and pa:

R Rl,W(naﬁ)\)]l Dy >2 n@\ 1
(10) pi(m) = > N { = Sy — —— Si,l]
Neno, NP npy —1 npx —1
. R2,W(naﬁ>\)]l D\ >9 npy 1
(11) pa(m) = A { — 15)\,2 - 1S§,1]
e n2py np — npy —

Remark that the terms of the sum for which npy = 1 are all equal to zero, which can be ensured
with the convention 0 x co = 0 since By w(n,n~ 1) = Ryw(n,n~1) = 0. The result follows. [

3.4. Concentration of p1: detailed proof. Within the proof of Prop. 9, we used Lemma 4 in
order to control the deviations of EAm [p1(m)] around its expectation. Implicitly, we used the
following lemma (which is indeed a straightforward consequence of Lemma 4).

LEMMA 2. We assume that minyep,, {npr} > B, > 1.
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xT

1. Lower deviations: let ¢c; = 0.184. For all x > 0, with probability at least 1 —e™7,

(12) EM [pi(m)] > E [pi(m)] = 67 (2, Bu, Doy A, 0min) X E [p2(m)]
A2
with 0" =1L [(Pl(can) + = e—c1Bn Di‘|
2. Upper deviations: let co = 0.28 and ¢4 = 0.09. For every x > 0, with probability at least
1—e™7,
(13) EM [pi(m)] < E[pi(m)] + 67 (2, Ba, Din, A, 0in)E [p2(m)]

A2
with ot =L lgpl (c2By,) + 2—\/ny}1 + e—¢cabn <1 V /& + Dye=cabn >]
o

min
PRrROOF. From (19) and (37), we have an explicit expression for p;. We then apply Lemma 4,
with X\ = npy and a) = py (O'>\)2 > 0. For 67, we used the general upper bound

-1

4 4
max (o o <1.
max (o) | D o <
AEAM
U
REMARK 2. If B, > (cl_1 Vv czl) In(n), for every v > 0,
_ 2 _—2 —1/2
o v 0+ (Vln(n)v B7H Dn’m A7 Umin) < L'yA Umian / ln(n)
since D,,, < n.
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