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Abstract

We study in this paper a posteriori error estimates for H1-conforming numerical approxi-
mations of diffusion problems with a scalar, piecewise constant, and arbitrarily discontinuous
diffusion coefficient. We derive estimators for the energy norm and the dual norm of the resid-
ual which give a guaranteed global upper bound in the sense that they feature no undetermined
constants. (Local) lower bounds, up to constants independent of the diffusion coefficient, are
also derived. In particular, no condition on the diffusion coefficient like its monotonous increas-
ing along paths around mesh vertices is imposed, whence the present results are fully robust and
include also the cases with singular solutions. For the energy error setting, the key requirement
turns out to be that the diffusion coefficient is piecewise constant on dual cells associated with
the vertices of an original simplicial mesh and that harmonic averaging is used in the scheme.
This is the usual case, e.g., for the cell-centered finite volume method, included in our analysis
as well as the vertex-centered finite volume, finite difference, and continuous piecewise linear fi-
nite element ones. For the dual norm setting, no such a requirement is necessary. Our estimates
are based on H(div)-conforming flux reconstruction obtained thanks to the local conservativity
of all the studied methods on the dual grids, which we recall in the paper, together with their
mutual relations. Numerical experiments confirm the guaranteed upper bound, full robustness,
and excellent efficiency of the derived estimators.

1 Introduction

We consider in this paper a model diffusion problem

−∇ · (a∇p) = f in Ω, (1.1a)

p = 0 on ∂Ω, (1.1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set),

a is a scalar diffusion coefficient, and f is a source term. We shall derive here a posteriori error
estimates for continuous piecewise linear finite element, vertex-centered finite volume, cell-centered
finite volume, and finite difference approximations of this problem.

∗This work was supported by the GNR MoMaS project “Numerical Simulations and Mathematical Modeling of
Underground Nuclear Waste Disposal”, PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN, France.
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A posteriori error estimates for finite element discretization of (1.1a)–(1.1b) have been a pop-
ular research subject starting from the Babuška and Rheinboldt work [8]. One may formulate
the following five properties describing an optimal a posteriori error estimate: 1) deliver an up-
per bound on the error in the numerical solution which only uses the approximate solution and
which can be fully, without the presence of any unknown quantities, evaluated (guaranteed upper
bound); 2) give an expression for the estimated error locally, for example in each element of the
computational mesh, and ensure that this estimate on the error represents a lower bound for the
actual error, up to a generic constant (local efficiency); 3) ensure that the ratio of the estimated
and actual error goes to one as the computational effort goes to infinity (asymptotic exactness); 4)
guarantee the three previous properties independently of the parameters and of their variation (ro-
bustness); 5) give estimators which can be evaluated locally (negligible evaluation cost). Property
1) allows to give a certified error upper bound, 2) is crucial for the suitability of the estimates for
adaptive mesh refinement, 3) and 4) ensure the optimality of the upper bound, and 5) guarantees
that the evaluation cost will be much smaller than the cost required to obtain the approximate
solution itself.

A vast amount of books and papers have been dedicated to a posteriori error estimates for finite
elements. We cite in particular the books by Verfürth [45], Ainsworth and Oden [3], Neittaanmäki
and Repin [33], and Repin [38], cf. also Braess [13]. Among the different types of estimators,
the so-called equilibrated fluxes estimates, based on equilibration of side fluxes and construction
of an H(div)-conforming flux, enable under certain circumstances to deliver a guaranteed upper
bound. These type of estimates are pursued, e.g., by Ladevèze and Leguillon [30], Repin [39],
Destuynder and Métivet [23], Luce and Wohlmuth [32], Vejchodský [44], Korotov [28], or Braess
and Schöberl [15], and can be traced back to the Prager–Synge equality [36] and the hypercircle
method, cf. Synge [43]. They have also recently been shown robust with respect to the polynomial
degree in [14]. Much fewer results are known for finite volume methods; we refer, e.g., to Xu et
al. [51] and the references therein.

One particular issue is the robustness with respect to discontinuous coefficient a. Robust esti-
mates have been derived by Bernardi and Verfürth [12], Petzoldt [35], Ainsworth [1], or Chen and
Dai [22]. All these estimates are, however, based on the “monotonicity around vertices” condition
on the distribution of the diffusion coefficient ([12, Hypothesis 2.7]) or a similar assumption. This
condition is, unfortunately, very restrictive and in particular excludes the physically interesting
cases where regions with different diffusion coefficients meet in a checkerboard pattern and where
the weak solution can present singularities. Recently, Cai and Zhang [17] claimed that their es-
timates do not need any such a condition. This is certainly true for the error upper bound, but,
unfortunately, [12, Hypothesis 2.7] is used in [17, Section 4.1] in the lower bound proof.

