N
N

N

HAL

open science

Memetic Algorithm with a Large Neighborhood
Crossover Operator for the Generalized Traveling
Salesman Problem

Boris Bontoux, Christian Artigues, Dominique Feillet

» To cite this version:

Boris Bontoux, Christian Artigues, Dominique Feillet. Memetic Algorithm with a Large Neighborhood
Crossover Operator for the Generalized Traveling Salesman Problem. 2008. hal-00238472v1

HAL Id: hal-00238472
https://hal.science/hal-00238472v1
Preprint submitted on 4 Feb 2008 (v1), last revised 25 May 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00238472v1
https://hal.archives-ouvertes.fr

Memetic Algorithm with a Large
Neighborhood Crossover Operator for the
Generalized Traveling Salesman Problem

Boris Bontoux ®*, Christian Artigues®, Dominique Feillet ?

& Université d’Avignon et des Pays de Vaucluse
Laboratoire d’Informatique d’Avignon
F-84911 Avignon Cedex 9, France

PLLAAS CNRS, 7 avenue du Colonel Roche, 31077 Toulouse CEDEX /

Abstract

The Generalized Traveling Salesman Problem (GTSP) is a generalization of the
well-known Traveling Salesman Problem (TSP), in which the set of nodes is divided
into mutually exclusive clusters. The objective of the GTSP consists in visiting each
cluster exactly once in a tour, while minimizing the sum of the routing costs. This
paper addresses the solution of the GTSP using a Memetic Algorithm procedure.
The originality of our approach rests on the crossover procedure that uses a large
neighborhood search. This algorithm is compared with other algorithms on a set of
41 standard test problems with up to 442 nodes. The obtained results show that
our algorithm is efficient in both solution quality and computation time.

Key words: Genetic Algorithm, Traveling Salesman Problem, Large
Neighborhood Search

1 Introduction

In this paper, we propose a solution method for the Generalized Traveling
Salesman Problem (GTSP) based on a memetic algorithm (genetic algorithm
plus local search, see (11) for further details). The GTSP is a generalization

* Corresponding author.

Email addresses: boris.bontoux@univ-avignon.fr (Boris Bontoux),
artigues@laas.fr (Christian Artigues), dominique.feillet@univ-avignon.fr
(Dominique Feillet).

Preprint submitted to Elsevier February 1, 2008

of the well-known Traveling Salesman Problem (TSP). The main contribution
of the paper stands in the crossover operator based on the exploration of a
large neighborhood around the father and mother individuals.

The GTSP can be described as follows. Let G = (V, E) be a complete undi-
rected graph, V' = (vy,...,v,) a set of cities, W = (W4,...,W,,) a set of
clusters, where 0 < m < n. Each city v; € V belongs to exactly one clus-
ter (the clusters are mutually disjoint, thus for i # j, W; N W; = 0 and
WiU...UW,, =V). Routing costs ¢;; for v;,v; € V are defined. The objec-
tive is to find a tour which visits exactly once each cluster while minimizing
the sum of the routing costs. In this work, we only consider symmetric cost
matrices (¢;; = ¢j;), but the algorithm could easily be generalized to the asym-
metric case. In particular, the crossover operator can indifferently be applied
on symmetric or asymmetric instances.

The GTSP is NP-hard, since the special case where m = n (a city per cluster)
is a TSP.

In Section 2, we review the literature on the GTSP. In this work, we address the
resolution of the GTSP with a Genetic Algorithm using a Large Neighborhood
Search crossover procedure (see (1) for a recent work on Large Neighborhood
Search techniques). This algorithm is presented in Section 3. Section 4 provides

a computational evaluation of our algorithm through benchmarks from the
GTSPLIB (22).

2 State of the art

The GTSP was first introduced by Srivastava et al. (28) and Henry-Labordere
(12), each one proposing a resolution through dynamic programming. Laporte
and Norbert (13) and Laporte et al. (14) proposed integer programming ap-
proaches to solve exactly the GTSP. More recently, an efficient Branch & Cut
solution scheme was proposed by Fischetti et al. (9), who provide optimal ob-
jective values for instances up to 442 nodes. They also proposed a deterministic
partitioning method to obtain GTSP instances from TSP instances.

Many researches have been made to transform the GTSP to the TSP (16; 20;
6; 15; 2). Some of the resulting TSP instances have nearly the same number
of nodes as the original GTSP instances. Moreover, some transformations
of the GTSP into the TSP ((20)) have an important property : an optimal
solution to the related TSP can be converted to an optimal solution to the
GTSP. Unfortunately, a feasible non-optimal solution for the TSP may not be
feasible for the GTSP. Furthermore, well-known heuristics for the TSP may
not perform well for the GTSP.

In (19), Noon proposed several heuristics, including an adaptation of the
nearest-neighbor heuristic developed for the resolution of the TSP. Similar
adaptations have been implemented by Fischetti et al. in (9), such as farthest-
insertion, nearest-insertion and cheapest-insertion.

More recently, Renaud and Boctor (24) proposed an heuristic called GI? (Gen-
eralized Initialization, Insertion and Improvement), which is a generalization
of the I? heuristic presented in (23). This heuristic consists of three phases:
an initialisation during which a partial tour is constructed, an insertion phase
which completes the tour by inserting at the cheapest cost cities from un-
visited clusters and an improvement phase based on 2-opt and 3-opt moves
between clusters, called here G2-opt and G3-opt. They also presented the ST
algorithm (for Shortest Tour). This algorithm determines the cheapest cost
sequence of cities visiting the clusters in a chosen order. They showed that
this problem can be solved in polynomial time.

