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Abstract A statistic based on increment ratios (IR) and related to zero crossings of increment sequence is defined

and studied for measuring the roughness of random paths. The main advantages of this statistic are robustness to

smooth additive and multiplicative trends and applicability to infinite variance processes. The existence of the IR

statistic limit (called the IR-roughness below) is closely related to the existence of a tangent process. Three particular

cases where the IR-roughness exists and is explicitly computed are considered. Firstly, for a diffusion process with

smooth diffusion and drift coefficients, the IR-roughness coincides with the IR-roughness of a Brownian motion and

its convergence rate is obtained. Secondly, the case of rough Gaussian processes is studied in detail under general

assumptions which do not require stationarity conditions. Thirdly, the IR-roughness of a Lévy process with α−stable

tangent process is established and can be used to estimate the fractional parameter α ∈ (0, 2) following a central

limit theorem.
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1. Introduction and the main results

It is well-known that random functions are typically “rough” (non-differentiable), which raise the question

of determining and measuring roughness. Probably, the most studied roughness measures are the Hausdorff

dimension and the p−variation index. There exists a considerable literature on statistical estimation of

these and related quantities from a discrete grid. Hence, different estimators of the Hausdorff dimension

have been studied, as the box-counting estimator (see Hall and Wood, 1993 for stationary Gaussian processes

or Lévy-Véhel and Peltier, 1994, for Gaussian processes with stationary increments). To our knowledge, the

H-variation estimator, where H is a measurable function, was first proposed by Guyon and Leon (1989)

for stationary Gaussian processes where central and non-central limit theorems are established following

the Hermite rank of H and the asymptotic local properties of the variogram and its second derivative.

Further studies provided a continuation of this seminal paper in different ways. Istas and Lang (1997)

studied generalized quadratic variations of Gaussian processes with stationary increments. Coeurjolly (2001

and 2005) studied ℓp-variations of fractional Brownian motion and ℓ2-variations of multifractional Brownian

motion. Coeurjolly (2007) discussed L-variations based on linear combinations of empirical quantiles for

Gaussian locally self-similar processes. An estimator counting the number level crossings was investigated

by Feuerverger et al. (1994) for stationary Gaussian processes.

∗This author thanks the Steklov Institute of St Petersburg (Russia) for a nice and fruitful invitation
†Research of this author was supported by the Lithuanian State Science and Studies Foundation grant T-70/09.
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In the present paper we introduce a new characteristic of roughness, defined as a sum of ratios of consecutive

increments. For a real-valued function f = (f(t), t ∈ [0, 1]), define recursively

∆1,n
j f := f

(j + 1

n

)
− f

( j
n

)
,

∆p,n
j f := ∆1,n

j ∆p−1,n
j f =

p∑

i=0

(−1)p−i

(
p

i

)
f
(j + i

n

)
, (1.1)

so that ∆p,n
j f denotes the p−order increment of f at j

n , p = 1, 2, · · · , j = 0, 1, · · · , n− p. Let

Rp,n(f) :=
1

n− p

n−p−1∑

k=0

∣∣∆p,n
k f +∆p,n

k+1f
∣∣

|∆p,n
k f |+ |∆p,n

k+1f |
, (1.2)

with the convention 0
0 := 1. In particular,

R1,n(f) =
1

n− 1

n−2∑

k=0

∣∣f
(
k+1
n

)
− f

(
k
n

)
+ f

(
k+2
n

)
− f

(
k+1
n

)∣∣
∣∣f
(
k+1
n

)
− f

(
k
n

)∣∣+
∣∣f
(
k+2
n

)
− f

(
k+1
n

)∣∣ . (1.3)

Note the ratio on the right-hand side of (1.2) is either 1 or less than 1 depending on whether the consecutive

increments ∆p,n
k f and ∆p,n

k+1f have same signs or different signs; moreover, in the latter case, this ratio

generally is small whenever the increments are similar in magnitude (“cancel each other”). Clearly, 0 ≤
Rp,n(f) ≤ 1 for any f, n, p. Thus if limRp,n(f) exists when n → ∞, the quantity Rp,n(f) can be used to

estimate this limit which represents the “mean roughness of f” also called the p−th order IR-roughness of

f below. We show below that these definitions can be extended to sample paths of very general random

processes, e.g. stationary processes, processes with stationary and nonstationary increments, and even L
q-

processes with q < 1.

Let us describe the main results of this paper. Section 2 derives some general results on asymptotic behavior

of this estimator. Proposition 2.1 says that, for a sufficiently smooth function f , the limit limn→∞Rp,n(f) =

1. In the most of the paper, f = X is a random process. Following Dobrushin (1980), we say that

X = (Xt, t ∈ R) has a small scale limit Y (t0) at point t0 ∈ R if there exist a normalization A(t0)(δ) → ∞
when δ → 0 and a random process Y (t0) = (Y

(t0)
τ , τ ≥ 0) such that

A(t0)(δ) (Xt0+τδ −Xt0)
f.d.d.−→
δ→0

Y (t0)
τ , (1.4)

where
f.d.d.−→ stands for weak convergence of finite dimensional distributions. A related definition is given

in Falconer (2002, 2003) who called the limit process Y (t0) a tangent process (at t0). See also Benassi et

al. (1997). In many cases, the normalization A(t0)(δ) = δH(t0), where 0 < H(t0) < 1 and the limit tangent

process Y (t0) is self-similar with index H(t0) (Falconer, 2003 or Dobrushin, 1980). Proposition 2.2 states

that if X satisfies a similar condition to (1.4), then the statistic Rp,n(X) converges to the integral

Rp,n(X)
P−→

n→∞

∫ 1

0

E

[ |∆p
0Y

(t) +∆p
1Y

(t)|
|∆p

0Y
(t)|+ |∆p

1Y
(t)|

]
dt, (1.5)

in probability, where ∆p
jY

(t) = ∆p,1
j Y (t) =

∑p
i=0(−1)p−i

(
p
i

)
Y

(t)
j+i, j = 0, 1 is the corresponding increment

of the tangent process Y (t) at t ∈ [0, 1). In the particular case when X has stationary increments, relation

(1.5) becomes

Rp,n(X)
P−→

n→∞
E

[ |∆p
0Y +∆p

1Y |
|∆p

0Y |+ |∆p
1Y |

]
. (1.6)

Section 3 discusses the convergence in (1.5) for diffusion processes X admitting a stochastic differential

dX = atdB(t)+btdt, where B is a standard Brownian motion and (at), (bt) are random (adapted) functions.

It is clear that under general regularity conditions on the diffusion and drift coefficients (at), (bt), the process
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X admits the same local Hölder exponent as B at each point t0 ∈ (0, 1) and therefore the IR-roughness

of X in (1.5) should not depend on these coefficients and should coincide with the corresponding limit for

X = B. This is indeed the case since the tangent process of X at t is easily seen to be Y (t) = atB and the

multiplicative factor at cancels in the numerator and the denominator of the fraction inside the expectation

in (1.5). See Proposition 3.1 for details, where the convergence rate O(n1/3) (a.s.) in (1.5) with explicit limit

values Λp(1/2) is established for diffusions X and p = 1, 2.

Considerable attention is given to the asymptotic behavior of the statistic Rp,n(X) for “fractal” Gaussian

processes (see Section 4). In such a frame, fractional Brownian motion (fBm in the sequel) is a typical

example. Indeed, if X is a fBm with parameter H ∈ (0, 1), then X is also its self tangent process for any

t ∈ [0, 1] and (see Section 4):

Rp,n(X)
a.s.−→

n→∞
Λp(H) (p = 1, 2), (1.7)

where

Λp(H) := λ(ρp(H)), (1.8)

λ(r) :=
1

π
arccos(−r) + 1

π

√
1 + r

1− r
log

(
2

1 + r

)
, (1.9)

ρp(H) := corr
(
∆p

0BH ,∆
p
1BH

)
, (1.10)

and where ∆1
jBH = BH(j + 1)−BH(j), ∆2

jBH = BH(j + 2)− 2BH(j + 1)−BH(j) (j ∈ Z) are respective

increments of fBm. Moreover,

√
n
(
Rp,n(X)− Λp(H)

) D−→
n→∞

N (0,Σp(H)) if

{
p = 1, 0 < H < 3/4,

p = 2, 0 < H < 1,
(1.11)

where
D−→

n→∞
stands for weak convergence of probability distributions. The asymptotic variances Σp(H) in

(1.11) are given by

Σp(H) :=
∑

j∈Z

cov

( ∣∣∆p
0BH +∆p

1BH

∣∣
∣∣∆p

0BH

∣∣+
∣∣∆p

1BH

∣∣ ,
∣∣∆p

jBH +∆p
j+1BH

∣∣
∣∣∆p

jBH

∣∣+
∣∣∆p

j+1BH

∣∣

)
. (1.12)

The graphs of Λp(H) and
√
Σp(H) (p = 1, 2) are given in Figures 1 and 2 below.
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Figure 1. The graphs of Λ1(H) (left) and Λ2(H) (right).

The difference in the range of the parameter H for p = 1 and p = 2 in the central limit theorem in (1.11)

are due to the fact that the second order increment process
(
∆2

jBH , j ∈ Z
)
is a short memory stationary
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Figure 2. The graphs of
√

Σp(H), p = 1 (with a pole at 3/4) and p = 2 (with a pole at 7/4) (from Stoncelis and Vaičiulis,
2008, with kind permission of the authors)

Gaussian process for any H ∈ (0, 1), in contrast to the first order increment process
(
∆1

jBH , j ∈ Z
)
which

has long memory for H > 3/4.

Generalizations of (1.7) and (1.11) to Gaussian processes having nonstationary increments are proposed

in Section 4. Roughly speaking, Rp,n(X), p = 1, 2 converge a.s. and satisfy a central limit theorem,

provided for any t ∈ [0, 1] the process X admits a fBm with parameter H(t) as a tangent process (more

precise assumptions (A.1), (A.1)′ and (A.2)p are provided in Section 4). In such frames, the limits in

(1.7) are
∫ 1

0 Λp(H(t))dt instead of Λp(H) and the asymptotic variances in (1.11) also change. The case

of Gaussian processes with stationary increments is discussed in detail and the results are used to define

a
√
n−consistent estimator of H , under semiparametric assumptions on the asymptotic behavior of the

variogram or the spectral density. Bardet and Surgailis (2010) study a punctual estimator of H(t0) obtained

from a localization around t0 ∈ (0, 1) of the statistic R2,n(X).

The main advantages of estimators of the type (1.2) involving a scaling invariant function of increments

seem to be the following. Firstly, the estimator Rp,n(X) essentially depends on local regularity of the process

X and not on possible “multiplicative and additive factors” such as diffusion and drift coefficients in Section

3 or smoothly multiplicative and additive trended Gaussian processes, see Proposition 4.1 of Section 4. This

property is important when dealing with financial data involving heteroscedasticity and volatility clustering.

Such a robustness property (also satisfied by the estimators based on generalized quadratic variations of

wavelet coefficients) represents a clear advantage versus classical parametric Whittle or semi-parametric log-

periodogram estimators. Secondly, the estimators in (1.2) are bounded functionals and have finite moments

of any order. Section 5 discusses jump Lévy processes, with the Lévy measure regularly varying of fractional

index α ∈ (0, 2) at the origin. Using a modification of (1.2), we define a
√
n−consistent estimator of α,

together with a central limit theorem, in a very general semiparametric frame. This result is new and

interesting because there exist very few papers providing consistent estimators of α (to our knowledge, the

only comparable results have been established in (Belomestny, 2010) and (Ait Sahalia and Jacod, 2009) in

a financial and somewhat different context). Finally, in the Gaussian case, using the approximation formula

provided in Remark 4.3, an estimator of H based on R2,n(X) can be extremely simply computed:

Ĥ(2)
n ≃ 1

0.1468

( 1

n− 2

n−3∑

k=0

∣∣X k+2
n

− 2X k+1
n

+X k
n
+X k+3

n
− 2X k+2

n
+X k+1

n

∣∣
∣∣X k+2

n
− 2X k+1

n
+X k

n

∣∣+
∣∣X k+3

n
− 2X k+2

n
+X k+1

n

∣∣ .− 0.5174
)
.

In the R language, if X is the vector
(
X 1

n
, X 2

n
, · · · , X1

)
,

Ĥ(2)
n ≃ (mean(abs(diff(diff(X[−1]))+ diff(diff(X[−length(X)])))

/(abs(diff(diff(X[−1])))+ abs(diff(diff(X[−length(X)])))))− 0.5174)/0.1468.

Therefore its computation is very fast and does not require any tuning parameters such as the scales for
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estimators based on quadratic variations or wavelet coefficients. The convergence rate of our estimator is
√
n

as for the parametric Whittle or the generalized quadratic variation estimators and hence it is more accurate

than most of other well-known semi-parametric estimators (log-periodogram, local Whittle or wavelet based

estimators).

Estimators of the form (1.2) can also be applied to discrete time (sequences) instead of continuous time

processes (functions). For instance Surgailis et al. (2008) extended the statistic R2,n(X) to discrete time

processes and used it to test for I(d) behavior (−1/2 < d < 5/4) of observed time series. Vaičiulis (2009)

considered estimation of the tail index of i.i.d. observations using an increment ratio statistic.