We try to give in this paper estimates which are as close as possible to the optimality in the
sense of the five above properties. Our main purpose is to present estimates which are fully robust
with respect to the discontinuities in a, and this without the “monotonicity” condition. We achieve
this in two different ways. The first one needs the harmonic averaging to be used in the scheme
definition, while simultaneously aligning the discontinuities of the diffusion coefficient a with a dual
mesh formed around vertices; it uses the energy norm. It is based on the observation of [24] that
harmonic weighting can yield robustness. The second way applies to any method of this paper and
requires no alignment of the discontinuities; it is based on the introduction of a (nonlocal and not
locally computable) dual norm, the dual norm of the residual. Such an approach has been pursued
by Angermann [4] or Verfürth [46] in the context of robust estimates for convection–diffusion
problems and by Chaillou and Suri [19] in the context of monotone nonlinear problems.

None of these approaches gives robust energy norm a posteriori error estimates for the standard
finite element method, where discontinuities are aligned with the mesh elements, and we by no
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means claim that these two approaches are the only and the best possibilities. We rather present
them as two simple ways of obtaining robust estimates for discontinuous coefficients. The first
approach of aligning the discontinuities with the dual mesh is rather unusual in the finite element
method. Nevertheless, it represents a standard way of handling discontinuous coefficients in the
cell-centered finite volume (finite difference) approach. We merely show that suitably interpreting
the solution of the standard cell-centered finite volume method with harmonic weighting in a
finite element basis gives robust energy norm estimates. The key for the robustness of the second
approach is the dual norm which actually does not see the jumps in the coefficients. Estimates in
this norm are also only globally, and not locally, efficient. We are, however, persuaded that they
are more “physical” than the energy norm estimates (see Remark 3.8 below).

We start the paper with some preliminaries in Section 2. We then in Section 3 sketch an
abstract framework, both in the energy and dual norms, show its link to the Prager–Synge equal-
ity [36], and give our a posteriori error estimates. We then discuss four different ways of defining
the equilibrated flux. Section 3 is closed by comparisons of the present technique with the residual,
equilibrated residual, averaging, functional, and other equilibrated fluxes estimates. The proofs of
the (local) efficiency and robustness are the issue of Section 4. Up to section Section 5, we mention
no particular numerical scheme. In this section, we give a list of several different H1-conforming
methods, recall some useful relations between them, and show that the derived estimates apply
to all of them. Finally, numerical experiments are presented in Section 6. We consider the homo-
geneous Dirichlet boundary condition only for the sake of clarity of exposition; general boundary
conditions can easily be taken in account, as we outline it in [50]. This paper is a detailed descrip-
tion of the results previously announced in [49]; some additional numerical experiments for the
finite element method, together with another local minimization strategy, are then studied in [20],
and extensions to the reaction–diffusion case in [21].

2 Preliminaries

We give in this section the notation and assumptions, recall some important inequalities, and
finally give details on the continuous problem (1.1a)–(1.1b).

2.1 Meshes and notation

We shall work in this paper with triangulations Th which for all h > 0 consist of closed simplices
such that Ω =

⋃

K∈Th
K and which are conforming (matching), i.e., such that if K,L ∈ Th, K 6= L,

then K ∩ L is either an empty set or a common face, edge, or vertex of K and L. Let hK denote
the diameter of K and let h := maxK∈Th

hK . We denote by Eh the set of all sides of Th, by E int
h

the set of interior, by Eext
h the set of exterior, and by EK the set of all the sides of an element

K ∈ Th; hσ stands for the diameter of σ ∈ Eh. We finally denote by Vh (V int
h ) the set of all (interior)

vertices of Th and put, for V ∈ Vh and K ∈ Th, respectively, TV := {L ∈ Th; L ∩ V 6= ∅} and
TK := {L ∈ Th; L ∩K 6= ∅}.