Snyder and Daskin (27) proposed a resolution by a genetic algorithm using
a random-key encoding, encoding which assures that solutions constructed
by crossover or mutations are feasible solutions. The genetic algorithm was
coupled with local search improvement, namely a swap procedure and a 2-
opt neighborhood search, yielding a memetic algorithm. The computational
results show that their algorithm is quite successful, in solution quality and
computational time.

Finally, Silberholz and Golden (26) proposed a genetic algorithm with sev-
eral new features which include isolated initial populations and a new repro-
duction mechanism, based upon the TSP ordered crossover operator. This
new mechanism is called mrOX, for modified rotational ordered crossover. Lo-
cal improvement procedures combined with this mechanism, yielding again a
memetic algorithm, permit to obtain very good results on large new instances
and outperform the other heuristics solutions in terms of solution quality.

A particle swarm optimization based algorithm was recently presented by Shi
et al. in (25). An uncertainty searching strategy and technique to delete the
crossover of traveling lines were used to accelerate the convergence speed,
enhanced by two local search techniques.

Silberholz and Golden (26) proposed the most competitive algorithms pub-
lished to date.

3 The Memetic Algorithm

A genetic algorithm is a search technique widely used to find approximate
solutions in many optimisation problems (see (18) for further details). Ge-
netic algorithms are categorized as metaheuristics and are a particular class of
evolutionary algorithms that use techniques inspired by evolutionary biology
such as inheritance, mutation, selection, and crossover. Memetic algorithms
are genetic algorithms paired with local search techniques (see (11) for further
details). In this section, we present a new memetic algorithm. We particularly
insist on the crossover operator, which is our main contribution. Especially,
to clearly evaluate the impact of this operator, we voluntarily adopt a very
standard implementation for the rest of the algorithm.

3.1 Individuals

Each individual (a solution of the problem) is represented by an ordered list
of clusters, where the first and last clusters are identical. From this represen-
tation, a city tour can be derived, defined as the optimal tour maintaining
the visiting order of clusters. The cost of the individual is the cost of this city
tour. It is obtained using the Shortest Tour algorithm.

The principle of the Shortest Tour algorithm (see (24) for details) is the follow-
ing. A succession of clusters defines a sequence of sets of cities, where cities
from one cluster can only be attained from cities belonging to a preceding
cluster. Representing cities by nodes, we obtain a directed acyclic graph. In
this graph, the subset of paths having identical starting and ending nodes
exactly corresponds to the set of GTSP solutions respecting the order defined
by the cluster sequence. The best solution coincides with the shortest path of
this subset. Seeing that calculating the shortest path in an acyclic graph can
be done in linear time with a simple recursion, the best city tour can easily
be obtained. One just has to successively consider each city of the first (and
last) cluster and compute the shortest path constrained to start and end with
this city. The optimal city tour is the best of these solutions. This procedure
is computationally cheap and, consequently, can be called very often.

3.2 Initial Population

Our initial population contains N individuals. Individuals are constructed
through randomly generated clusters lists. The Shortest Tour algorithm is
applied to determine the optimal city tour and the individual cost. In order
to avoid symmetries, the first (and last) cluster is the same for all individuals;

in order to limit the computation time of the Shortest Tour procedure, the
cluster containing the fewest cities is chosen.

3.3 Population Renewal

At each generation, two individuals are randomly chosen through Roulette
Wheel Selection and paired for crossover. These two parents breed two chil-
dren. This operation is repeated k times. The children are then added to the
population and only the N best individuals are kept.

3.4 Crossover operator

The crossover operator is very important in a genetic or a memetic algorithm.
This operator allows constructing new solutions from existing solutions and
plays a great part in diversification. The crossover procedure we propose here is
inspired from the dropstar procedure used in Bontoux and Feillet (3); shortly,
in this paper, the context was the solution of the Traveling Purchaser Problem
and dropstar was used as a local search operator determining the best subse-
quence from a sequence of cities. It is noteworthy saying that this operator is
also inspired from the algorithm proposed by Prins in (21).

Let Wi, ..., Wi and v;,...,v;, respectively be the clusters tour and the
derived cities tour of an individual, called the father. Let W, ..., W and
Vj,, ..., j,, respectively be these tours for another individual, called the mother.
A new individual - a child - is built by the following procedure. Note that once
a child has been constructed, the roles of the two parents are reversed and a
second child is obtained using the same procedure.

Each mother city is inserted one by one in the father cities tour. The insertion
cost of city vj, in position [in the father cities tour is equal to c;j, + ¢ji, —
Ciyir,,- We consider the insertion of the city v, in the position [in the father
cities tour only if cities placed before and after do not belong to the cluster
of vj;,, that means when v;, ¢ Wy and v;, ¢ Wy . The city v;, is inserted
to the position which minimizes insertion costs. The order in which cities are
inserted is determined by the mother cities tour, i.e. the first inserted city is
the the first city belonging to the mother cities tour.

Once each mother city is inserted, we obtain a clusters tour in which each
cluster appears twice. This sequence is called the master sequence (in (5),
a master sequence is defined as a sequence containing at least one optimal
sequence). Thus, we have to determine the optimal sub tour in which every
cluster is visited exactly once. To this purpose, we adapt the dropstar pro-

cedure, which determines a optimal sub sequence for the resolution of the
Traveling Purchaser Problem. One can expect the optimal subsequence to be
difficult to compute. Actually, computing this subsequence is NP-hard.

This search is computed through a dynamic programming algorithm, applied
to the graph obtained from the tour containing each cluster twice.