Remark 1.1 The referee noted that the IR-roughness might be connected to the level crossing index (see

Feuerverger et al., 1994). To our surprise, such a connection indeed exists as explained below. Let Yn(t), t ∈
[0, 1− 1

n ] be the linear interpolation of the “differenced” sequence ∆1,n
j X = X( j+1

n )−X( j
n ), j = 0, 1, · · · , n−1:

Yn(t) = n

[
(
j + 1

n
− t)∆1,n

j X + (t− j

n
)∆1,n

j+1X

]
, t ∈ [

j

n
,
j + 1

n
),

j = 0, 1, · · · , n− 2. Then, using Figure 3 as a proof,

R1,n(X) =
n

n− 1

n−2∑

j=0

∣∣∣meas
{
t ∈ [

j

n
,
j + 1

n
) : Yn(t) > 0

}
−meas

{
t ∈ [

j

n
,
j + 1

n
) : Yn(t) < 0

}∣∣∣ (1.13)

=
n

n− 1

n−2∑

j=0

∣∣∣
∫ j+1

n

j
n

(1(Yn(t) > 0)− 1(Yn(t) < 0))dt
∣∣∣.

J
J

J
J
J

J
J
J

J
J

J
J
J

J
J
J

JJ

t

Yn( j

n
)

j

n

j+1

n

Yn( j+1

n
)

︸ ︷︷ ︸

U2

︸ ︷︷ ︸

U1

1

Figure 3. The proof of (1.13): follows by
|Yn( j

n
)+Yn( j+1

n
)|

|Yn( j
n
)|+|Yn( j+1

n
)|

= n|U1 − U2|.

Let ψ(x1, x2) := |x1 + x2|/(|x1| + |x2|), ψ0(x1, x2) := 1(x1x2 ≥ 0). Clearly, the two quantities 1 −
ψ
(
Yn(

j
n ), Yn(

j+1
n )
)
and 1 − ψ0

(
Yn(

j
n ), Yn(

j+1
n )
)
both are strictly positive if and only if Yn crosses the zero

level in the interval [ jn ,
j+1
n ) but the former quantity measures not only the fact but also the “depth” of the

crossing so that 1−ψ
(
Yn(

j
n ), Yn(

j+1
n )
)
attains its maximal value 1 in the case of a “perfect” crossing in the

middle of the interval [ jn ,
j+1
n ) (see Figure 3).

It seems that similar asymptotic results can be obtained for Rp,n
0 (X) := 1

n−p

∑n−p−1
k=0 ψ0

(
∆p,n

k X,∆p,n
k+1X

)

measuring the number of zero crossings of the increment sequence ∆p,n
k X, k = 0, 1, · · · , n − p and other

similar statistics obtained by replacing the functions ψ or ψ0 by other scaling invariant functions. Let us

note that R1,n
0 (X) is related to the zero-crossings’ counting statistic studied in Ho and Sun (1987) for sta-

tionary Gaussian time series. Also note that the Hermite rank of ψ0 is 2 and that the corresponding limit

function λ0(r) =
1
π arccos(−r) is strictly increasing on the interval (−1, 1) similarly as the function λ(r) in

(1.9). On the other hand, while the statistic Rp,n
0 (X) is certainly of interest, the statistic Rp,n(X) seems

preferable to it for the reasons explained above. In particularly, in the case of symmetric Lévy processes X
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with independent increments studied in Section 5, the latter statistic leads to an estimator of the fractional

index while the former statistic can be easily shown to converge to 1/2.

The paper is organized as follows. Section 2 discusses some general (consistency) properties of the esti-

mators Rp,n(X). Section 3 deals with the case when X is a diffusion. The case of Gaussian processes X is

considered in Section 4 while the case of Lévy processes is studied in Section 5. Section 6 contains proofs

and other derivations.

Below, we write C for generic constants which may change from line to line.

2. Some asymptotic results

The definition of Rp,nf in (1.2) can be extended to more general increments (the so-called generalized

variations). Consider a filter a := (a0, · · · , aq) ∈ R
q+1 such that there exists p ∈ N, p ≤ q satisfying

q∑

ℓ=0

ℓiaℓ = 0 for i = 0, · · · , p− 1 and

q∑

ℓ=0

ℓpaℓ 6= 0. (2.1)

The class of such filters will be denoted A(p, q). For n ∈ N
∗ := {1, 2, · · ·} and a function f = (f(t), t ∈ [0, 1]),

define the generalized variations of f by

∆a,n
j f :=

q∑

ℓ=0

aℓf(
j + ℓ

n
), j = 0, 1, · · · , n− q. (2.2)

A particular case of (2.2) corresponding to q = p ≥ 1, aℓ = (−1)p−ℓ
(
p
ℓ

)
is the p−order increment ∆p,n

j f in

(1.1). For a filter a ∈ A(p, q), let

Ra,n(f) :=
1

n− q

n−q−1∑

k=0

∣∣∆a,n
k f +∆a,n

k+1f
∣∣

|∆a,n
k f |+ |∆a,n

k+1f |
. (2.3)

It is easy to prove that R1,n(f) −→
n→∞

1 if f is continuously differentiable on [0, 1] and the derivative f ′

does not vanish on [0, 1] except maybe for a finite number of points. Moreover, it is obvious that R1,n(f) = 1

if f is monotone on [0, 1]: the IR-roughness of a monotone function is the same as of a smooth function,

which is not surprising since a similar fact holds for other measures of roughness such as the p−variation

index or the Hausdorff dimension.

We conjecture that Rp,n(f) → 1 and Ra,n(f) → 1 for any q ≥ p ≥ 1, a ∈ A(p, q) and f : [0, 1] → R which

is (p − 1) times differentiable and the derivative f (p−1) has bounded variation on [0, 1] with the support

supp(f (p−1)) = [0, 1]. However, we can prove a weaker result.

Proposition 2.1 Let f be (p − 1)-times continuously differentiable (p ≥ 1) with f (p−1) being absolutely

continuous on [0, 1] having the Radom–Nikodym derivative g =
(
f (p−1)

)′
. Assume that g 6= 0 a.e. in [0, 1].

Then Rp,n(f) −→
n→∞

1 and Ra,n(f) −→
n→∞

1 for any a ∈ A(p, q), q ≥ p.

Proof. We restrict the proof to the case p = 2 since the general case is analogous. Using summation by

parts, we can rewrite ∆a,n
j f as

∆a,n
j f =

q∑

i=0

bi∆
2,n
i+jf, (2.4)

where bi :=
∑i

k=0

∑k
ℓ=0 aℓ, i = 0, 1, · · · , q, bq−1 = bq = 0 and b̄ :=

∑q
i=0 bi =

1
2

∑q
i=1 i

2ai 6= 0 in view of the

assumption a ∈ A(2, q).



Measuring the roughness of random paths 7

Assume n is large enough and for a given t ∈ (0, 1), let kn(t) ∈ {0, · · · , n − 2} be chosen so that t ∈
[kn(t)/n, (kn(t) + 1)/n), therefore kn(t) = [nt]− 1. We claim that for a.e. t ∈ (0, 1)

lim
n→∞

n2∆a,n
kn(t)f = b̄ g(t), lim

n→∞
n2∆a,n

kn(t)+1f = b̄ g(t). (2.5)

Using the fact that the function (x1, x2) 7→ |x1+x2|
|x1|+|x2|

is continuous on R
2\{(0, 0)}, we obtain

ha,n(t) :=

∣∣∣n2∆a,n
kn(t)

f + n2∆a,n
kn(t)+1f

∣∣∣
∣∣∣n2∆a,n

kn(t)
f
∣∣∣+
∣∣∣n2∆a,n

kn(t)+1f
∣∣∣

−→
n→∞

|b̄ g(t) + b̄ g(t)|
|b̄ g(t)|+ |b̄ g(t)| = 1 (2.6)

for a.e. t ∈ (0, 1), where we used the fact that b̄ g(t) 6= 0 a.e. Since for n ≥ q, Ra,n(f) can be written as

Ra,n(f) = n
n−q

∫ 1

0
ha,n(t)dt, relation Ra,n(f) −→

n→∞
1 follows by the dominated convergence theorem and the

fact that 0 ≤ ha,n(t) ≤ 1.

Relations (2.5) can be proved using the Lebesgue–Vitali theorem (see Shilov and Gurevich, 1967, Ch. 4,

§10, Theorem 1), as follows. Consider the signed measure µ on Borel subsets of [0, 1/2]2 given by

µ(A) =

∫

A

g(x1 + x2)dx1dx2.

Note ∆2,n
k f = µ((k/2n, (k + 2)/2n] × (k/2n, (k + 2)/2n]), (k = 0, · · · , n − 2). Since rectangles [x1, x1 +

h] × [x2, x2 + h], (0 ≤ xi < xi + h ≤ 1/2, i = 1, 2) form a Vitali system on [0, 1/2]2, the above mentioned

Lebesgue–Vitali theorem implies that

φn(t1, t2) := n2µ
((

kn(t1)
2n , kn(t1)+2

2n

]
×
(

kn(t2)
2n , kn(t2)+2

2n

])
−→
n→∞

g
(
t1+t2

2

)
(2.7)

a.e. in [0, 1]2. Taking into account the form of the measure µ and the limiting function in (2.7), it follows the

convergence n2∆2,n
kn(t)

f = φn(t, t) −→
n→∞

g(t) a.e. on [0, 1]. Next, for any fixed i = 0, 1, · · ·, the sequence of

rectangles (kn(t1)+i
2n , kn(t1)+i+2

2n ]×(kn(t2)+i
2n , kn(t2)+i+2

2n ], n = 1, 2, · · · is regularly contracting to (t1, t2) ∈ (0, 1)2

in the sense of (Shilov and Gurevich, 1967, Ch. 4, §10). Hence, using the lemma on p. 214 of the above

monograph, it follows that n2µ
((kn(t1)+i

2n , kn(t1)+i+2
2n

]
×
(kn(t2)+i

2n , kn(t2)+i+2
2n

])
−→
n→∞

g
(
t1+t2

2

)
a.e. in [0, 1]2,

implying

n2∆2,n
kn(t)+if −→

n→∞
g(t) a.e. on [0, 1], for any i = 0, 1, · · · .

Together with (2.4), this proves (2.5) and the proposition. �

Let us turn now to the case when f(t) = Xt, t ∈ [0, 1] is a random process. Now and in all the sequel,

Rp,n(X), Ra,n(X) are denoted Rp,n, Ra,n, respectively. Below we formulate a general condition for the

convergence of Rp,n and Ra,n to a deterministic limit.

Assumption (A): For a.e. pairs (t1, t2) ∈ (0, 1)2, t1 6= t2, for i = 1, 2 there exist:

(i) normalizations A(ti)(δ) → ∞ (δ → 0),

(ii) (mutually) independent random processes Y (ti) = (Y (ti)(τ), τ ∈ [0, 1]),

such that for δ → 0, s1 → t1, s2 → t2
(
A(t1)(δ)(Xs1+δτ −Xs1), A

(t2)(δ)(Xs2+δτ −Xs2)
)

f.d.d.−→ (Y (t1)(τ), Y (t2)(τ)). (2.8)

Remark 2.1 Relation (2.8) implies the existence of a joint small scale limit (Y (t1), Y (t2)) at a.e. pair

(t1, t2) ∈ (0, 1), with independent components Y (t1), Y (t2). Note Assumption (A) and Proposition 2.2 below

are very general, in the sense that they do not assume any particular structure or distribution of X .
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Proposition 2.2 Let a = (a0, · · · , aq) ∈ A(p, q), 1 ≤ p ≤ q be a filter and let X satisfy Assumption

(A). Assume in addition that P(|∆a
jY

(t)| > 0) = 1, j = 0, 1 for a.e. t ∈ (0, 1), where ∆a
jZ ≡ ∆a,1

j Z =∑q
ℓ=0 aℓZ(j + ℓ). Then

E

(
Ra,n −

∫ 1

0

E

[ |∆a
0Y

(t) +∆a
1Y

(t)|
|∆a

0Y
(t)|+ |∆a

1Y
(t)|

]
dt

)2

−→
n→∞

0. (2.9)

Proof. The statement follows from

ERa,n −→
n→∞

∫ 1

0

E

[ |∆a
0Y

(t) +∆a
1Y

(t)|
|∆a

0Y
(t)|+ |∆a

1Y
(t)|

]
dt and E (Ra,n − ERa,n)

2 −→
n→∞

0. (2.10)

Write ERa,n = n
n−q

∫ 1

0 Eha,nX (t)dt, where (c.f. (2.6))

ha,nX (t) :=
A(t)(1/n)

(∣∣∣∆a,n
kn(t)X +∆a,n

kn(t)+1X
∣∣∣
)

A(t)(1/n)
(∣∣∣∆a,n

kn(t)
X
∣∣∣+
∣∣∣∆a,n

kn(t)+1X
∣∣∣
)

D−→
n→∞

|∆a
0Y

(t) +∆a
1Y

(t)|
|∆a

0Y
(t)|+ |∆a

1Y
(t)| =: haY (t),

for a.e. t ∈ (0, 1), according to Assumption (A) and the continuous mapping theorem. Whence and from

0 ≤ ha,nX ≤ 1 using the Lebesgue dominated convergence theorem the first relation in (2.10) follows. Moreover,

E(Ra,n − ERa,n)2 =
( n

n− q

)2 ∫ 1

0

∫ 1

0

E
[
ha,nX (t)ha,nX (t′)

]
dtdt′ −

(
ERa,n

)2
,

and with the same arguments as previously and the independence of Y (t) and Y (t′) when t 6= t′,

E
[
ha,nX (t)ha,nX (t′)

]
−→
n→∞

E

[ |∆a
0Y

(t) +∆a
1Y

(t)|
|∆a

0Y
(t)|+ |∆a

1Y
(t)| ·

|∆a
0Y

(t′) +∆a
1Y

(t′)|
|∆a

0Y
(t′)|+ |∆a

1Y
(t′)|

]
= EhaY (t) · EhaY (t′)

and therefore
(

n
n−q

)2 ∫ 1

0

∫ 1

0
E
[
ha,nX (t)ha,nX (t′)

]
dtdt′ −

( ∫ 1

0
Eha,nX (t)dt

)2
−→
n→∞

0, thereby proving the second

relation in (2.10) and the proposition. �

The following easy but interesting corollary can also be added to this result. It proves that smooth multi-

plicative or additive trends do no change the L
2-asymptotic behavior of Ra,n. Let Cp[0, 1] denote the class

of all p−times continuously differentiable functions on [0, 1].