We shall also consider dual partitions Dh of Ω such that Ω =
⋃

D∈Dh
D and such that for each

V ∈ Vh, V ∈ DV for exactly one DV ∈ Dh. The notation VD stands inversely for the vertex
associated with a given D ∈ Dh and we use Dint

h ,Dext
h to denote the dual volumes associated

with vertices from V int
h ,Vext

h , respectively. Next, Fh stands for all sides of Dh and F int
h (Fext

h ) for
all interior (exterior) sides of Dh. We shall always suppose that DV lies in the interior of the
polygon/polyhedron given by TV for all V ∈ Vh and that E int

h ∩F int
h has a zero (d− 1)-dimensional

Lebesgue measure. An example of such a partition is given in the left part of Figure 1; more details
on different Dh considered will be given in Section 5 below.
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Th

Dh

D

SD

Figure 1: Original simplicial mesh Th and an associated dual mesh Dh (left) and the fine simplicial
mesh SD of D ∈ Dh (right)

In order to define our a posteriori error estimates, we will need a second conforming simplicial
triangulation Sh of Ω. The basic requirement is that the interiors of the elements of Sh do not
intersect sides of Th and Dh (Sh is a conforming refinement of both Th and Dh). For the local
efficiency proofs of our estimators, we will later need the assumption that {Sh}h are shape-regular
in the sense that there exists a constant κS > 0 such that minK∈Sh

|K|/hd
K ≥ κS for all h > 0.

One can easily construct a local triangulation SD of each D ∈ Dh as shown in the right part of
Figure 1 and then put Sh := ∪D∈Dh

SD. We will use the notation Gh for all sides of Sh and Gint
h

(Gext
h ) for all interior (exterior) sides of Sh. The notation Gint

D stands for all interior sides of SD

and Gext
D for the exterior ones.

Next, for K ∈ Th, n will always denote its exterior normal vector; we shall also employ the
notation nσ for a normal vector of a side σ ∈ Eh, whose orientation is chosen arbitrarily but fixed
for interior sides and coinciding with the exterior normal of Ω for exterior sides. For σ ∈ E int

h

shared by K,L ∈ Th (which we denote by σK,L) such that nσ points from K to L and a function
ϕ, we shall define the jump operator [[·]] by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ . (2.1)

We put [[ϕ]]σ := ϕ|σ for any σ ∈ Eext
h . We next associate with each K ∈ Th and each σ ∈ EK a

weight ωK,σ such that

0 ≤ ωK,σ ≤ 1 ∀K ∈ Th, ∀σ ∈ EK , (2.2a)

ωK,σ + ωL,σ = 1 ∀σ = σK,L ∈ E int
h , (2.2b)

ωK,σ = 1 ∀σ ∈ Eext
h and K ∈ Th such that σ ∈ EK . (2.2c)

For σ = σK,L ∈ E int
h , we define the weighted average operator {{·}}ω by

{{ϕ}}ω := ωK,σ(ϕ|K)|σ + ωL,σ(ϕ|L)|σ , (2.3)

whereas for σ ∈ Eext
h , {{ϕ}}ω := ϕ|σ . Two basic choices for the weights in [[a]]σ or {{a}}σ on a side

σ = σK,L ∈ E int
h are:

ωK,σ = ωL,σ = 1
2 , (2.4)

which corresponds to the arithmetic averaging, and

ωK,σ =
aL

aK + aL
, ωL,σ =

aK

aK + aL
, (2.5)

which corresponds to the harmonic averaging of the diffusion coefficient a. Finally, we denote by
{{ϕ}} the standard average operator with ωK,σ = ωL,σ = 1

2 and {{ϕ}} := ϕ|σ for σ ∈ Eext
h . We use

the same type of notation also for the meshes Dh and Sh.
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We shall be working below with numerical methods whose approximate solution can be rep-
resented by continuous piecewise linear functions on Th, with value 0 at the boundary of Ω. The
basis of this space, denoted by X0

h, is spanned by the classical pyramidal functions ψV , V ∈ V int
h ,

such that ψV (U) = δV U , U ∈ Vh, δ being the Kronecker delta.
In what concerns functional notation, we denote by (·, ·)S the L2-scalar product on S and

by ‖ · ‖S the associated norm; when S = Ω, the index dropped off. We mean by |S| the Lebesgue
measure of S, by |σ| the (d− 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular by
|s| the length of a segment s. Next, H1(S) is the Sobolev space of functions with square-integrable
weak derivatives and H1

0 (S) is its subspace of functions with traces vanishing on ∂S. Finally,
H(div, S) is the space of functions with square-integrable weak divergences, H(div, S) = {v ∈
L2(S);∇ · v ∈ L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on ∂S.

2.2 Assumptions

We shall suppose that f(x) ∈ L2(Ω) and that a(x) is a piecewise constant scalar-valued function.
We in particular consider cases where a is piecewise constant on the triangulation Th and cases
where a is piecewise constant on the dual partition Dh. In all cases we denote by ca,K and Ca,K

for all K ∈ Th the best positive constants such that ca,K ≤ a(x) ≤ Ca,K for all x ∈ K. Similar
notation will be used also for D ∈ Dh, for TK, K ∈ Th, or for the entire domain.