This graph is built by the following procedure. An edge is created for each
city from each cluster, each time a cluster appears in the sequence. Vertices
are added from every edge to all edges to the following clusters in the clusters
tour (cf. Fig. 1 for an aggregated vision of the graph and Fig. 2 for an extract
of the complete graph). The procedure consists then in finding the shortest
path in the graph between the first and the last cluster of the clusters tour,
with the constraint that all clusters must be visited exactly once and that
the solution must be a cycle. The cost of the path is equal to the sum of the
routing costs. This crossover permits to obtain the optimal sub sequence in
which each cluster appears once from a sequence where each cluster appears
twice.

For example, let suppose that W = {1,...,5} is the set of clusters. let

Wy Wy Wy Ws Wy Wy
Wy Wy Wy Ws W3 Wy

be the clusters tours of the father and the mother. The tour in which each
cluster appears twice may be :

Wy Wy Wy Wy Wi Wy Ws Wy W5 Wy

The dynamic programming algorithm determines an optimal cities sequence,
which, once a clusters sequence is derived, defines a new individual.

Figure 1. Example of crossover and corresponding graph used by the dropstar pro-
cedure : aggregated view of clusters

Ug

() ()

/—

©) ©
()

Figure 2. Example of crossover and corresponding graph used by the dropstar pro-
cedure : precise view

The crossover procedure permits to choose the best individual among a very
large set of individuals; it allows an interesting diversification in the memetic
algorithm and ensures populations of good quality.

3.4.1 Dominance Rules

The dynamic programming algorithm used to find the shortest path in the
graph is inspired from the algorithm developed in Feillet et al. (7) for the
Elementary Shortest Path Problem with Resource Constraints This algorithm
is an extension of the classical Bellman’s labelling algorithm. Our algorithm
starts from the first cluster and constructs iteratively paths, with the con-
straint that every cluster has to be visited exactly once. Solutions are built
through partial paths extension. The algorithm maintains a set of labels cor-
responding to partial paths. Extension of a label [consists in creating a label
I’ by adding to the partial path an outgoing edge to any city belonging to a
non visited cluster. In order to limit the number of labels, we propose to apply
dominance rules.

In the following, we note L = (C,v;,, ..., v;,) alabel corresponding to a partial
path, where C represents the routing cost of the partial path and v;; the city
v; visited in the position j. It is easy to know which clusters have been visited
by the partial path since each city belongs to a cluster. A label L' dominates
a label L?, which is noted L' < L?, when the two partial paths represented by

these labels lead to the same vertex and one can be sure that any extension of
L' is going to be cheaper than the identical extension for L2. In this problem,
L' dominates the label L? if and only if all the clusters visited by L? have also
been visited by L! and if the cost of L! is lower or equal to the cost of L2. In
that case, L' dominates L? and L? can be deleted.

3.4.2 Lower Bounds

Each time a label is extended to a city, a lower bound is computed. If this
lower bound is greater than the cost of the father (which is an upper bound),
the label is deleted; we can note that the father clusters tour belongs to the
master sequence sub set, while it is not the case for the mother clusters tour.
As a consequence, the cost of the father is an upper bound. Furthermore, if
a complete solution with a better cost than the father solution cost is found
during the resolution of the crossover, the upper bound is updated.

The lower bound is computed as follows. Since each cluster has to be visited,
a visiting cost is added to the actual cost of the label for each cluster that
has not been visited yet by the label. The visiting cost for the cluster j is the
minimal cost to reach any city belonging to the cluster j, starting from any
cluster located between the position of the last cluster visited by the label and
the position of the cluster j last occurence in the sequence.

The visiting cost is computed once for all, as soon as the master sequence is
set. It is computed for each cluster and for each position in the sequence.

For example, let the sequence be :
Wy Wy W3 Wy Wi Wy W3 Wy W5 Wy

We compute the vising cost at the position 5 for each cluster. We only consider
clusters which have at least one occurence located after the position 5. At the
position 5 (corresponding to the cluster W), the visiting cost of the cluster 1,
is undefined since the cluster W; is no longer reachable (all occurences of the
cluster W1 are located before the position 5). The visiting cost of the cluster
W5 is the minimal cost to reach any city belonging from the cluster W, starting
from the cluster W5 or the cluster W3 (the cluster W1 is not considered, since
its last occurence is located before the position 5). The visiting cost of the
cluster Wj is the minimal cost to reach any city belonging from the cluster Ws
starting from the cluster W5 or the cluster Ws. Finally, the visiting cost of the
cluster Wy is the minimal cost to reach any city belonging from the cluster
W, starting from the cluster Wi, the cluster W5 or the cluster Wi.

These lower bounds permit to limit the number of labels and therefore to
speed up the resolution of the crossover procedure.

3.4.8 Graph Reduction

Since every cluster has to be visited, no edge is allowed to skip all occurences of
a cluster. Moreover, two occurences of a cluster cannot be connected. Finally,
a cluster at position j in the master sequence should be connected only to the
first occurence of any other cluster, if both occurences are located after position
7. Fig.3 presents the graph obtained from the previous example, applying these
rules.

Figure 3. Example of crossover and corresponding reduced graph used by the drop-
star procedure : aggregated view of clusters

3.4.4 No longer reachable clusters

For each position on the master sequence, a list of no longer reachable clusters
can be easily computed (a cluster is no longer reachable if its latest position in
the sequence is located before the current position). When a label is extended
to a cluster located on the position [, a simple procedure controls if every
cluster on the list attached to the position [has been visited by the label. If
this is not the case, the label will not be able to construct a valid solution,
and is therefore deleted.