Corollary 2.1 Let a ∈ A(p, q) and X satisfy the conditions of Proposition 2.2 with A(t)(δ) = O(δ−1)

(δ → 0) for each t ∈ [0, 1]. Assume that α ∈ C1[0, 1], β ∈ Cp[0, 1], inft∈[0,1] α(t) > 0 and supt∈[0,1] |X(t)| <∞
a.s. Define Z such that Zt = α(t)Xt + β(t), t ∈ [0, 1]. Then (2.9) holds with Rp,n = Rp,n(X) replaced by

Rp,n(Z).

Proof. We consider here p ≥ 2 but the case p = 1 can be easily obtained. With α(k+j
n ) = α( kn )+

j
nα

′( kn )
(
1+

o(1)
)
and ∆a,n

k β = O
(

1
n2

)
, for a.e. t ∈ (0, 1) and k = kn(t) as defined in the proof of Proposition 2.1, we

deduce that

∆a,n
k Z = α

(k
n

)
∆a,n

k X +
1

n
α′
(k
n

)
∆a′,n

k X + o
( 1
n

)
sup

t∈(0,1)

|X(t)|+O
( 1

n2

)
,

with a′ = (jaj)0≤j≤q ∈ A(p− 1, q). Therefore,

A(t)(
1

n
)∆a,n

kn(t)
Z = α

(kn(t)
n

)
A(t)

( 1
n

)
∆a,n

kn(t)
X +

1

n
Op

(
A(t)

( 1
n

)
∆a′,n

kn(t)
X
)
+ op

( 1
n
A(t)(

1

n
)
)

D−→
n→∞

α(t)∆a
0Y

(t).
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In a similar way, for a.e. pairs (t, t′) ∈ (0, 1)2, t 6= t′, we can verify the joint convergence in distribu-

tion of r.v.’s A(t)( 1n )∆
a,n
kn(t)

Z, A(t)( 1n )∆
a,n
kn(t)+1Z, A

(t′)( 1
n )∆

a,n
kn(t′)

Z,A(t′)( 1
n )∆

a,n
kn(t′)+1Z to the limiting r.v.’s

α(t)∆a
0Y

(t), α(t)∆a
1Y

(t), α(t′)∆a
0Y

(t′), α(t′)∆a
1Y

(t′). Now, the statement of the corollary follows by the argu-

ment at the end of the proof of Proposition 2.2. �

Remark 2.2 By definition, the statistics Rp,n and Ra,n for a ∈ A(p, q), 1 ≤ p ≤ q are invariant with respect

to additive polynomial trends of order less than p; in particular, R3,n is insensitive to a quadratic trend

while R2,n does not have this property. On the other hand, Corollary 2.1 (see also Proposition 4.1) says

that under weak additional conditions on X , any sufficiently smooth additive or multiplicative trends do not

affect the limit of Rp,n as soon as p ≥ 1. In the important special case when the limit process Y (t) = BH in

Assumption (A) and (2.9) is a fractional Brownian motion with parameter H ∈ (0, 1) independent of t, the

statistic Rp,n converges in mean square to the expectation E
|∆p

0BH+∆p
1BH |

|∆p
0BH |+|∆p

1BH |
= λ(ρp(H)), c.f. (1.8)-(1.10).

Numerical computations show that the correlation coefficient ρp(H) is a monotone function of H for any

p ≥ 1 and tends to constant value −1 on the interval (0, 1) as p increases. Therefore, for larger values of

p, the range of λ(ρp(H)) is rather small and Rp,n seems less capable to estimate H . A final reason for our

concentrating on the “lower-order” statistics Rp,n, p = 1, 2 in the rest of the paper is the fact that R2,n

satisfies the central limit theorem in (1.11) on the whole interval H ∈ (0, 1).

3. Diffusions

Let

Xt = X0 +

∫ t

0

asdB(s) +

∫ t

0

bsds, t ∈ [0, 1] (3.1)

be a diffusion (or Itô’s) process on R. In (3.1), we assume the existence of a right-continuous filtration F =

(Ft, t ∈ [0, 1]), a standard Brownian motion B adapted to F ; moreover, as, bs, s ∈ [0, 1] are adapted random

functions satisfying
∫ 1

0
|bs|ds <∞,

∫ 1

0
a2sds <∞ a.s., and X0 is a F0−measurable r.v. Write Et[·] = E[·|Ft]

for the conditional expectation. Let Λ1(1/2) = λ(ρ1(1/2)) ≃ 0.7206 and Λ2(1/2) = λ(ρ2(1/2)) ≃ 0.5881.

The proof of the following Lemma 3.1 is given in Annexe.

Lemma 3.1 Let ψ(x1, x2) := |x1 + x2|/(|x1|+ |x2|) (x1, x2 ∈ R), and let Zi, i = 1, 2 be independent N (0, 1)

r.v.’s. Then for any random variables ξ1, ξ2,

|Eψ(Z1 + ξ1, Z2 + ξ2)− Eψ(Z1, Z2)| ≤ 20max
i=1,2

(
Eξ2i

)1/3
. (3.2)

Theorem 3.1 Assume the following conditions: there exist random variables K1,K2 such that 0 < Ki <∞
a.s., and such that, for any sufficiently small h > 0 and any 0 ≤ t < t + h ≤ 1, the following inequalities

hold, a.s.:

|at| ≥ K1, Etb
2
t+h ≤ K2 and Et(at+h − at)

2 ≤ K2h. (3.3)

Then

Rp,n − Λp(1/2) = O(n−1/3) a.s. (p = 1, 2). (3.4)

Proof. We restrict the proof to the case p = 1 since the case p = 2 is analogous. For notational simplicity,

assume that n is odd. Define

ηn(k) :=
|∆1,n

k X +∆1,n
k+1X |

|∆1,n
k X |+ |∆1,n

k+1X |
, η′n(k) := Ek/n[ηn(k)], η′′n(k) := ηn(k)− η′n(k) (3.5)
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and correspondingly write R1,n = R′
n+R

′′
n, R

′
n := (n−1)−1

∑n−2
k=0 η

′
n(k), R

′′
n1 := (n−1)−1

∑(n−2)/2
k=0 η′′n(2k),

R′′
n2 := (n− 1)−1

∑(n−4)/2
k=0 η′′n(2k+1). As (η′′n(2k),F(2k+2)/n, k = 0, . . . , (n− 2)/2) is a martingale difference

sequence, so by Burkholder’s inequality,

E(R′′
n1)

8 ≤ Cn−8




(n−2)/2∑

k=0

E1/4(η′n(2k))
8




4

≤ Cn−4

and therefore
∞∑

n=1

P(|R′′
n1| > n−1/3) ≤ C

∞∑

n=1

n8/3n−4 <∞,

implying R′′
n1 = O(n−1/3) a.s. A similar fact holds for R′′

n2. Thus, it remains to prove

R′
n − Λ1(1/2) = O(n−1/3) a.s. (3.6)

Observe

η′n(k)− Λ1(1/2) = Ek/n

[ |Z1(k) + ξ1(k) + Z2(k) + ξ2(k)|
|Z1(k) + ξ1(k)|+ |Z2(k) + ξ2(k)|

]
− E

[ |Z1(k) + Z2(k)|
|Z1(k)|+ |Z2(k)|

]
,

where

Z1(k) := n1/2∆1,n
k B, Z2(k) := n1/2∆1,n

k+1B,

ξ1(k) := n1/2

∫ (k+1)/n

k/n

( as
ak/n

− 1
)
dB(s) + n1/2

∫ (k+1)/n

k/n

bs
ak/n

ds,

ξ2(k) := n1/2

∫ (k+2)/n

(k+1)/n

( as
ak/n

− 1
)
dB(s) + n1/2

∫ (k+2)/n

(k+1)/n

bs
ak/n

ds.

According to Lemma 3.1 above, |η′n(k)− Λ1(1/2)| ≤ 36maxi=1,2

(
Ek/nξ

2
i (k)

)1/3
and therefore

|R′
n − Λ1(1/2)| ≤ 36 max{(Ek/nξ

2
i (k))

1/3 : i = 1, 2, k = 0, 1, . . . , n− 1}.

Whence, (3.6) follows from the following fact: there exists a r.v. K < ∞, independent of n and such that

for any n ≥ 1, k = 0, . . . , n− 1, i = 1, 2

Ek/nξ
2
i (k) ≤ K n−1, a.s. (3.7)

Indeed, using (3.3),

Ek/nξ
2
1(k) = n

∫ (k+1)/n

k/n

Ek/n

( as
ak/n

− 1
)2

ds+ nEk/n

( ∫ (k+1)/n

k/n

bs
ak/n

ds
)2

≤ nK−2
1

∫ (k+1)/n

k/n

Ek/n

(
as − ak/n

)2
ds+K−2

1

∫ (k+1)/n

k/n

Ek/nb
2
sds

≤ K2K
−2
1 n−1, a.s.,

and the bound (3.7) for i = 2 follows similarly. This proves (3.7) and Theorem 3.1, too. �

Let us present some examples of Itô’s processes X satisfying conditions (3.3).

Example 3.1 Let (Xt, t ∈ [0, 1]) be a Markov process satisfying a stochastic equation

Xt = x0 +

∫ t

0

a(Xs)dB(s) +

∫ t

0

b(Xs)ds, (3.8)
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where x0 ∈ R is nonrandom, a(x), b(x), x ∈ R are real measurable functions and B is a standard Brownian

motion. Let Ft := σ{B(s), s ≤ t}, 0 ≤ t ≤ 1 be the natural filtration. Assume that

|a(x)− a(y)| ≤ K|x− y|, |b(x)− b(y)| ≤ K|x− y| (x, y ∈ R) (3.9)

for some constant K < ∞. Then equation (3.8) admits a unique adapted solution; see e.g. Gikhman and

Skorohod (1969). Let at = a(Xt), bt = b(Xt). Assume in addition that |a(x)| ≥ K1, (x ∈ R) for some

nonrandom constant K1 > 0. Then the first inequality in (3.3) is trivially satisfied; moreover, the second

and third relations in (3.3) are also satisfied, with K2 = C(1 + sup0≤t≤1X
2
t ) <∞ and K3 = C, where C is

nonrandom and depends on the constant K in (3.9) only.

Example 3.2 Let Xt := g(t, B(t)), where B is a standard Brownian motion and g(t, x) is a (jointly)

continuous function on [0, 1] × R, having continuous partial derivatives gt(t, x) := ∂g(t, x)/∂t, gx(t, x) :=

∂g(t, x)/∂x, gxx(t, x) = ∂2g(t, x)/∂x2. By Itô’s lemma,

dXt = gx(t, B(t))dB(t) +

(
gt(t, B(t)) +

1

2
gxx(t, B(t))

)
dt,

so that X admits the representation (3.1) with at = gx(t, B(t)), bt = gt(t, B(t))+ 1
2gxx(t, B(t)) and the same

filtration as in the previous example. Assume that

|gx(t, x)| ≥ K1, |gx(s, y)− gx(t, x)| ≤ K(|s− t|1/2 + |y − x|),

for all (t, x), (s, y) ∈ [0, 1]×R) and some constants 0 < K1,K <∞. Then X satisfies the conditions in (3.3).

4. Gaussian processes

4.1. Assumptions

Let X = (Xt, t ∈ [0, 1]) be a Gaussian process, with zero mean. Without loss of generality, assume X0 = 0.

Define σ2
p,n(k), the variance of ∆p,n

k X , and ρp,n(k), the correlation coefficient between ∆p,n
k X and ∆p,n

k+1X ,

i.e.

σ2
p,n(k) := E

[
(∆p,n

k X)
2
]
, ρp,n(k) :=

E
[
∆p,n

k X ∆p,n
k+1X

]

σp,n(k)σp,n(k + 1)
. (4.1)

Let BH = (BH(t), t ∈ R) be a fractional Brownian motion (fBm) with parameter 0 < H < 1, i.e., a Gaussian

process with zero mean and covariance such that EBH(s)BH(t) = 1
2

(
|t|2H + |s|2H − |t− s|2H

)
. Its p−th

order increments
(
∆p

jBH , j ∈ Z
)
form a stationary Gaussian process, for any p ≥ 1. In particular, the

covariance function of ∆jBH ≡ ∆1
jBH = BH(j +1)−BH(j) and ∆2

jBH = BH(j +2)− 2BH(j +1)+BH(j)

can be explicitly calculated:

E
[
∆0BH∆jBH

]
= 2−1

(
|j + 1|2H + |j − 1|2H − 2|j|2H

)
, (4.2)

E
[
∆2

0BH∆2
jBH

]
= 2−1

(
−|j + 2|2H + 4|j + 1|2H − 6|j|2H + 4|j − 1|2H − |j − 2|2H

)
. (4.3)

From Taylor expansion,

E
[
∆0BH∆jBH

]
∼ 2H(2H − 1)j2H−2,

E
[
∆2

0BH∆2
jBH

]
∼ 2H(2H − 1)(2H − 2)(2H − 3)j2H−4,

as j → ∞, and therefore the first increment, (∆jBH), has a summable covariance if and only if 0 < H < 3/4,

while the second increment, (∆2
jBH), has a summable covariance for any 0 < H < 1.