2.3 Poincaré and Friedrichs inequalities

Let D be a polygon or a polyhedron. The Poincaré inequality states that

‖ϕ− ϕD‖2
D ≤ CP,Dh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D), (2.6)

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D| and where the constant CP,D can
for each convex D be evaluated as 1/π2, cf. [34, 11]. To evaluate CP,D for nonconvex elements D
is more complicated but it still can be done, cf. [26, Lemma 10.2] or [18, Section 2].

Let |∂Ω ∩ ∂D| 6= 0. Then the Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,∂Ωh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D. (2.7)

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the first

intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the origin x and
the vector b, CF,D,∂Ω = 1, cf. [47, Remark 5.8]. To evaluate CF,D,∂Ω in the general case is more
complicated but it still can be done, cf. [47, Remark 5.9] or [18, Section 3].

2.4 Continuous problem

We define a bilinear form B by

B(p, q) := (a∇p,∇q) p, q ∈ H1
0 (Ω). (2.8)

The weak formulation of problem (1.1a)–(1.1b) is to find p ∈ H1
0 (Ω) such that

B(p, q) = (f, q) ∀q ∈ H1
0 (Ω) (2.9)

and the corresponding energy norm is defined by

|||q|||2 := B(q, q) = ‖a
1

2∇q‖2, q ∈ H1
0 (Ω). (2.10)
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Alternatively, following the approaches of Angermann [4] or Verfürth [46] and Chaillou and Suri [19]
of the convection–diffusion and nonlinear settings, respectively, we will also present a posteriori
error estimates in a dual norm. We will use the H−1 norm of the residual given by

|||q|||# := sup
ϕ∈H1

0
(Ω)

B(q, ϕ)

‖∇ϕ‖
, q ∈ H1

0 (Ω) (2.11)

for this purpose.

Remark 2.1 (Energy and dual norms). The energy norm (2.10) admits a local decomposition and
is easily computable. The dual norm (2.11) is a global norm and its practical computation is not
obvious except of particular cases. In any case, however, it is immediate from (2.11) that there
exist easily and locally computable upper and lower bounds for ||| · |||#:

‖a
1

2∇q‖2

‖∇q‖
≤ |||q|||# ≤ ‖a∇q‖ ∀q ∈ H1

0 (Ω). (2.12)

In particular, the two above norms coincide when a is constant.

3 Guaranteed a posteriori error estimates

We present our main upper bound results in this section.

3.1 A simple abstract framework and its relation to the Prager–Synge theorem

We present here a simple abstract a posteriori error estimate for problem (1.1a)–(1.1b). The basic
ideas can be traced back to the Prager–Synge equality [36], the hypercircle method, Synge [43],
Ladevèze [29], or Repin [39].

Theorem 3.1 (Abstract energy norm a posteriori error estimate). Let p be the weak solution of
problem (1.1a)–(1.1b) and let ph ∈ H1

0 (Ω) be arbitrary. Then

|||p − ph||| = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{|(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}. (3.1)

Proof. We first notice that

|||p − ph||| = B

(

p− ph,
p− ph

|||p − ph|||

)

by (2.10). Clearly, as ϕ := (p − ph)/|||p − ph||| ∈ H1
0 (Ω), we immediately have B(p, ϕ) = (f, ϕ)

by (2.9). Using this we obtain, for an arbitrary t ∈ H(div,Ω) and employing the Green theorem,

B(p− ph, ϕ) = (f, ϕ) − (a∇ph,∇ϕ) = (f, ϕ) − (a∇ph + t,∇ϕ) + (t,∇ϕ)

≤ |(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|.

From here, it is enough to note that |||ϕ||| = 1 and that t ∈ H(div,Ω) was chosen arbitrary to
conclude that the right-hand side term of (3.1) is an upper bound on the left-hand side one. For
the converse estimate, it suffices to put t = −a∇p and to use the Cauchy–Schwarz inequality and
the fact that |||ϕ||| = 1.

Similar arguments lead to the following corollary:
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Corollary 3.2 (Abstract dual norm a posteriori error estimate). Let the assumptions of Theo-
rem 3.1 be verified. Then

|||p − ph|||# = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), ‖∇ϕ‖=1

{|(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}.