3.4.5 Heuristic crossover variant

The crossover procedure is a very long procedure. In order to speed up its
resolution, we proposed three heuristics crossover variants.

Limitation of the labels list sizes : In our dynamic programming algo-
rithm, a list of labels is associated to every city. Despite of the dominance
rules, the size of these lists may be significant. The goal is therefore to limit
the number of labels in the list. To this purpose, an evaluation is associ-
ated to a label. Firstly, once the master sequence is set, a coefficient called
coeff,,q is computed. This coefficient is equal to the ratio between the cost
of the father solution and the lower bound at the beginning of the master
sequence (i.e. when no cluster has been visited yet). The label evaluation
is then equal to the cost of the label partial path, added to the sum of the

visiting cost of non visited clusters, multiplied by coeff,,q.

evaluation = cost + Z visiting cost(i) * coeffe,q

cluster ¢ non visited

The formula avoids the preference of labels that have not visited many clus-
ters (i.e. with a very low lower bound). This evaluation permits to establish
an ordered list of labels. Once the labels list has reached the limit size, labels
with the worst evalution are removed. In our experiments, the limit size of
the lists has been set to 100.

Limitation of the city number : An estimation of the insertion cost in the
master sequence is computed for every city. The estimation for the city v;,
in the position [in the master sequence is computed as follows :

estimation = Z Cigje T Ciriy — Ciaip
ia€(1—2,1—1) and i, €(I+1,1+2)

In order to limit the number of cities in each cluster, the maximum size of
the cluster is set to (sizefoeﬁc“y} where size; is the size of the cluster i. If the
maximum size of the cluster is reached, the cities with the greatest insertion
cost are removed. In our experiments, coeff.;, has been set to 0.8.

3.5 Mutation

A mutation procedure is applied to improve the population diversity. Each
individual has a 5% probability of being selected for mutation. The mutation
consists in swapping two randomly choosen clusters and applying the Shortest
Tour algorithm to compute the optimal city tour and the new individual cost.

3.6 Local search heuristic

The procedures presented here are applied on the city tour obtained from
the crossover as long as some improvements are reached. Each time a better
city tour is obtained, the corresponding cluster sequence is extracted and the
Shortest Tour algorithm is applied to compute the optimal city tour and the
new individual cost.

3.6.1 2-opt

This procedure is well-known in the context of the TSP (see (17) for more
details). The move consists in choosing two arcs in the cities tour, permutating
the circulation between the ending vertices of these arcs and reconnecting the

10

tour. The complexity of the procedure is O(m?) where m is the number of
clusters. The Shortest Tour algorithm is applied once the procedure is over,
i.e when no improvrement is reached.

3.6.2 3-opt

Similar to the 2-opt, the 3-opt (presented also in (17))chooses three arcs in
the tour and de-interlace the path between the ending cities of these arcs. The
complexity of the procedure is O(m?). The Shortest Tour algorithm is applied
once the procedure is over, i.e when no improvrement is reached.

3.6.3 Mowve

This procedure consists in removing a cluster, duplicating it m — 1 times
and inserting it between all clusters. On this sequence in which one cluster
appears m — 1 times, a procedure similar to the one used for the crossover is
applied. This procedure determines the best position for the cluster, computing
the shortest path in a graph with the constraint that each cluster must be
visited only once. This procedure is called for every cluster, as long as some
improvements are reached. Due to its complexity, the procedure is called when
a new best solution to the problem has been reached.

Let
Wy Wy Wy W5 Wy Wy

be the clusters tours of an individual. The mowve procedure is applied, inserting
the cluster Wj. The sequence obtained is the following :

Wy, Wy Wy Wy Wy Wy Wy Wy Wy

Fig.4 presents the resulting graph on which the dropstar procedure is applied.

CAOCADADRCACITADAD

Figure 4. Example of the move operator and corresponding reduced graph : aggre-
gated view of clusters

11

3.7 Stopping criteria

The heuristic stops when Nbl generations have been computed or when no
improvement has been made during Nb2 generations.

3.8 Memetic Algorithm heuristic

Figure 1 presents a synthetic view of our algorithm.

Algorithm 1 Memetic Algorithm
Compute an initial population of N random individuals
while the number of iterations is lower than Nbl or no improvement has
occurred for Nb2 iterations do
for i =0 to k do
Choose 2 individuals randomly
Construct 2 children with crossover
Apply local search on both children
Add children to the population
end for
Keep the N best individuals in the population
Apply mutation with a 5% probability.
end while

4 Computational Results

The algorithm was coded in C++ and run on an Intel Pentium IV 2.00 Ghz
under Linux/Debian. Instances used are part of the GTSPLIB library ' which
proposes a set of 65 instances. Among these instances, we have selected 41
instances used in several papers ((27; 24; 9)) in order to compare our algorithm
to others. Presented results are the mean results obtained through 5 attempts
for each instance.

Fischetti et al. (9) proposed a Branch & Cut algorithm to solve the symmetric
GTSP. In their work, they derive test problems by applying a deterministic
partitioning method to 46 standard TSP instances from the TSPLIB library.
For a given instance, the number of clusters is fixed to m = [n/5|. Then, m
centers are determined by considering m nodes as far as possible from each
other. The clusters are finally obtained by assigning each node to its nearest
center. They provide optimal objective values for each of the problems.