Introduce the following conditions:
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(A.1) There exist continuous functions H(t) ∈ (0, 1) and c(t) > 0 for t ∈ [0, 1] such that ∀j ∈ N
∗

lim
n→∞

sup
t∈(0,1)

∣∣∣∣∣
E
(
X([nt]+j)/n −X[nt]/n

)2

(j/n)
2H(t)

− c(t)

∣∣∣∣∣ = 0, with (4.4)

lim
n→∞

sup
t∈(0,1)

∣∣H(t)−H(t+
1

n
)
∣∣ logn = 0. (4.5)

(A.1)′ There exist continuous functions H(t) ∈ (0, 1) and c(t) > 0 for t ∈ [0, 1] such that ∀j ∈ N
∗

lim
n→∞

sup
t∈(0,1)

√
n

∣∣∣∣∣
E
(
X([nt]+j)/n −X[nt]/n

)2

(j/n)
2H(t)

− c(t)

∣∣∣∣∣ = 0, with (4.6)

lim
n→∞

sup
t∈(0,1)

∣∣H(t)−H(t+
1

n
)
∣∣√n log n = 0 and lim

n→∞
sup

t∈(0,1)

∣∣c(t)− c(t+
1

n
)
∣∣√n = 0. (4.7)

(A.2)p There exist d > 0, γ > 1/2 and 0 ≤ θ < γ/2 such that for any 1 ≤ k < j ≤ n with n ∈ N
∗

∣∣∣E
[
∆p,n

k X ∆p,n
j X

]∣∣∣ ≤ d σp,n(k)σp,n(j) · nθ · |j − k|−γ . (4.8)

A straightforward application of Assumption (A.1) (or (A.1)′) implies that
√
c(t)BH(t) is the tangent

process of X for all t ∈ (0, 1) and more precisely:

Property 4.1 Assumptions (A.1), (A.1)′ respectively imply that, for any j ∈ Z and p = 1, 2,

lim
n→∞

sup
t∈(0,1)

∣∣∣∣∣
E
[
∆p,n

[nt]X ∆p,n
j+[nt]X

]

E
[
∆p,n

0 BH(t) ∆p,n
j BH(t)

] − c(t)

∣∣∣∣∣ = 0, (4.9)

lim
n→∞

√
n sup

t∈(0,1)

∣∣∣∣∣
E
[
∆p,n

[nt]X ∆p,n
j+[nt]X

]

E
[
∆p,n

0 BH(t) ∆p,n
j BH(t)

] − c(t)

∣∣∣∣∣ = 0. (4.10)

Moreover, for any t ∈ (0, 1) and p = 1, 2

(
nH(t)∆p,n

j+[nt]X
)
j∈Z

f.d.d.−→
n→∞

(√
c(t)∆p

jBH(t)

)
j∈Z

.

Assumption (A.1) can be characterized as uniform local self-similarity of (Xt) (the uniformity refers

to the supremum over t ∈ (0, 1) in (4.4)). Note that for X having stationary increments and variogram

V (t) = EX2
t , Assumption (A.1) reduces to V (t) ∼ ct2H (c > 0, 0 < H < 1). For j = 0, 1, relation (4.9)

implies that for any t ∈ (0, 1), the variance and the (1/n)−lag correlation coefficient of ∆p,n
[nt]X satisfy the

following relations:

σ2
1,n([nt]) ∼

n→∞
c(t)σ2

1(H(t)) = c(t) E
[
(∆0BH(t))

2
]
= c(t)

( 1
n

)2H(t)

, (4.11)

ρ1,n([nt]) −→
n→∞

ρ1(H(t)) = corr(BH(t)(1), BH(t)(2)−BH(t)(1)) = 22H(t)−1 − 1, (4.12)

σ2
2,n([nt]) ∼

n→∞
c(t)σ2

2(H(t)) = c(t) E
[
(∆2

0BH(t))
2
]
= c(t)(4 − 4H(t))

( 1
n

)2H(t)

, (4.13)

ρ2,n([nt]) −→
n→∞

ρ2(H(t)) = corr(BH(t)(2)− 2BH(t), BH(t)(3)− 2BH(t)(2) +BH(t)(1))

=
−32H(t) + 22H(t)+2 − 7

8− 22H(t)+1
(4.14)

(see (6.31)). Moreover, relations (4.11)–(4.14) hold uniformly in t ∈ (0, 1). Condition (4.5) is a technical

condition which implies (and is ”almost equivalent” to) the continuity of the function t→ H(t). Assumption

(A.1)
′
is a sharper convergence condition than Assumption (A.1) required for establishing central limit

theorems.
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Condition (4.8) specifies a nonasymptotic inequality satisfied by the correlation of increments ∆p,n
k X .

The particular case of stationary processes allows to better understand this point. Indeed, if (Xt) has

stationary increments, the covariance of the stationary process (∆p,n
k X, k ∈ Z) is completely determined by

the variogram V (t), e.g.

E
[
∆1,n

k X ∆1,n
j X

]
=

1

2

{
V
(k − j + 1

n

)
+ V

(k − j − 1

n

)
− 2V

(k − j

n

)}
. (4.15)

In the “most regular” case, when X = BH is a fBm and therefore V (t) = t2H , it is easy to check that

assumption (A.2)2 holds with θ = 0 and γ = 4− 2H > 2 (0 < H < 1), while (A.2)1 with θ = 0, γ = 2− 2H

is equivalent to H < 3/4 because of the requirement γ > 1/2. However, for X = BH , (A.2)1 holds with

appropriate θ > 0 in the wider region 0 < H < 7/8, by choosing θ < 2− 2H arbitrarily close to 2− 2H and

then γ < 2 − 2H + θ arbitrary close to 4 − 4H . A similar choice of parameters θ and γ allows to satisfy

(A.2)p for more general X with stationary increments and variogram V (t) ∼ ct2H (t→ 0), under additional

regularity conditions on V (t) (see below).

Property 4.2 Let X have stationary increments and variogram V (t) ∼ ct2H (t → 0), with c > 0, H ∈ (0, 1).

(i) Assume, in addition, that 0 < H < 7/8 and |V ′′(t)| ≤ Ct−κ (0 < t < 1), for some C > 0 and

4− 4H > κ ≥ 2− 2H,κ > 1/2. Then assumption (A.2)1 holds.

(ii) Assume, in addition, that |V (4)(t)| ≤ Ct−κ (0 < t < 1), for some C > 0 and 8 − 4H > κ ≥ 4 − 2H.

Then assumption (A.2)2 holds.

The following property provides a sufficient condition for (A.2)p in spectral terms, which does not require

differentiability of the variogram.

Property 4.3 Let X be a Gaussian process having stationary increments and the spectral representation

(see for instance Cramèr and Leadbetter, 1967)

Xt =

∫

R

(
eitξ − 1

)
f1/2(ξ)W (dξ), for all t ∈ R, (4.16)

whereW (dx) =W (−dx) is a complex-valued Gaussian white noise with zero mean and variance E |W (dx)|2 =

dx and f is a non-negative even function called the spectral density of X such that
∫

R

(
1 ∧ |ξ|2

)
f(ξ) dξ < ∞. (4.17)

Moreover, assume that f is differentiable on (K,∞) and

f(ξ) ∼ c ξ−2H−1 (ξ → ∞), |f ′(ξ)| ≤ C ξ−2H−2 (ξ > K) (4.18)

for some constants c, C,K > 0. Then X satisfies assumption (A.2)1 for 0 < H < 3/4 and assumption

(A.2)2 for 0 < H < 1.

4.2. Limit theorems

Before establishing limit theorems for the statistics Rp,n for Gaussian processes, recall that λ is given in

(1.9) and with ρp(H) in (6.31) one has

∫ 1

0

Λp(H(t))dt =

∫ 1

0

λ(ρp(H(t)))dt =

∫ 1

0

E

[ ∣∣∆p
0BH(t) +∆p

1BH(t)

∣∣
∣∣∆p

0BH(t)

∣∣+
∣∣∆p

1BH(t)

∣∣

]
dt.

Straightforward computations show that Assumptions (A.1) and (A.2)p imply Assumption (A) with

A(t)(δ) = δ−H(t), Y (t) =
√
c(t)BH(t). Therefore Proposition 2.2 ensures the convergence (in L

2) of the

statistics Rp,n to
∫ 1

0
Λp(H(t))dt. Bardet and Surgailis (2009) proved a.s. convergence in Theorem 4.1,

below, using a general moment bound for functions of multivariate Gaussian processes (see Lemma 1 in

Section 6). A sketch of this proof can be found in Section 6.
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Theorem 4.1 Let X be a Gaussian process satisfying Assumptions (A.1) and (A.2)p. Then,

Rp,n a.s.−→
n→∞

∫ 1

0

Λp(H(t))dt (p = 1, 2). (4.19)

Corollary 4.1 Assume that X is a Gaussian process having stationary increments, whose variogram satisfies

the conditions of Properties 4.2 or 4.3. Then

Rp,n a.s.−→
n→∞

Λp(H) (p = 1, 2). (4.20)

The following Theorem 4.2 is also established in Bardet and Surgailis (2009). Its proof (see a sketch of this

proof in Section 6) uses a general central limit theorem for Gaussian subordinated nonstationary triangular

arrays (see Theorem 1 in Section 6). Note that the Hermite rank of ψ(x1, x2) = |x1 + x2|/(|x1| + |x2|) is 2
and this explains the difference between the cases p = 1 and p = 2 in Theorem 4.2: in the first case, the

inequalities in (6.12) for (Y n(k)) as defined in (6.9)-(6.10) hold only if supt∈[0,1]H(t) < 3/4, while in the

latter case these inequalities hold for 0 < supt∈[0,1]H(t) < 1. A similar fact is true also for the estimators

based on generalized quadratic variations, see Istas and Lang (1997), Coeurjolly (2001).

Theorem 4.2 Let X be a Gaussian process satisfying assumptions (A.1)′ and (A.2)p, with θ = 0. More-

over, assume additionally sup
t∈[0,1]

H(t) < 3/4 if p = 1. Then, for p = 1, 2,

√
n
(
Rp,n −

∫ 1

0

Λp(H(t))dt
)

D−→
n→∞

N
(
0,

∫ 1

0

Σp(H(τ))dτ
)
, (4.21)

with Λp(H) and Σp(H) given in (1.8) and (1.12), respectively.

The following proposition shows that the previous theorems are satisfied when smooth multiplicative and

additive trends are considered.

Proposition 4.1 Let Z = (Zt = α(t)Xt + β(t), t ∈ [0, 1]), where X = (Xt, t ∈ [0, 1]) is a zero mean

Gaussian process and α, β are deterministic continuous functions on [0, 1] with inft∈[0,1] α(t) > 0.

(i) Let X satisfy assumptions of Theorem 4.2 and α ∈ Cp[0, 1], β ∈ Cp[0, 1]. Then the statement of Theorem

4.2 holds with X replaced by Z.

(ii) Let X satisfy assumptions of Theorem 4.1 and α ∈ C1[0, 1], β ∈ C1[0, 1]. Then the statement of Theorem

4.1 holds with X replaced by Z.

Remark 4.1 A version of the central limit theorem in (4.21) is established in Bardet and Surgailis (2009)

with
∫ 1

0 Λp(H(t))dt replaced by ERp,n under weaker assumption than (A.1)′ or even (A.1): only properties

(4.11)-(4.12) (for p = 1) and (4.13)-(4.14) (for p = 2), in addition to (A.2)p with θ = 0 , are required.

The particular case of Gaussian processes having stationary increments can also be studied:

Corollary 4.2 Assume that X is a Gaussian process having stationary increments and there exist c > 0,

C > 0 and 0 < H < 1 such that at least one of the two following conditions (a), (b) hold:

(a) variogram V (t) = c t2H
(
1 + o(t1/2)

)
for t→ 0 and |V (2p)(t)| ≤ Ct2H−2p for all t ∈ (0, 1];

(b) spectral density f satisfies (4.17), (4.18) and f(ξ) = cξ−2H−1
(
1 + o(ξ−1/2)

)
(ξ → ∞).

Then:
√
n
(
Rp,n − Λp(H)

) D−→
n→∞

N
(
0,Σp(H)

)
if

{
p = 1, 0 < H < 3/4,

p = 2, 0 < H < 1.
(4.22)

Moreover, with the expression of s22(H) given in Section 6,

√
n
(
Λ−1
2 (R2,n)−H

)
D−→

n→∞
N
(
0, s22(H)

)
. (4.23)
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Therefore, Ĥn = Λ−1
2 (R2,n) is an estimator of the parameter H following a central limit theorem with

a convergence rate
√
n under semi-parametric assumptions. Similar results were obtained by Guyon and

Leon (1989) and Istas and Lang (1997) for generalized quadratic variations under less general assumptions.

Remark 4.2 In the context of Corollary 4.2 and H ∈ (3/4, 1), we expect that R1,n follows a nongaussian

limit distribution with convergence rate n2−2H .

Remark 4.3 Figure 1 exhibits that H 7→ Λ2(H) is nearly linear and is well-approximated by .1468H+.5174.

Consequently,
∫ 1

0 Λ2(H(t))dt ≈ .1468H̄+ .5174, where H̄ =
∫ 1

0 H(t)dt is the mean value of the function H(·).

Another interesting particular case of Theorem 4.2 leads to a punctual estimator of the function H(t) from

a localization of the statistic R2,n. For t0 ∈ (0, 1) and α ∈ (0, 1), define

R2,n
α (t0) :=

1

2nα

[nt0+nα]∑

k=[nt0−nα]

∣∣∣∆2,n
k X +∆2,n

k+1X
∣∣∣

|∆2,n
k X |+ |∆2,n

k+1X |
.