1 GTSPLIB is available at the address http://www.cs.rhul.ac.uk /home/zvero/GTSPLIB/

12

For all computational tests, we set the number of individuals per population
(N) to 50, the number of crossovers (2 k) equal to 30, the maximum number
of iterations (Nb1) to 100 and the maximum number while the best solution
cost stays unchanged (Nb2) equal to 5.

Table 1 presents the performances of our algorithm regarding the gap with
optimal solutions provided by the Branch & Cut algorithm from Fischetti et
al. (9). The column headings are defined as follows:

e instance: the name of the test problem; the digits at the beginning of the
name give the number of clusters, those at the end give the number of nodes;

e opt: the optimal objective value for the problem:;

e best: the number of trials, out of five, for which our algorithm found the
optimal solution;

e mean gap: the mean gap of our algorithm above the optimum (percentage);

e min gap: the minimal gap of our algorithm above the optimum (percentage);

e max gap: the maximal gap of our algorithm above the optimum (percent-

age).

Results written in bold represent cases for which the solution we found is equal
to the optimal one.

13

Table 1

Experimental results : quality of the solutions

instance opt best mean gap | min gap max gap
10att48.gtsp 5394 5 0.00 0.00 0.00
10gr48.gtsp 1834 5 0.00 0.00 0.00
10hk48.gtsp 6386 5 0.00 0.00 0.00
11eil51.gtsp 174 5 0.00 0.00 0.00
12brazil58.gtsp 15332 5 0.00 0.00 0.00
14st70.gtsp 316 5 0.00 0.00 0.00
16¢€il76.gtsp 209 5 0.00 0.00 0.00
16pr76.gtsp 64925 5 0.00 0.00 0.00
20kroA100.gtsp 9711 5 0.00 0.00 0.00
20kroB100.gtsp | 10328 5 0.00 0.00 0.00
20kroC100.gtsp 9554 5 0.00 0.00 0.00
20kroD100.gtsp 9450 5 0.00 0.00 0.00
20kroE100.gtsp 9523 5 0.00 0.00 0.00
20rat99.gtsp 497 5 0.00 0.00 0.00
20rd100.gtsp 3650 5 0.00 0.00 0.00
21eil101.gtsp 249 5 0.00 0.00 0.00
211in105.gtsp 8213 5 0.00 0.00 0.00
22pr107.gtsp 27898 5 0.00 0.00 0.00
24gr120.gtsp 2769 5 0.00 0.00 0.00
25pr124.gtsp 36605 5 0.00 0.00 0.00
26bier127.gtsp 72418 5 0.00 0.00 0.00
28prl36.gtsp 42570 5 0.00 0.00 0.00
29pr144.gtsp 45886 5 0.00 0.00 0.00
30kroA150.gtsp | 11018 5 0.00 0.00 0.00
30kroB150.gtsp | 12196 5 0.00 0.00 0.00
31prlb2.gtsp 51576 5 0.00 0.00 0.00
32ul59.gtsp 22664 5 0.00 0.00 0.00
39rat195.gtsp 854 5 0.00 0.00 0.00
40d198.gtsp 10557 5 0.00 0.00 0.00
40kroA200.gtsp | 13406 5 0.00 0.00 0.00
40kroB200.gtsp | 13111 5 0.00 0.00 0.00
45ts225.gtsp 68340 5 0.00 0.00 0.00
46pr226.gtsp 64007 5 0.00 0.00 0.00
53gil262.gtsp 1013 4 0.02 0.00 0.10
53pr264.gtsp 29549 5 0.00 0.00 0.00
60pr299.gtsp 22615 5 0.00 0.00 0.00
641in318.gtsp 20765 3 0.38 0.00 1.02
80rd400.gtsp 6361 2 0.78 0.00 2.09
841417 .gtsp 9651 5 0.00 0.00 0.00
88pr439.gtsp 60099 4 0.10 0.00 0.50
89pch442.gtsp 21657 1 0.80 0.00 1.99

14

Table 1 shows that, with 5 attempts, 41 instances out of 41 are optimally
solved and that for 36 of these instances, the optimal solution is found at
each run of the memetic algorithm. The difference between the best and the
worst solution returned from the 5 trials always remains small , which seems
to indicate that our algorithm is robust: 38 instance are solved with a maximal
gap lesser than 1 %, the gap never exceeds 2.09 % even on large instances.

Table 2 gives information about running times and iterations. The column
headings are as follows :

e instance: the name of the test problem:;

e best: the number of trials, out of five, for which our algorithm found the
optimal solution;

mean time: the mean CPU time in seconds;

min time: the minimum CPU time in seconds;

max time: the maximum CPU time in seconds;

iterations: the mean numbers of iterations.

15

Table 2

Experimental results: CPU time and iterations numbers

instance best | mean time min time max time | iterations
10att48.gtsp 5 0.29 0.21 0.44 6
10gr48.gtsp 5 0.22 0.2 0.24 6
10hk48.gtsp 5 0.25 0.17 0.37 6
11eil51.gtsp 5 0.29 0.26 0.33 6
12brazil58.gtsp 5 0.25 0.23 0.28 6.2
14st70.gtsp 5 0.32 0.26 0.45 6.2
16¢€il76.gtsp 5 0.36 0.32 0.44 6
16pr76.gtsp 5 0.52 0.37 0.61 6.2
20kroA100.gtsp 5 0.95 0.58 1.56 6.2
20kroB100.gtsp 5 1.41 1.09 1.9 6.4
20kroC100.gtsp 5 1.07 0.69 1.33 6
20kroD100.gtsp 5 1.09 0.84 1.35 6
20kroE100.gtsp 5 1.3 0.79 1.72 6.6
20rat99.gtsp 5 2.85 2.25 3.58 6.8
20rd100.gtsp 5 3.1 2.12 3.71 7.8
21eil101.gtsp 5 1.54 1.36 1.67 7.4
211in105.gtsp 5 1.09 0.89 1.48 6
22pr107.gtsp 5 2.6 2.22 3.17 6.2
24gr120.gtsp 5 3.35 2.32 4.41 7.4
25pr124.gtsp 5 3.21 2.29 4.05 6.6
26bier127.gtsp 5 4.04 2.6 5.79 6.6
28pr136.gtsp 5 6.61 4.97 8.62 7.6
29pr144.gtsp 5 6.47 5.01 8.24 8.4
30kroA150.gtsp 5 11.57 8.37 13.64 7
30kroB150.gtsp 5 12.35 11.49 13.2 7.6
31prl52.gtsp 5 7.03 5.03 8.84 7.6
32ul59.gtsp 5 10.22 6.68 12.95 6.8
39rat195.gtsp 5 43.07 25.29 61.8 8.4
40d198.gtsp 5 22 15.11 28.1 7.4
40kroA200.gtsp 5 39.42 31.5 45.66 9
40kroB200.gtsp 5 36.88 31.93 41.37 8.4
45t5225.gtsp 5 108.77 52.2 168.9 11.8
46pr226.gtsp 5 10.16 8.12 13.26 6.4
53pr264.gtsp 5 75.44 58.99 94.29 8.4
53gil262.gtsp 4 131.4 108.22 157.9 11.6
60pr299.gtsp 5 139.77 109.64 163.15 9.4
641in318.gtsp 3 142.63 71.53 183.01 12
80rd400.gtsp 2 260.48 220.78 305.19 9.2
841417 .gtsp 5 41.95 21.21 55.94 8.2
88pr439.gtsp 4 352.55 302.01 360.86 14.8
89pcb442.gtsp 1 307.53 292.23 387.46 14.4

16

The results presented in Table 2 show that our algorithm can solve optimally
24 out of the 41 instances with a running time below 10 seconds (at each run).
Actually, in most cases, the optimal solution is found during the very first it-
erations of the algorithm and most of the time is spent to trigger the stopping
criteria (5 iterations without improvement). The CPU time to solve the in-
stances is more significant for large instances, whitout exceeding 400 secondes.

Table 3 presents a comparison between the memetic algorithm from Snyder
(27), the GI? of Renaud et al. (24), the 2 heuristics (Lagrangian and ”root-
node”) presented by Fischetti, Salazar-Gonzales and Toth (9) and the Branch
& Cut algorithme from Fischetti et al. presented in (9).

The results have been obtained on the following computers:

e Snyder : Pentium IV 3.2 GHz processor and 1 GB RAM.
e GI3 and NN: Sun Sparc Station LX.
e FST-Lagr. , FST-Root. and B& C. : HP 9000/720.

For each algorithm, two columns are presented in the table:
e Gap: the mean gap of the algorithm above the optimal solutions (percent-

age);
e CPU: the CPU time in seconds.