This estimator is studied in Bardet and Surgailis (2010) and compared to the estimator based on generalized

quadratic variations discussed in Benassi et al. (1998) and Coeurjolly (2005).

4.3. Examples

Below we provide some concrete examples of Gaussian processes which admit a fBm as the tangent process.

For some examples the hypotheses of Theorems 4.1-4.2 and the subsequent corollaries are satisfied. For other

examples, the verification of our hypotheses (in particular, of the crucial covariance bound (A.2)p) remains

an open problem and will be discussed elsewhere.

Example 4.1 Fractional Brownian motion (fBm). As noted above, a fBm X = BH satisfies (A.1)′ as well

as (A.2)1 (for 0 < H < 3/4 if θ = 0 and 0 < H < 7/8 if 0 < θ < 2 − 2H with θ arbitrary close to 2 − 2H

and therefore γ < 2 − 2H + θ arbitrary close to 4 − 4H may satisfy γ > 1/2) and (A.2)2 (for 0 < H < 1),

with H(t) ≡ H , c(t) ≡ c. Therefore, for fBm both Theorems 4.1 (the almost sure convergence, satisfied for

0 < H < 7/8 when p = 1 and for 0 < H < 1 when p = 2) and 4.2 (the central limit theorem, satisfied

for 0 < H < 3/4 when p = 1 and for 0 < H < 1 when p = 2)) apply. Obviously, a fBm also satisfies the

conditions of Corollary 4.2. Thus, the rate of convergence of the estimator Λ−1
2 (R2,n) =: Ĥn of H is

√
n. But

in such a case the self-similarity property of fBm allows to use in this case asymptotically efficient Whittle

or maximum likelihood estimators (see Fox and Taqqu, 1987, or Dahlhaus, 1989). However, for a fBm with

a continuously differentiable multiplicative and additive trends, which leads to a semi-parametric context,

the convergence rate of Ĥn is still
√
n while parametric estimators cannot be applied.

Example 4.2 Multiscale fractional Brownian motion (see Bardet and Bertrand, 2007) defined as follows: for

ℓ ∈ N
∗, a (Mℓ)-multiscale fractional Brownian motion X = (Xt, t ∈ R) ((Mℓ)- fBm for short) is a Gaussian

process having stationary increments and a spectral density f such that

f(ξ) =
σ2
j

|ξ|2Hj+1
1(ωj ≤ |ξ| < ωj+1) for all ξ ∈ R (4.24)

with ω0 := 0 < ω1 < · · · < ωℓ < ωℓ+1 := ∞, σi > 0 and Hi ∈ R for i ∈ {0, · · · , ℓ} with H0 < 1 and

Hℓ > 0. Therefore condition (4.18) of Property 4.3 is satisfied, with K = ωℓ and H = Hℓ. Moreover, the

condition f(ξ) = cξ−2H−1
(
1 + o(ξ−1/2)

)
(ξ → ∞) required in Corollary 4.2 is also checked with H = Hℓ.

Consequently, the same conclusions as in the previous example apply for this process as well, in the respective

regions determined by the parameter Hℓ at high frequencies x > ωℓ alone. The same result is also obtained

for a more general process defined by f(ξ) = cξ−2H−1 for |ξ| ≥ ω and condition (4.17) is only required

elsewhere. Once again, such conclusions hold also in case of continuously differentiable multiplicative and

additive trends.
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Example 4.3 Multifractional Brownian motion (mBm) (see Ayache et al., 2005). A mBm X = (Xt, t ∈
[0, 1]) is a Gaussian process defined by

Xt = BH(t)(t) = g(H(t))

∫

R

eitx − 1

|x|H(t)+1/2
W (dx), (4.25)

where W (dx) is the same as in (4.16), H(t) is a (continuous) function on [0, 1] taking values in (0, 1) and

finally, g(H(t)) is a normalization such that EX2
t = 1. It is well-known that a mBm is locally asymptotically

self-similar at each point t ∈ (0, 1) having a fBm BH(t) as its tangent process at t (see Benassi et al., 1997).

This example is studied in more detail in Bardet and Surgailis (2010).

Example 4.4 Time-varying fractionally integrated processes. Philippe et al. (2006, 2008) introduced two

classes of mutually inverse time-varying fractionally integrated filters with discrete time and studied long-

memory properties of the corresponding filtered white noise processes. Surgailis (2008) extended these filters

to continuous time and defined “multifractional” Gaussian processes (Xt, t ≥ 0) and (Yt, t ≥ 0) as follows

Xt =

∫

R

{∫ t

0

1

Γ(H(τ) − .5)
(τ − s)

H(τ)−1.5
+ eA−(s,τ)dτ

}
dB(s), (4.26)

Yt =

∫

R

1

Γ(H(s) + .5)

{
(t− s)

H(s)−.5
+ e−A+(s,t) − (−s)H(s)−.5

+ e−A+(s,0)
}
dB(s), (4.27)

where sα+ := sα1(s > 0), B is a Brownian motion,

A−(s, t) :=

∫ t

s

H(u)−H(t)

t− u
du, A+(s, t) :=

∫ t

s

H(s)−H(v)

v − s
dv (s < t)

and where H(t), t ∈ R is a general function taking values in (0,∞) and satisfying some weak additional

conditions. Surgailis (2008) studied small and large scale limits of (Xt) and (Yt) and showed that these

processes resemble a fBm with Hurst parameter H = H(t) at each point t ∈ R (i.e., admit a fBm as a

tangent process) similarly to the mBm in the previous example. The last paper also argues that these

processes present a more natural generalization of fBm than the mBm and have nicer dependence properties

of increments. We expect that the assumptions (A.1), (A.1)′, (A.2)p can be verified for (4.26), (4.27);

however, this question requires further work.

5. Processes with independent increments

In this section, we assume that X = (Xt, t ≥ 0) is a (homogeneous) Lévy process, with a.s. right continuous

trajectories, X0 = 0. It is well-known that if the generating triplet of X satisfies certain conditions (in

particularly, if the Lévy measure ν behaves regularly at the origin with index α ∈ (0, 2)), then X has a

tangent process Y which is α−stable Lévy process. A natural question is to estimate the parameter α with

the help of the introduced statistics Rp,n. Unfortunately, the limit of these statistics as defined in (1.5)

through the tangent process depends also on the skewness parameter β ∈ [−1, 1] of the α−stable tangent

process Y and so this limit cannot be used for determining of α if β is unknown.

In order to avoid this difficulty, we shall slightly modified our ratio statistic, as follow. Observe first

that the second differences ∆2,n
k X of Lévy process have a symmetric distribution (in contrast to the first

differences ∆1,n
k X which are not necessary symmetric). For notational simplicity we shall assume in this

section that n is even. The modified statistic

R̃2,n :=
1

n/2− 1

(n−4)/2∑

k=0

ψ
(
∆2,n

2k X,∆
2,n
2k+2X

)
, ψ(x, y) :=

|x+ y|
|x|+ |y|

is written in terms of “disjoint” (independent) second order increments (∆2,n
2k X,∆

2,n
2k+2X) having a symmetric

joint distribution. Instead of extending general result of Proposition 2.2 to R̃2,n, we shall directly obtain its
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convergence under suitable assumptions on X . Note first

ER̃2,n = Eψ
(
X

(2)
1/n −X

(1)
1/n, X

(4)
1/n −X

(3)
1/n

)
, (5.1)

where X(i), i = 1, · · · , 4 are independent copies of X . Note that 1/2 ≤ ER̃2,n ≤ 1 since

Eψ
(
X

(2)
1/n −X

(1)
1/n, X

(4)
1/n −X

(3)
1/n

)
≥P(X

(2)
1/n −X

(1)
1/n ≥ 0, X

(4)
1/n −X

(3)
1/n ≥ 0)

+ P(X
(2)
1/n −X

(1)
1/n < 0, X

(4)
1/n −X

(3)
1/n < 0)

≥P2(X
(2)
1/n −X

(1)
1/n ≥ 0) + P2(X

(2)
1/n −X

(1)
1/n < 0) ≥ 1/2.

Proposition 5.1 Let there exists a limit

lim
n→∞

ER̃2,n = Λ̃. (5.2)

Then

R̃2,n a.s.−→
n→∞

Λ̃. (5.3)

Proof. Write R̃2,n = ER̃2,n + (n/2 − 1)−1Qn, where Qn is a sum of centered 1-dependent r.v.’s which

are bounded by 1 in absolute value. Therefore E((n/2 − 1)−1Qn)
4 = O(n−2) and the a.s. convergence

(n/2− 1)−1Qn → 0 follows by the Chebyshev inequality. �

Next we discuss conditions on X for the convergence in (5.2). Recall that the distribution of Xt is infinitely

divisible and its characteristic function is given by

EeiθXt = exp
{
t
(
iγθ − 1

2
a2θ2 +

∫

R

(
eiuθ − 1− iuθ1(|u| ≤ 1)

)
ν(du)

)}
, θ ∈ R, (5.4)

where γ ∈ R, a ≥ 0 and ν is a measure on R such that
∫
R
min(u2, 1)ν(du) < ∞. The triplet (a, γ, ν)

is called the generating triplet of X (Sato (1999)). Let X(i), i = 1, 2 be independent copies of X . Note

Wt := X
(1)
t −X

(2)
t is a Lévy process having the characteristic function

EeiθWt = exp
{
t
(
− a2θ2 + 2

∫ ∞

0

Re
(
1− eiuθ

)
dK(u)

)}
, θ ∈ R, (5.5)

where

K(u) := ν((−∞,−u] ∪ [u,∞))

is monotone nonincreasing on (0,∞). Introduce the following condition: there exist 0 < α ≤ 2 and c > 0

such that

K(u) ∼ c

uα
, u ↓ 0. (5.6)

It is clear that if such number α exists then α := inf
{
r ≥ 0 :

∫
|x|≤1

|x|rν(dx) <∞
}
is the so-called fractional

order or the Blumenthal-Getoor index of the Lévy process X .

Let Zα be a standard α−stable r.v. with characteristic function EeiθZα = e−|θ|α and Z
(i)
α , i = 1, 2, 3 be

independent copies of Zα.

Proposition 5.2 Assume either a > 0 or else, a = 0 and condition (5.6) with 0 < α ≤ 2 and c > 0. Then

t−1/α(X
(1)
t −X

(2)
t )

D−→
t→0

c̃ Zα with c̃ depending on c, and (5.2), (5.3) hold with

Λ̃ ≡ Λ̃(α) := Eψ
(
Z(1)
α , Z(2)

α

)
.

Moreover, with σ̃2(α) := 2var
(
ψ
(
Z(1)
α , Z(2)

α

))
+ 4cov

(
ψ
(
Z(1)
α , Z(2)

α

)
, ψ
(
Z(2)
α , Z(3)

α

))
,

√
n(R̃2,n − ER̃2,n)

D−→
n→∞

N (0, σ̃2(α)). (5.7)
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Proof. Relation t−1/αWt = t−1/α(X
(1)
t −X

(2)
t )

D−→
t→0

c̃ Zα is an easy consequence of the assumptions of the

proposition and the general criterion of weak convergence of infinitely divisible distributions in Sato (1991,

Theorem 8.7). It implies (5.2) by the fact that ψ is a.e. continuous on R
2. Since R̃2,n is a sum of 1-dependent

stationary and bounded r.v.’s, the central limit theorem in (5.7) follows from convergence of the variance:

n var(R̃2,n) → σ̃2(α); (5.8)

see e.g. Berk (1973). Rewrite R̃2,n = (n/2− 1)−1
∑(n−4)/2

k=0 η̃n(k), η̃n(k) := ψ
(
∆2,n

2k X,∆
2,n
2k+2X

)
. We have

n var(R̃2,n) =
n

n/2− 1
var(η̃n(0)) +

2n(n/2− 2)

(n/2− 1)2
cov(η̃n(0), η̃n(1)),

where var(η̃n(0)) −→
n→∞

var
(
ψ
(
Z

(1)
α , Z

(2)
α

))
, cov(η̃n(0), η̃n(1)) −→

n→∞
cov
(
ψ
(
Z

(1)
α , Z

(2)
α

)
, ψ
(
Z

(2)
α , Z

(3)
α

))
similarly

as in the proof of (5.2) above. This proves (5.8) and the proposition. �
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Figure 4. The graphs of α 7→ Λ̃(α) = E
|Z

(1)
α +Z

(2)
α |

|Z
(1)
α |+|Z

(2)
α |

(left) and α 7→ σ̃(α) (right) for a process with independent increments.

The graph of Λ̃(α) is given in Figure 4. Note that Λ̃(2) = Λ1(1/2) ≃ 0.72: this is the case of Brownian

motion.

In order to evaluate the decay rate of the bias ER̃2,n − Λ̃(α) we need a uniform convergence rate in Lemma

5.1, below, for

‖Fn −Gα‖∞ := sup
x∈R

|Fn(x)−Gα(x)|, Fn(x) := P(n1/αW1/n ≤ x), Gα(x) := P(Z̃α ≤ x),

where Z̃α := c̃Zα is the limiting α−stable r.v. in Proposition 5.2 and (Wt, t ≥ 0) is the symmetric Levy

process with characteristic function as in (5.5). The proof of Lemma 5.1 is given in Annexe.

Lemma 5.1 (i) Let a = 0 and K satisfy (5.6). Denote K1(u) := K(u) − cu−α, |K1|(u) :=
∫∞

u
|dK1(v)|,

the variation of K1 on [u,∞). Moreover, assume that there exist some constants β, δ > 0 such that

|K1|(u) = O(u−(α−β)+) (u→ 0), |K1|(u) = O(u−δ) (u→ ∞), (5.9)

where x+ := max(0, x). Then

‖Fn −Gα‖∞ =





O(n−β/α), if β < α,

O(n−1 logn), if β = α,

O(n−1), if β > α.