17

Table 3
Results for several algorithms

Bontoux Snyder GI Noon FST-Lagr FST-Root BC
instance Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU Gap CPU CPU
10att48.gtsp 0.00 0.29 | 0.00 0.00 0.00 0.90 | 0.00 2.10 2.1(
10gr48.gtsp 0.00 0.22 | 0.00 0.50 0.00 0.50 | 0.00 1.90 1.9(
10hk48.gtsp 0.00 0.25 | 0.00 0.20 0.00 1.10 | 0.00 3.80 3.8(
11eil51.gtsp 0.00 0.29 | 0.00 0.10 | 0.00 0.30 | 0.00 0.40 | 0.00 0.40 | 0.00 2.90 2.9(
12brazil58.gtsp | 0.00 0.25 | 0.00 0.30 0.00 1.40 | 0.00 3.00 3.0(
14st70.gtsp 0.00 0.32 | 0.00 0.20 | 0.00 1.70 | 0.00 0.80 | 0.00 1.20 | 0.00 7.30 7.3(
16€il76.gtsp 0.00 0.36 | 0.00 0.20 | 0.00 2.20 | 0.00 1.10 | 0.00 1.40 | 0.00 9.40 9.4(
16pr76.gtsp 0.00 0.52 | 0.00 0.20 | 0.00 2.50 | 0.00 1.90 | 0.00 0.60 | 0.00 12.90 12.9(
20kroA100.gtsp | 0.00 0.95 | 0.00 0.40 | 0.00 6.80 | 0.00 3.80 | 0.00 2.40 | 0.00 18.30 18.4(
20kroB100.gtsp | 0.00 1.41 | 0.00 0.40 | 0.00 6.40 | 0.00 2.40 | 0.00 3.10 | 0.00 22.10 22.2(
20kroC100.gtsp | 0.00 1.07 | 0.00 0.30 | 0.00 6.50 | 0.00 3.60 | 0.00 2.20 | 0.00 14.30 14.4(
20kroD100.gtsp | 0.00 1.09 | 0.00 0.40 | 0.00 8.60 | 0.00 5.40 | 0.00 2.50 | 0.00 14.20 14.3(
20kroE100.gtsp | 0.00 1.3 | 0.00 0.80 | 0.00 6.70 | 0.00 2.80 | 0.00 0.90 | 0.00 12.90 13.0(
20rat99.gtsp 0.00 2.85 | 0.00 0.70 | 0.00 5.00 | 0.00 7.30 | 0.00 3.10 | 0.00 51.40 54.5(
20rd100.gtsp 0.00 3.1 | 0.00 0.30 | 0.80 7.30 | 0.08 8.30 | 0.00 2.60 | 0.00 16.50 16.6(
21eil101.gtsp 0.00 1.54 | 0.00 0.20 | 0.40 5.20 | 0.40 3.00 | 0.00 1.70 | 0.00 25.50 25.6(
211in105.gtsp 0.00 1.09 | 0.00 0.30 | 0.00 14.40 | 0.00 3.70 | 0.00 2.00 | 0.00 16.20 16.4(
22pr107.gtsp 0.00 2.6 | 0.00 0.40 | 0.00 8.70 | 0.00 5.20 | 0.00 2.10 | 0.00 7.30 7.4(
24gr120.gtsp 0.00 3.35 | 0.00 0.50 1.99 4.90 | 0.00 41.80 41.9(
25pr124.gtsp 0.00 3.21 | 0.00 0.60 | 0.43 12.20 | 0.00 12.00 | 0.00 3.70 | 0.00 25.70 25.9(
26bier127.gtsp 0.00 4.04 | 0.00 0.50 | 5.55 36.10 | 9.86 7.80 | 0.00 11.20 | 0.00 23.30 23.6(
28pr136.gtsp 0.00 6.61 | 0.00 0.50 | 1.28 12.50 | 5.54 9.60 | 0.82 7.20 | 0.00 42.80 43.0(
29pr144.gtsp 0.00 6.47 | 0.00 0.30 | 0.00 16.30 | 0.00 11.80 | 0.00 2.30 | 0.00 8.00 8.2(
30kroA150.gtsp | 0.00 11.57 | 0.00 1.30 | 0.00 17.80 | 0.00 22.90 | 0.00 7.60 | 0.00 100.00 100.3(
30kroB150.gtsp | 0.00 12.35 | 0.00 1.00 | 0.00 14.20 | 0.00 20.10 | 0.00 9.90 | 0.00 60.30 60.6(
31pr152.gtsp 0.00 7.03 | 0.00 1.50 | 0.47 17.60 1.80 10.30 | 0.00 9.60 | 0.00 51.40 94.8(
32ul59.gtsp 0.00 10.22 | 0.00 0.60 | 2.60 18.50 | 2.79 26.50 | 0.00 10.90 | 0.00 139.60 146.4(
39rat195.gtsp 0.00 43.07 | 0.00 0.70 | 0.00 37.20 1.29 86.00 | 1.87 8.20 | 0.00 245.50 245.9(
40d198.gtsp 0.00 22 | 0.00 1.20 | 0.60 60.40 | 0.60 118.80 | 0.48 12.00 | 0.00 762.50 763.1(
40kroA200.gtsp | 0.00 39.42 | 0.00 2.70 | 0.00 29.70 | 5.25 53.00 | 0.00 15.30 | 0.00 183.30 187.4(
40kroB200.gtsp | 0.00 36.88 | 0.00 1.40 | 0.00 35.80 | 0.00 135.20 | 0.05 19.10 | 0.00 268.00 268.5(
45t5225.gtsp 0.00 108.77 | 0.00 2.40 | 0.61 89.00 | 0.00 117.80 | 0.09 19.40 | 0.09 1298.40 | 37875.9(
46pr226.gtsp 0.00 10.16 | 0.00 1.00 | 0.00 25.50 | 2.17 67.60 | 0.00 14.60 | 0.00 106.20 106.9(
53gil262.gtsp 0.02 131.4 | 0.79 1.90 | 5.03 115.40 1.88 122,70 | 3.75 15.80 | 0.89 1443.50 6624.1(
53pr264.gtsp 0.00 75.44 | 0.00 1.30 | 0.36 64.40 | 5.76 147.20 | 0.33 24.30 | 0.00 336.00 337.0(
60pr299.gtsp 0.00 139.77 | 0.02 6.10 | 2.23 90.30 | 2.01 281.80 | 0.00 33.20 | 0.00 811.40 812.8(
641in318.gtsp 0.38 142.63 | 0.00 3.50 | 4.59 206.80 | 4.92 317.00 | 0.36 52.50 | 0.36 847.80 1671.9(
80rd400.gtsp 0.78 260.48 | 1.37 3.50 | 1.23 103.50 | 3.98 1137.10 | 3.16 59.80 | 2.97 5031.50 7021.4(
8411417 .gtsp 0.00 41.95 0.07 2.40 0.48 427.10 1.07 1341.00 0.13 77.20 | 0.00 16714.40 | 16719.4(
88pr439.gtsp 0.10 352.55 | 0.23 9.10 | 3.52 611.00 | 4.02 1238.90 | 1.42 146.60 | 0.00 5418.90 5422.8(
89pch442.gtsp 0.80 307.53 | 1.31 10.10 | 5.91 567.70 | 0.22 838.40 | 4.22 78.80 | 0.29 5353.90 | 58770.5(

18

The results presented in the table 3 show that our algorithm seems at least
as efficient as the genetic algorithm proposed by Snyder. Snyder algorithm is
much more faster, but returns solutions with higher gaps when the instance
size increases. Others algorithms seems to be slower or to return worse solu-
tions. We can also notice that for the smallest instances, optimal solutions are
quickly reached whatever the algorithm used.

5 Conclusions and future research

In this paper, we proposed to solve the GTSP using a memetic algorithm
where the crossover operator relies on large neighborhood search. Our main
contribution is the originality of our crossover procedure. Experimental results
show that our algorithm is robust and presents a good balance between CPU
time and quality of the solutions. 40 of the 41 problems are solved optimally
and the gap between returned and optimal solutions never exceeds 2.09 %.