(5.10)

(ii) Let a > 0 and K satisfy

K(u) = O(u−α) (u→ 0), K(u) = O(u−δ) (u→ ∞), (5.11)

for some 0 ≤ α < 2, δ > 0. Then

‖Fn −Gα‖∞ =

{
O(n−1+α/2), if α > 0,

O(n−1 logn), if α = 0.
(5.12)
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Proposition 5.3 Assume either a > 0 or else a = 0 and condition (5.6). Then for any α ∈ (0, 2]

|ER̃2,n − Λ̃(α)| ≤ 2C‖Fn −Gα‖∞, C :=

∫ ∞

0

(1 + z)−2dz <∞. (5.13)

Proof. Let ψ̃(x, y) := |x− y|/(x+ y), x, y > 0, and let Fn, Gα be the same as in Lemma 5.1. Similarly as in

Vaičiulis (2009, proof of Th. 1), write

ER̃2,n − Λ̃(α) = 2

∫ ∞

0

∫ ∞

0

ψ̃(x, y)(dFn(x)dFn(y)− dGα(x)dGα(y)) = 2(W1 +W2),

where W1 :=
∫∞

0

∫∞

0
ψ̃(x, y)dFn(x)(dFn(y) − dGα(y)), W2 :=

∫∞

0

∫∞

0
ψ̃(x, y)dGα(y)(dFn(x) − dGα(x)).

Integrating by parts yields

|W1| = 2

∫ ∞

0

|x|dFn(x)

∫ ∞

0

|Fn(y)−Gα(y)|
dy

(x+ y)2

≤ 2‖Fn −Gα‖∞
∫ ∞

0

|x|dFn(x)

∫ ∞

0

dy

(x+ y)2
= C‖Fn −Gα‖∞

since
∫∞

0 dFn(x) = 1/2. A similar estimate holds for W2. This proves (5.13). �

Propositions 5.2, 5.3, and Lemma 5.1, together with the Delta-method, yield the following corollary.

Corollary 5.1 Let a and K satisfy either the assumptions of Lemma 5.1(i) with β > α/2, or the assumptions

of Lemma 5.1(ii). Then √
n(R̃2,n − Λ̃(α))

D−→
n→∞

N (0, σ̃2(α)).

Moreover, if we define α̂n := Λ̃−1(R̃2,n), then

√
n
(
α̂n − α

) D−→
n→∞

N (0, s̃2(α)),

where s̃2(α) :=
[
∂Λ̃
∂α (α)

]−2
σ̃2(α), 0 < α ≤ 2.

There exist very few papers concerning estimation of α in such a semiparametric frame. Nonparametric

estimation of parameters of Lévy processes based on the empirical characteristic function has recently been

considered in Neumann and Reiß (2009) and Gugushvili (2008), but the convergence rates there are (logn)κ

with κ > 0. Ait Sahalia and Jacod (2009) have proposed an estimator of the degree of activity of jumps (which

is identical to the fractional order in the case of a Lévy process) in a general semimartingale framework using

small increments of high frequency data. However from the generality of their model, the convergence rate of

the estimator is not rate efficient (in fact smaller than n1/5). A recent paper of Belomestny (2010) provides

an efficient data-driven procedure to estimate α using a spectral approach but in a different semiparametric

frame from ours. Thus, Corollary 5.1 appears as a new and interesting result since the estimator α̂n follows

a
√
n-central limit theorem.

6. Annexe : proofs

Proof of Lemma 3.1

Let δ2 := maxi=1,2 Eξ
2
i . If δ

2 ≥ 1/2, then (3.2) holds since the l.h.s. of (3.2) does not exceed 1. Let δ2 < 1/2

in the sequel. Write U := ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2) = Uδ + U c
δ ,

Uδ := U1(Aδ) = (ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2))1(Aδ),

U c
δ := U1(Ac

δ) = (ψ(Z1 + ξ1, Z2 + ξ2)− ψ(Z1, Z2))1(A
c
δ),
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where 1(Aδ) is the indicator of the event

Aδ := {|Z1| > δ2/3, |Z2| > δ2/3, |ξ1| < δ2/3/2, |ξ2| < δ2/3/2},

and 1(Ac
δ) = 1− 1(Aδ) is the indicator of the complementary event Ac. Clearly,

E|U c
δ | ≤ 2(P(|Z1| < δ2/3) + P(|Z2| < δ2/3) + P(|ξ1| ≥ δ2/3/2) + P(|ξ2| ≥ δ2/3/2)

≤ 4√
2π

δ2/3 + 2
Eξ2

δ4/3
≤ 4 δ2/3.

It remains to estimate E|Uδ|. By the mean value theorem,

|Uδ| ≤
(
|ξ1| sup

D
|ψx1 |+ |ξ2| sup

D
|ψx2 |

)
1(Aδ),

where

sup
D

|ψx1 | := sup{|∂ψ(x1, x2)/∂x1| : |xi − Zi| ≤ |ξi|, i = 1, 2},

sup
D

|ψx2 | := sup{|∂ψ(x1, x2)/∂x2| : |xi − Zi| ≤ |ξi|, i = 1, 2}.

Therefore

E|Uδ| ≤ E1/2(ξ21)E
1/2
[
(sup

D
|ψx1 |)21(Aδ)

]
+ E1/2(ξ22)E

1/2
[
(sup

D
|ψx2 |)21(Aδ)

]

≤ δ

(
E1/2

[
(sup

D
|ψx1 |)21(Aδ)

]
+ E1/2

[
(sup

D
|ψx2 |)21(Aδ)

])
.

Next,

|ψxi(x1, x2)| =
|sgn(x1 + x2)(|x1|+ |x2|)− (|x1 + x2|)sgn(xi)|

(|x1|+ |x2|)2
≤ 2

|x1|+ |x2|
.

Therefore

sup
D

|ψxi |21(Aδ) ≤ 4 sup
{
(|x1|+ |x2|)−2 : |xi − Zi| ≤ δ2/3/2, |Zi| > δ2/3, i = 1, 2

}

≤ 16 (|Z1|+ |Z2|)−21(|Zi| > δ2/3, i = 1, 2),

implying

E
[
(sup

D
|ψxi |)21(Aδ)

]
≤ 16E

[
1

(|Z1|+ |Z2|)2
; |Zi| > δ2/3, i = 1, 2

]
≤ C(δ),

where

C(δ) ≤ 16

2π

∫

{x2
1+x2

2>δ4/3}

1

x21 + x22
e−(x2

1+x2
2)/2dx1dx2

≤ 16

∫ ∞

δ4/3
r−1e−r2/2dr ≤ 16 (1 + (4/3)| log δ|).

Hence E|Uδ| ≤ 8 δ(1 + (4/3) | log δ|)1/2, E|U c
δ | ≤ 4 δ2/3. It remains to use x(1 + (4/3) | logx|)1/2 ≤ 2x2/3 for

all 0 < x ≤ 1. �.

Proof of Property 4.1

We use the following identity: for any reals x1, · · · , xj ,

x1xj =
1

2

{( j∑

k=1

xk

)2
+
( j−1∑

k=2

xk

)2
−
( j−1∑

k=1

xk

)2
−
( j∑

k=2

xk

)2}
.
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In particular,

E
[
∆1,n

[nt]X∆1,n
j+[nt]X

]
=

1

2

{
E
(
Xj+1+[nt] −X[nt]

)2
+ E

(
Xj−1+[nt∗] −X[nt∗]

)2

− E
(
Xj+[nt] −X[nt]

)2 − E
(
Xj+[nt∗] −X[nt∗]

)2
}
,

where t∗ := t + (1/n) (so that [nt∗] = [nt] + 1). Then, using (A.1) and the notation un for a sequence

tending to 0 as n→ ∞ uniformly in t and all |j| < J , where J is a fixed number, we obtain

E
[
∆1,n

[nt]X∆1,n
j+[nt]X

]
=

1

2

{
c(t)
(

j+1
n

)2H(t)

(1 + un) + c(t∗)
(

j−1
n

)2H(t∗)

(1 + un)

− c(t)
(

j
n

)2H(t)

(1 + un)− c(t∗)
(

j
n

)2H(t∗)

(1 + un)

}

=
c(t)

2

{(
j+1
n

)2H(t)

+
(

j−1
n

)2H(t)

− 2
(

j+1
n

)2H(t)}
(1 + un)

since c(t∗) − c(t) = un and
(

j
n

)2H(t∗)

=
(

j
n

)2H(t)

(1 + un) follows from (4.5). This proves (4.9) for p = 1.

Relation (4.9) for p = 2 follows analogously. Relation (4.10) also follows by the same argument and the

fact that c(t∗)− c(t) = un/
√
n and

(
j
n

)2H(t∗)

=
(

j
n

)2H(t)

(1 + un/
√
n) hold in view of Assumption (A.1)’.

Property 4.1 is proved. �

Proof of Property 4.2

With condition V (t) ∼ ct2H (t→ 0) in mind, inequality (4.8) reduces to

∣∣V
(
k+1
n

)
+ V

(
k−1
n

)
− 2V

(
k
n

)∣∣ ≤ Cn−2H+θk−γ (p = 1, 2 ≤ k ≤ n), (6.1)
∣∣V
(
k+2
n

)
− 4V

(
k+1
n

)
+ 6V

(
k
n

)
− 4V

(
k−1
n

)
+ V

(
k−2
n

)∣∣ ≤ Cn−2H+θk−γ (p = 2, 4 ≤ k ≤ n). (6.2)

The left hand side of (6.1) can be written and estimated as
∣∣∣∣∣

∫ 1/n

0

∫ 1/n

0

V ′′(t− s+ (k/n))dtds

∣∣∣∣∣ ≤ C

∫ 1/n

0

∫ 1/n

0

|t− s+ (k/n)|−κdtds

≤ Cnκ−2

∫ 1

0

∫ 1

0

|t− s+ k|−κdtds

≤ Cnκ−2k−κ = Cnθ−2Hk−γ

where γ = κ > 1/2 and θ = κ+ 2H − 2 ∈ [0, γ/2) since κ < 4 − 4H . This proves part (i). Part (ii) follows

similarly, by writing the left hand side of (6.2) as
∣∣∣∣∣

∫ 1/n

0

· · ·
∫ 1/n

0

V (4)(t− s+ u− v + (k/n))dtdsdudv

∣∣∣∣∣ ≤ C

∫ 1/n

0

· · ·
∫ 1/n

0

|t− s+ u− v + (k/n)|−κdtdsdudv

≤ Cnκ−4k−κ = Cnθ−2Hk−γ ,

where γ = κ > 1 and θ = κ+ 2H − 4 ∈ [0, κ/2) since κ < 8− 4H . Property 4.2 is proved. �

Proof of Property 4.3

From (4.16) we have

E
[
∆p,n

0 X ∆p,n
j X

]
=

∫

R

∣∣∣ei(x/n) − 1
∣∣∣
2p

eix(j/n)f(x)dx = 21+p

∫ ∞

0

(1− cos(x/n))p cos(xj/n)f(x)dx

= 21+p(I1 + I2),
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with

|I1| =
∣∣∣
∫ K

0

(1− cos(x/n))p cos(xj/n)f(x)dx
∣∣∣

= C
∣∣∣
∫ K

0

(x/n)2pf(x)dx
∣∣∣ =

∣∣∣Cn−2p

∫ K

0

x2pf(x)dx
∣∣∣ ≤ Cn−2p; (6.3)

and I2 = n

∫ ∞

K/n

(1− cos(x))p cos(xj)f(nx)dx

= (n/j)

∫ ∞

K/n

(1− cos(x))pf(nx)d sin(xj)

= −(n/j)

∫ ∞

K/n

sin(xj) ((1− cos(x))pf(nx))
′
x dx +O(n−2p) (6.4)

since |(n/j)f(K)(1− cos(K/n))p sin(jK/n)| ≤ C(n/j)(K/n)2p|jK/n| ≤ Cn−2p for any K > 0 fixed.

Let p = 1. The last integral can be rewritten as
∫∞

K/n
sin(xj) ((1 − cos(x))f(nx))

′
x dx = Ĩ1 + Ĩ2, where

|Ĩ1| ≤
∫ ∞

K/n

| sin(xj) sin(x)f(nx)|dx ≤ C

∫ ∞

K/n

| sin(xj) sin(x)|(nx)−2H−1dx ≤
3∑

q=1

I1q ,

where we used the fact that f(x) ≤ Cx−2H−1 (x ≥ K); see condition (4.18), and where

|I11| =

∫ 1/j

0

| sin(xj) sin(x)|(nx)−2H−1dx ≤ Cj

∫ 1/j

0

x2(nx)−1−2Hdx ≤ Cj2H−1n−1−2H ,

|I12| =

∫ 1

1/j

| sin(xj) sin(x)|(nx)−2H−1dx ≤ C

∫ 1

1/j

x(nx)−1−2Hdx ≤ Cj2H−1n−1−2H ,

|I13| =

∫ ∞

1

| sin(xj) sin(x)|(nx)−2H−1dx ≤ C

∫ ∞

1

(nx)−1−2Hdx ≤ Cn−1−2H .

Similarly, using (4.18),

|Ĩ2| ≤ n

∫ ∞

K/n

| sin(xj)(1 − cos(x))f ′(nx)|dx ≤ C

∫ ∞

K/n

| sin(xj)(1 − cos(x)|(nx)−2H−2dx ≤
3∑

q=1

I2q,

where

I21 = n

∫ 1/j

0

| sin(xj)(1 − cos(x))|(nx)−2H−2dx ≤ Cnj

∫ 1/j

0

x3(nx)−2−2Hdx ≤ Cj2H−1n−1−2H ,

I22 = n

∫ 1

1/j

| sin(xj)(1 − cos(x))|(nx)−2H−2dx ≤ Cn

∫ 1

1/j

x2(nx)−2−2Hdx ≤ Cj2H−1n−1−2H ,

I23 = n

∫ ∞

1

| sin(xj)(1 − cos(x))|(nx)−2H−2dx ≤ Cn

∫ ∞

1

(nx)−2−2Hdx ≤ Cn−1−2H .

We finally obtain, for 1 ≤ j ≤ n,

∣∣∣E
[
∆1,n

0 X ∆1,n
j X

]∣∣∣ ≤ C(n/j)j2H−1n−1−2H +O(n−2) ≤ Cn−2Hj2H−2

implying (for 0 < H < 3/4) (A.2)1 with θ = 0 and κ = 2 − 2H > 1/2. For p = 2, the estimation of the

integral in (6.4) is completely similar, resulting in the bound

∣∣∣E
[
∆2,n

0 X ∆2,n
j X

]∣∣∣ ≤ C(n/j)n−1−2H +O(n−4) ≤ Cn−2Hj−1

for any 0 < H < 1, or (A.2)2 with θ = 0 and κ = 1 > 1/2. �
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Sketch of the proof of Theorem 4.1

The proof of Theorem 4.1 is based on the moment inequality in Lemma 1, below, which extends a similar

inequality in (Taqqu, 1977, Lemma 4.5) to vector-valued nonstationary Gaussian processes. The proof of

Lemma 1 uses the diagram formula and is given in Bardet and Surgailis (2009). To formulate this lemma,

we need the following definitions. Let X be a standard Gaussian vector in R
ν (ν ≥ 1) and let L

2(X)

denote the Hilbert space of measurable functions f : Rν → R satisfying ‖f‖2 := E(f(X))2 < ∞. Let

L
2
0(X) = {f ∈ L

2(X) : Ef(X) = 0}. Let (X1, · · · ,XN ) be a collection of standardized Gaussian vectors

Xt = (X
(1)
t , · · · , X(ν)

t ) ∈ R
ν having a joint Gaussian distribution in R

νN . Let ε ∈ [0, 1] be a fixed number.

Following Taqqu (1977), we call (X1, · · · ,XN ) ε−standard if |EX(u)
t X

(v)
s | ≤ ε for any t 6= s, 1 ≤ t, s ≤ N and

any 1 ≤ u, v ≤ ν. Finally,
∑′

denotes the sum over all distinct integers 1 ≤ t1, · · · , tp ≤ N, ti 6= tj (i 6= j).

Lemma 1 Let (X1, · · · ,XN ) be ε−standard Gaussian vector, Xt = (X
(1)
t , · · · , X(ν)

t ) ∈ R
ν (ν ≥ 1), and let

Gj,t,N ∈ L
2(X), 1 ≤ j ≤ p (p ≥ 2), 1 ≤ t ≤ N . For given integers m,N ≥ 1, define

QN := max
1≤t≤N

∑

1≤s≤N,s6=t

max
1≤u,v≤ν

|EX(u)
t X(v)

s |m. (6.5)

Assume that for some integer 0 ≤ α ≤ p, the functions G1,t,N , · · · , Gα,t,N have a Hermite rank at least equal

to m for any N ≥ 1, 1 ≤ t ≤ N , and that ε < 1
νp−1 . Then

∑′
E|G1,t1,N (Xt1) · · ·Gp,tp,N (Xtp)| ≤ C(ε, p,m, α, ν)KNp−α

2 Q
α
2

N ,

where the constant C(ε, p,m, α, ν) depends on ε, p,m, α, ν only, and K :=
∏p

j=1 max1≤t≤N ‖Gj,t,N‖.

Sketch of the proof of Theorem 4.1. The convergence limn→∞ ERp,n =
∫ 1

0
Λp(H(t))dt is easy (see the proof

of Proposition 2.2). Hence (4.19) follows from

R̃p,n := Rp,n − ERp,n a.s.−→
n→∞

0. (6.6)

Relation (6.6) follows from the Chebyshev Inequality and the following bound: there exist C, κ > 1 such

that for any n ≥ 1

E
(
R̃p,n

)4
≤ Cn−κ. (6.7)

By definition, R̃p,n = 1
n−p

∑n−p−1
k=0 η̃n(k), where η̃n(k) := ηn(k) − Eηn(k) and ηn(k) := ψ(∆p,n

k X,∆p,n
k+1X),

ψ(x, y) = |x + y|/(|x| + |y|) are nonlinear functions of Gaussian vectors (∆p,n
k X,∆p,n

k+1X) ∈ R
2 having the

Hermite rank 2; however, these vectors are not ε−standard and therefore Lemma 1 cannot be directly applied

to estimate the l.h.s. of (6.7) (with p = 1, · · · , 4, ν = 2). To this end, we first need to “decimate” the sum

R̃p,n, as follows. (A similar “trick” was used in Csörgő and Mielniczuk (1996).) Let ℓ = [nθ/γ] be the

sequence of integers increasing to ∞ (at a rate o(n1/2) by condition θ < γ/2) and write

R̃p,n =

ℓ−1∑

j=0

R̃p,n
ℓ (j) + o(1), R̃p,n

ℓ (j) :=
1

n− 1

[(n−2−j)/ℓ]∑

k=0

η̃n(kℓ+ j).

Then

E
(
R̃p,n

)4
≤ ℓ4 max

0≤j<ℓ
E
(
R̃p,n

ℓ (j)
)4
.

Write ηn(k) as a (bounded) function in standardized Gaussian variables:

ηn(k) = fk,n (Yn(k)) , (6.8)
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where Yn(k) = (Y
(1)
n (k), Y

(2)
n (k)) ∈ R

2,

Y (1)
n (k) :=

∆p,n
k X

σp,n(k)
, (6.9)

Y (2)
n (k) := −∆p,n

k X

σp,n(k)

ρp,n(k)√
1− ρ2p,n(k)

+
∆p,n

k+1X

σp,n(k + 1)

1√
1− ρ2p,n(k)

, (6.10)

and fk,n

(
x(1), x(2)

)
:= ψ

(
x(1),

σp,n(k + 1)

σp,n(k)

(
ρp,n(k)x

(1) +
√
1− ρ2p,n(k)x

(2)
))

, (6.11)

where σ2
p,n(k), ρp,n(k) are defined in (4.1). Then, for each k, Yn(k) := (Y

(1)
n (k), Y

(2)
n (k)) has a standard

Gaussian distribution in R
2 and η̃n(k) = fk,n (Yn(k))−Efk,n (Yn(k)). Moreover, the vector (Yn(kℓ+j), k =

0, 1, · · · , [(n− 2− j)/ℓ]) ∈ R
2([(n−2−j)/ℓ]+1) is ε−standard provided ℓ is large enough. Now Lemma 1 can be

used and it implies the bound (6.7) using Assumptions (A.1) and (A.2)p. The details of this proof can be

found in Bardet et Surgailis (2009). �

Sketch of the proof of Theorem 4.2

The proof of Theorem 4.1 uses the following central limit theorem for Gaussian subordinated multidimen-

sional triangular arrays. Theorem 1 is proved in Bardet and Surgailis (2009). It extends the earlier results

in Breuer and Major (1983) and Arcones (1994). Below, similarly as in Lemma 1, X ∈ R
ν designates a

standard Gaussian vector.

Theorem 1 Let (Yn(k))1≤k≤n,n∈N
be a triangular array of standardized Gaussian vectors with values in

R
ν , Yn(k) = (Y

(1)
n (k), · · · , Y (ν)

n (k)), EY
(p)
n (k) = 0, EY

(p)
n (k)Y

(q)
n (k) = δpq. For a given integer m ≥ 1,

introduce the following assumption: there exists a function ρ : N → R such that for any 1 ≤ p, q ≤ ν,

∀(j, k) ∈ {1, · · · , n}2,
∣∣∣EY (p)

n (j)Y (q)
n (k)

∣∣∣ ≤ |ρ(j − k)| with
∑

j∈Z

|ρ(j)|m <∞. (6.12)

Moreover, assume that for any τ ∈ [0, 1] and any J ∈ N
∗,

(Yn([nτ ] + j))−J≤j≤J
D−→

n→∞
(Wτ (j))−J≤j≤J , (6.13)

where (Wτ (j))j∈Z
is a stationary Gaussian process taking values in R

ν and depending on parameter τ ∈ (0, 1).

Let f̃k,n ∈ L
2
0(X) (n ≥ 1, 1 ≤ k ≤ n) be a triangular array of functions all having Hermite rank at least m.

Assume that there exists a L
2
0(X)−valued continuous function φ̃τ , τ ∈ [0, 1], such that

sup
τ∈[0,1]

‖f̃[τn],n − φ̃τ‖2 = sup
τ∈[0,1]

E(f̃[τn],n(X)− φ̃τ (X))2 −→
n→∞

0. (6.14)

Then, with σ2 =

∫ 1

0

dτ
(∑

j∈Z

E
[
φ̃τ (Wτ (0)) φ̃τ (Wτ (j))

])
<∞,

n−1/2
n∑

k=1

f̃k,n (Yn(k))
D−→

n→∞
N (0, σ2). (6.15)

Sketch of the proof of Theorem 4.2. It suffices to show that

√
n
∣∣∣ERn,p −

∫ 1

0

Λp(H(t))dt
∣∣∣ −→

n→∞
0 (6.16)

and
√
n
(
Rp,n − ERp,n)

D−→
n→∞

N
(
0,

∫ 1

0

Σp(H(τ))dτ
)
. (6.17)
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The proof of (6.16) uses Assumption (A.1)’ or (4.10) and the easy fact that for Gaussian vectors (Z
(1)
n , Z

(2)
n ) ∈

R
2, n ∈ N with zero mean EZ

(i)
n ≡ 0, i = 1, 2, n ∈ N and E(Z

(1)
0 )2 = E(Z

(2)
0 )2 = 1, |EZ(1)

0 Z
(2)
0 | < 1

∣∣Eψ(Z(1)
0 Z

(2)
0 )− Eψ(Z(1)

n , Z(2)
n )
∣∣ ≤ C

2∑

i,j=1

∣∣EZ(i)
0 Z

(j)
0 − Z(i)

n Z(j)
n

∣∣. (6.18)

The proof of (6.17) is deduced from Theorem 1 with the sequence of standardized Gaussian vectors Yn(k) =

(Y
(1)
n (k), Y

(2)
n (k)) (ν = 2) given in (6.9)-(6.10) and the centered functions

f̃k,n(x
(1), x(2)) := fk,n(x

(1), x(2))− Efk,n(Yn(k)), φ̃τ (x
(1), x(2)) := φτ (x

(1), x(2))− Eφτ (X)

with fk,n : R2 → R given in (6.11) and the (limit) function

φτ (x
(1), x(2)) := ψ

(
x(1), ρp(H(τ))x(1) +

√
1− ρ2p(H(τ))x(2)

)
.

Thanks to symmetry properties of these functions, it is clear that the Hermite rank of f̃k,n (for any k and n)

and φ̃τ (for any τ ∈ [0, 1]) is m = 2. Using Assumptions (A.1)’ and (A.2)p (with θ = 0, γ > 1/2), one can

show that the conditions of Theorem 1 are satisfied for the above f̃n,k, φ̃τ and the limit process (W τ (j))j∈Z

in (6.13) is written in terms of increments of fBm (BH(τ)(j))j∈Z:

W τ (j) :=
(
∆p

1BH(τ)(j),
(
−ρp(H(τ))∆p

1BH(τ)(j) + ∆p
1BH(τ)(j + 1)

)
/
√
1− ρ2p(H(τ))

)

having standardized uncorrelated components. The details of this proof can be found in Bardet and Surgailis

(2009). �

Proof of Proposition 4.1

(i) Denote Z̃t := α(t)Xt, R
n,p := Rn,p(Z), R̃n,p := Rn,p(Z̃). Clearly, part (i) (the CLT in (4.21) for trended

process Z = αX + β) follows from the following relations:

√
n
(
R̃p,n − ER̃p,n)

D−→
n→∞

N
(
0,

∫ 1

0

Σp(H(τ))dτ
)
, (6.19)

√
n
∣∣∣ER̃p,n −

∫ 1

0

Λp(H(t))dt
∣∣∣ −→

n→∞
0, (6.20)

√
n
∣∣ERn,p − ER̃n,p

∣∣ −→
n→∞

0, (6.21)

n var(Rn,p − R̃n,p) −→
n→∞

0. (6.22)

The central limit theorem in (6.19) follows from Theorem 4.2 and Remark 4.1 since Assumption (A.2)p and

the convergences (4.11)-(4.14) (with c(t) replaced by α2(t)c(t)) can be easily verified for the process Z̃ = αX .

Let us turn to the proof of (6.19)-(6.22). For concreteness, let p = 2 in the rest of the proof. Since

∆2,n
k Z̃ = α(k/n)∆2,n

k X + 2α′(k/n)n−1∆1,n
k+1X + O(1/n2)X((k + 2)/n), it follows easily from Assumption

(A.1)′ and (4.10) (for X) that

E
[
∆2,n

[nt]Z̃∆2,n
j+[nt]Z̃

]
= α2(t)E

[
∆2,n

[nt]X∆2,n
j+[nt]X

]
+O(n−2H(t)−1 + n−H(t)−2)

implying (4.10) for Z̃ (with c(t) replaced by α2(t)c(t)). Whence and using (4.10) and (6.18), relation (6.20)

follows similarly as (6.16) above.