However, experimental results do not seem completely relevant in order to
discuss the efficiency of our algorithm and to compare to other approaches
proposed in the literature. Many instances may be easily solved to the opti-
mum. However, the crossover procedure should be quickened to be efficient on
larger instances.

References

[1] Ahuja R. K., Ergun O., and Orlin J. B., Punnen A. P.: A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathemat-
ics, vol.123, p. 75102 (2002)

[2] Ben-Arieh D., Gutin G., Penn M., Yeo A., Zverovitch A.: Transformations
of generalized ATSP into ATSP. Operations Research Letters, vol. 31,
p.357-365 (2003)

[3] Bontoux B., Feillet D.: Ant Colony Optimization for the Traveling Pur-
chaser Problem. Computer & Operations Research, vol. 35, no 2, p. 628-
637 (2008)

[4] Chentsov A.G., Korotayeva L.N.,: The Dynamic Programming Method in
the Generalized Traveling Salesman Problem. Math. Comput. Modelling,
vol. 25, no. 1, p. 93-105, (1997)

[5] Dauzere-Péres S., Sevaux M.: An exact method to minimize the number
of tardy jobs in single machine scheduling. Journal of Scheduling, vol. 7,
p. 405-420 (2004)

[6] Dimitrijevic V., Saric Z.: An Efficient Transformation of the Generalized

19

Traveling Salesman Problem into the Traveling Salesman Problem on
Digraphs. Information Sciences, 102, p. 105-110, (1997)

Feillet D., Dejax P., Gendreau M., Guegen C.: An exact algorithm for
the Elementary Shortest Path Problem with Ressource Constraints : ap-
plication to some vehicle routing problems. Networks, vol. 44, p. 216-229
(2004)

Fischetti M., Salazar-Gonzales J.J., Toth P.: The Symmetric Generalized
Traveling Salesman Polytope. Networks, vol. 26(2), p. 113-123 (1995)
Fischetti M., Salazar-Gonzéles J.J., Toth P.: A Branch-and-Cut algorithm
for the Symmetric Generalized Traveling Salesman Problem. Operationas
Research, vol. 45(3), p. 378-394 (1997)

Garey M.R., Johnson D.: Computer and Intractability : A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, (1979)
Hart W. E., Krasnogor N., Smith J. E.: Recent Advances in Memetic
Algorithms. Springer, (2005)

Henry-Labardere A.L.: The record balancing problem : A dynamic pro-
gramming solution of a generalized traveling salesman problem RAIRO,
vol. B2, p.43-49 (1969)

Laporte G., Nobert Y.: Generalized Travelling Salesman Problem through
n Sets of Nodes : An integer programming approach. INFOR 21, vol. 1,
p. 61-75 (1984)

Laporte G., Mercure H., Nobert Y.: Generalized Travelling Salesman
Problem through n Sets of Nodes : the Asymmetrical Case. Discrete Ap-
plied Mathematics, vol. 18, p. 185-197 (1984)

Laporte G., Semet F.: Computational evaluation of a transformation pro-
cedure for the symmetric generalized traveling salesman problem. INFOR
37, vol. 2, p.114-120 (1999)

Lien Y-N., Ma E., Wah B.: Transformation of the Generalized Traveling-
Salesman Problem into the Standard Traveling-Salesman Problem Infor-
mation Sciences, 74, p. 177-189 (1993)

Lin S.: Computer solutions of the traveling salesman problem. Bell Sys-
tems Journal, 44, p. 2245-2269 (1965)

Man K.F., Tang K.S. , Kwong S.: Genetic Algorithms: Concepts and
Designs Springer (1999)

Noon C.E., Bean J.C.: A Lagrangian Based Approach for the Asymmetric
Generalized Traveling Salesman Problem. Operations Research, vol. 39,
no. 4, (1991)

Noon C.E., Bean J.C.: An Efficient Transformation of the Generalized
Traveling Salesman Problem. INFOR, vol. 31, no. 1 (1993)

Prins C.: A simple and effective evolutionary algorithm for the VRP.
Computers & Operations Research, vol. 31, no. 12, p. 1985-2002 (2004)
Reinelt G.: TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing 3, p.376-384 (1991)

Renaud, J., Boctor, F.F., Laporte, G.: A fast composite heuristic for the
symmetric traveling salesman problem. INFORMS, Journal on Comput-

20

[24]

[25]

28]

ing, vol. 8, p. 134-143 (1996)

Renaud J., Boctor F.F.: An Efficient Composite Heuristic for the Sym-
metric Generalized Traveling Salesman Problem. European Journal of
Operational Research, vol. 108, p. 571-584 (1998)

Shi X.H. | Liang Y.C., Lee H.P., Lu C., Wang Q.X.: Particle swarm
optimization-based algorithms for TSP and generalized TSP. Information
Processing Letters, vol. 103(5), p. 169-176 (2007)

Silberholz J., Golden B.: The Generalized Traveling Salesman Problem: A
New Genetic Algorithm Approach. Extending the Horizons: Advances in
Computing, Optimization, and Decision Technologies , p. 165-181 (2007)
Snyder L.V., Daskin M.S.: A Random-Key Genetic Algorithm for the
Generalized Traveling Salesman Problem. European Journal of Opera-
tional Research, vol. 174, p. 38-53 (2006)

Srivastava S.S.S., Kumar R.C.G., Sen P.: Generalized Traveling Salesman
Problem through n sets of nodes. CORS Journal, vol. 7, p. 97-101 (1969)

21