The proofs of (6.21)-(6.22) uses the following bounds from Bružaitė and Vaičiulis (2008, Lemma 1). Let

(U1, U2) ∈ R
2 be a Gaussian vector with zero mean, unit variances and a correlation coefficient ρ, |ρ| < 1.

Then for any b1, b2 ∈ R and any 1/2 < a1, a2 < 2

∣∣Eψ(a1U1 + b1, a2U2 + b2)− Eψ(a1U1, a2U2)
∣∣ ≤ C(b21 + b22), (6.23)

∣∣EUiψ(a1U1 + b1, a2U2 + b2)
∣∣ ≤ C(|b1|+ |b2|), i = 1, 2, (6.24)
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where the constant C depends only on ρ and does not depend on a1, a2, b1, b2. Using (6.23), Assumption

(A.1)′ and the fact that |∆2,n
k β| ≤ Cn−2 we obtain

∣∣ERn,2 − ER̃n,2
∣∣ ≤ Cn−1

n−3∑

k=0

(
nH(k/n)n−2

)2
= O(n−2), (6.25)

proving (6.21).

To prove (6.22), write Rn,2 = 1
n−2

∑n−3
k=0 ηn(k), R̃

n,2 = 1
n−2

∑n−3
k=0 η̃n(k), where

ηn(k) := ψ
(
∆2,n

k Z,∆2,n
k+1Z

)
= fn,k

(
Ỹ (1)
n (k) + µ(1)

n (k), Ỹ (2)
n (k) + µ(2)

n (k)
)
,

η̃n(k) := ψ
(
∆2,n

k Z̃,∆2,n
k+1Z̃

)
= fn,k

(
Ỹ (1)
n (k), Ỹ (2)

n (k)
)
,

where standardized increments Ỹ
(i)
n (k), i = 1, 2 are defined as in (6.9)-(6.10) with X replaced by Z̃, fn,k are

defined in (6.11), and

µ(1)
n (k) :=

∆2,n
k β

σ2,n(k)
, µ(2)

n (k) := − ∆2,n
k β

σ2,n(k)

ρ2,n(k)√
1− ρ22,n(k)

+
∆2,n

k+1β

σ2,n(k + 1)

1√
1− ρ22,n(k)

.

Note, the η̃n(k)’s and ηn(k)’s have the Hermite rank ≥ 2 and ≥ 1, respectively, since the Hermite coefficients

of order 1 c
(i)
n (k) := E

[
Y

(i)
n (k)ηn(k)

]
, i = 1, 2 of the ηn(k)’s are not zero in general. Using the bound in

(6.24) and |∆2,n
k β| ≤ Cn−2 we obtain

|c(i)n (k)| ≤ C
(
|µ(1)

n (k)|+ |µ(1)
n (k)|

)
≤ CnH(k/n)−2. (6.26)

Split ηn(k)− η̃n(k)− (Eηn(k)− Eη̃n(k)) = ζ′n(k) + ζ′′n(k), where

ζ′n(k) :=

2∑

i=1

c(i)n (k)Y (i)
n (k), ζ′′n(k) := ηn(k)− ζ′n(k)− η̃n(k)− (Eηn(k)− Eη̃n(k)). (6.27)

Then var(Rn,2 − R̃n,2) ≤ 2(J ′
n + J ′′

n), where J ′
n := E

(
1

n−2

∑n−3
k=0 ζ

′
n(k)

)2
, J ′′

n := E
(

1
n−2

∑n−3
k=0 ζ

′′
n(k)

)2
.

From (6.26) and Cauchy-Schwartz inequality, it follows J ′
n ≤ C

(n−2)2

(
(n− 2)

∑n−3
k=0 n

2H(k/n)−4
)
= O(1/n2) =

o(1/n). Since the ζ′′n(k)’s have Hermite rank ≥ 2, we can use the argument in the proof of Theorem 4.2

together with Arcones’ inequality (Arcones, 1994) and the easy fact that E(ζ′′n(k))
2 → 0 (n → ∞, k =

0, · · · , n− 3), to conclude that J ′′
n = o(1/n). This proves (6.22) and completes the proof of part (i).

(ii) Similarly as in the proof of part (i), we shall restrict ourselves to the case p = 2 for concreteness. We

use the same notation and the decomposition of R2,n as in part (i):

R2,n −
∫ 1

0

Λp(H(τ))dτ =
(
R̃2,n −

∫ 1

0

Λp(H(τ))dτ
)
+
(
ERn,p − ER̃n,p

)
+Qn, (6.28)

where

Qn := R2,n − R̃2,n −
(
ERn,p − ER̃n,p

)
=

1

n− 2

n−3∑

k=0

ζ′n(k) +
1

n− 2

n−3∑

k=0

ζ′′n(k) =: Q′
n +Q′′

n;

see (6.27). Here, the a.s. convergence to zero of the first term on the r.h.s. of (6.28) follows from Theorem

4.1 since the conditions of this theorem for Z̃ are easily verified. The convergence to zero of the second term

on the r.h.s. of (6.28) follows similarly as in (6.25), with the difference that |∆2,n
k β| ≤ Cn−1 since β ∈ C1[0, 1]

and therefore

∣∣ERn,2 − ER̃n,2
∣∣ ≤ Cn−1

n−3∑

k=0

(
nH(k/n)n−1

)2
= O(n−2(1−supt∈[0,1] H(t))) = o(1). (6.29)

The proof of Q′′
n

a.s.−→
n→∞

0 mimics that of Theorem 4.1 and relies on the fact that the ζ′′n(k)’s have the Hermite

rank ≥ 2 (see above). Relation Q′
n

a.s.−→
n→∞

0 follows by the gaussianity of Q′
n and E(Q′

n)
2 = O(n−δ) for some

δ > 0. Since |c(i)n (k)| ≤ CnH(k/n)−1 in view of the first inequality in (6.26) and |∆2,n
k β| ≤ Cn−1, then

E(Q′
n)

2 ≤ Cn−2(1−supt∈[0,1] H(t)) similarly as in (6.29) above. This proves part (ii) and the proposition. �
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Proof of Corollary 4.2

(a) The argument at the end of the proof of Property 4.1 shows that V satisfies Assumption (A.1)′, while

(A.2)p follows from Property 4.2. Then the central limit theorem in (4.22) follows from Theorem 4.2.

(b) In this case, (A.2)p follows from Property 4.3. Instead of verifying (A.1)′, it is simpler to directly verify

condition (4.10) which suffices for the validity of the statement of Theorem 4.2. Using f(ξ) = cξ−2H−1
(
1 +

o(ξ−1/2)
)
(ξ → ∞), similarly as in the proof of Property 4.3 for j ∈ N

∗ one obtains

√
n
∣∣∣n−2HE

[
∆p,n

0 X∆p,n
j X

]
− c 21+p

∫ ∞

0

(1− cos(x))p cos(xj)x−2H−1dx
∣∣∣

= 21+p
∣∣∣
∫ ∞

0

(1 − cos(x))p cos(xj) ×√
n
(
n2H+1(f(nx)− c(nx)−2H−1)

)
dx
∣∣∣ −→

n→∞
0

by the Lebesgue dominated convergence theorem, since
∫∞

0

∣∣(1− cos(x))p cos(xj)x−2H−3/2
∣∣dx <∞. There-

fore condition (4.10) is satisfied and Theorem 4.2 can be applied.

Finally, the function H 7→ Λ2(H) is a C1(0, 1) bijective function and from the Delta-method (see for instance

Van der Vaart, 1998), the central limit theorem in (4.23) is shown. �

Proof of Lemma 5.1

(i) We use the following inequality (see, e.g. Ibragimov and Linnik, 1971, Theorem 1.5.2):

‖Fn −Gα‖∞ ≤ 1

2π

∫

R

∣∣∣fn(θ) − gα(θ)

θ

∣∣∣dθ, (6.30)

where fn, gα are the characteristic functions of Fn, Gα, respectively. According to (5.6) and the definition of

K1,

fn(θ)− gα(θ) = gα(θ)
(
e−2n−1In(θ) − 1

)
,

where, with v := θn1/α,

In(θ) :=

∫ ∞

0

Re(eiu v − 1)dK1(u) =

∫ 1/v

0

· · ·+
∫ ∞

1/v

· · · =: I1 + I2.

If v > 1 then integrating by parts and using (5.9),

|I2| ≤ 2|K1|(1/v) = O(v(α−β)+),

|I1| =
∣∣∣K1(1/v)Re(e

i − 1)−
∫ 1/v

0

K1(u) v sin(uv) du
∣∣∣

≤ 2|K1(1/v)|+ v2
∫ 1/v

0

u|K1(u)|du

= O(v(α−β)+) + v2(1/v)2−(α−β)+ = O(v(α−β)+).

Next, if v ≤ 1, then similarly as above

|I2| ≤ 2|K1|(1/v) = O(vδ),

|I1| =
∣∣∣K1(1/v)Re(e

i − 1)−
∫ 1/v

0

K1(u) v sin(uv) du
∣∣∣

≤ 2|K1(1/v)|+ v2
∫ 1/v

0

u|K1(u)|du

= O(vδ) + Cv2
(∫ 1

0

uu−(α−β)+du+

∫ 1/v

1

u1−δdu
)
= O(vδ∧2).
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Therefore, for some constant C,

|In(θ)| ≤ C

{
(θn1/α)(α−β)+ , θ > 1/n1/α,

(θn1/α)δ∧2, θ ≤ 1/n1/α.

Moreover, gα(θ) = e−c1|θ|
α

for some c1 > 0. Using these facts and (6.30) we obtain

‖Fn −Gα‖∞ ≤ C
( ∫ 1/n1/α

0

n−1(θn1/α)δ∧2 dθ

θ
++

∫ ∞

1/n1/α

n−1(θn1/α)(α−β)+e−c1|θ|
α dθ

θ

)

≤ Cn−1 + C
1

n1−(α−β)+/α

(
1 +

∫ 1

1/n1/α

θ(α−β)+−1dθ
)
.

The above bound easily yields (5.10).

(ii) Follows similarly using (6.30) and the argument in (i) with K1 replaced by K. �

Computation of λ(r)

From the definition of λ(r) and the change of variables x1 = a cosφ, x2 = a sinφ, with |r| < 1,

λ(r) =
1

2π
√
1− r2

∫

R2

|x1 + x2|
|x1|+ |x2|

e
− 1

2(1−r2)
(x2

1−2rx1x2+x2
2)dx1dx2

=

√
1− r2

π

∫ π

0

| cosφ+ sinφ|
(| cosφ|+ | sinφ|)(1 − r sin(2φ))

dφ

=: I1 + I2,

where

I1 =

√
1− r2

π

∫ π/2

0

1

1− r sin(2φ)
dφ

=

√
1− r2

π

∫ ∞

0

1

1 + t2 − 2rt
dt =

1

2
+

1

π
arctan

( r√
1− r2

)
=

1

π
arccos(−r);

I2 =
2
√
1− r2

π

∫ π/4

0

cosφ− sinφ

(cosφ+ sinφ)(1 + r sin(2φ))
dφ =

√
1− r2

π

∫ 1

0

1− t

(1 + t)(1 + 2rt+ t2)
dt

=

√
1− r2

π(1− r)
log
( 2

r + 1

)
.

The function λ(r) is monotone increasing on [−1, 1]; λ(1) = 1, λ(−1) = 0. It is easy to check that

ρ1(H) = 22H−1 − 1, ρ2(H) =
−32H + 22H+2 − 7

8− 22H+1
(6.31)

are monotone increasing functions; ρ1(1) = 1, ρ2(1) = 0 so that Λp(H) = λ(ρp(H)) for p = 1, 2 is also

monotone for H ∈ (0, 1).

Expression and graph of s2(H)

From the Delta-method, s22(H) =
[ ∂
∂x

(Λ2)
−1(Λ2(H))

]2
Σ2(H) and therefore

s22(H) =
( π (8− 22H+1)2(1− ρ2(H))

√
1− ρ22(H)(

log 2− log(1 + ρ2(H))
)(
22H+29 log 2− 32H16 log 3 + 62H4 log(3/2)

)
)2

Σ2(H),

with the approximated graph (using the numerical values of Σ2(H) in Stoncelis and Vaičiulis (2008)):
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discussion, and Mindaugas Stoncelis and Marijus Vaičiulis for providing us with the numerical computations

for the graphs in Figures 2, 4 and 5.



Measuring the roughness of random paths 29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

H

Sta
nda

rd 
dev

iati
on 

s2(
H)

Figure 5. The graph of
√

s22(H)

References

[1] Ait Sahalia, Y. and Jacod, J. (2009) Estimating the degree of activity of jumps in high frequency financial

data. Ann. Statist. 37, 2202–2244.

[2] Arcones, M.A. (1994) Limit theorems for nonlinear functionals of a stationary Gaussian sequence of

vectors. Ann. Probab. 22, 2242–2274.
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[27] Hall, P. and Wood, A. (1993) On the performance of box-counting estimators of fractal dimension.

Biometrika 80, 246–252.

[28] Ho, H.-C. and Sun, T.C. (1987) A central limit theorem for non-instantaneous filters of a stationary

Gaussian. J. Multiv. Anal. 22, 144–155.

[29] Ibragimov, I.A. and Linnik. Y.V. (1971) Independent and Stationary Sequences of Random Variables.

Wolters-Noordhoff, Groningen.

[30] Istas, J. and Lang, G. (1997) Quadratic variations and estimation of the local Hölder index of a Gaussian
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