Remark 3.3 (Relation to the Prager–Synge equality). The Prager–Synge equality [36] states, with
the assumptions of Theorem 3.1, that

|||p − ph|||
2 + ‖a

1

2∇p+ a−
1

2 t‖2 = ‖a
1

2∇ph + a−
1

2 t‖2

for any t ∈ H(div,Ω) such that ∇ · t = f . This result leads to

|||p − ph||| ≤ inf
t∈H(div,Ω);∇·t=f

‖a
1

2∇ph + a−
1

2 t‖,

which is similar to (3.1). The important difference, however, is that the minimization set is here
restrained to such t ∈ H(div,Ω) that satisfy ∇ · t = f , which is rather restrictive.

3.2 A posteriori error estimate

Starting from Theorem 3.1, we now give a fully computable a posteriori error estimate. Essential
is assumption (3.2) below which enables to easily estimate the first term on the right-hand side
of (3.1), related to a negative norm.

Theorem 3.4 (A guaranteed energy norm a posteriori error estimate). Let p be the weak solution
of problem (1.1a)–(1.1b) and let ph ∈ H1

0 (Ω) be arbitrary. Let next D∗
h = Dint,∗

h ∪ Dext,∗
h be a

partition of Ω such that |∂Ω ∩ ∂D| 6= 0 for all D ∈ Dext,∗
h . Let finally th ∈ H(div,Ω) be arbitrary

but such that
(∇ · th, 1)D = (f, 1)D ∀D ∈ Dint,∗

h . (3.2)

Then

|||p − ph||| ≤

{

∑

D∈D∗

h

(ηR,D + ηDF,D)2

}
1

2

,

where the diffusive flux estimator ηDF,D is given by

ηDF,D := ‖a
1

2∇ph + a−
1

2 th‖D D ∈ D∗
h, (3.3)

and the residual estimator ηR,D is given by

ηR,D := mD,a‖f −∇ · th‖D D ∈ D∗
h, (3.4)

where

m2
D,a := CP,D

h2
D

ca,D
D ∈ Dint,∗

h , m2
D,a := CF,D,∂Ω

h2
D

ca,D
D ∈ Dext,∗

h , (3.5)

with CP,D the constant from the Poincaré inequality (2.6) and CF,D,∂Ω the constant from the
Friedrichs inequality (2.7).
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Proof. Put t = th in Theorem 3.1. Note that, for each D ∈ Dint,∗
h ,

|(f −∇ · th, ϕ)D| = |(f −∇ · th, ϕ − ϕD)D| ≤ ηR,D|||ϕ|||D ,

using (3.2), the Poincaré inequality (2.6), the Cauchy–Schwarz inequality, and the definition (2.10)
of the energy norm. We cannot use a similar approach also for D ∈ Dext,∗

h since there is no local
conservativity (3.2) on these volumes. On the other hand, however, ϕ = 0 on ∂D ∩ ∂Ω, whence

|(f −∇ · th, ϕ)D| ≤ ηR,D|||ϕ|||D

for each D ∈ Dext,∗
h , using the Friedrichs inequality (2.7), the Cauchy–Schwarz inequality, and the

definition (2.10) of the energy norm. Finally, |(a∇ph + t,∇ϕ)D| ≤ ηDF,D|||ϕ|||D is immediate using
the fact that a is positive and scalar and the Cauchy–Schwarz inequality. Hence it now suffices to
use the Cauchy–Schwarz inequality and to notice that |||ϕ||| = 1 in order to conclude the proof.

The proof of following corollary is completely similar:

Corollary 3.5 (A guaranteed dual norm a posteriori error estimate). Let the assumptions of
Theorem 3.4 be verified. Then

|||p − ph|||# ≤

{

∑

D∈D∗

h

(ηR,D + ηDF,D)2

}
1

2

,

with the diffusive flux estimator ηDF,D given by

ηDF,D := ‖a∇ph + th‖D D ∈ D∗
h, (3.6)

and the residual estimator ηR,D given by

ηR,D := mD‖f −∇ · th‖D D ∈ D∗
h, (3.7)

where
m2

D := CP,Dh
2
D D ∈ Dint,∗

h , m2
D := CF,D,∂Ωh

2
D D ∈ Dext,∗

h . (3.8)

Remark 3.6 (Assumptions of Theorem 3.4 and Corollary 3.5). Note that for Theorem 3.4 and
Corollary 3.5, no additional assumptions like a polynomial form of the data, of the approximate
solution, or a shape regularity of the mesh are needed.

Remark 3.7 (The mesh D∗
h in Theorem 3.4 or Corollary 3.5). The meshes D∗

h in Theorem 3.4 or
Corollary 3.5 will differ in different types of estimates. Usually, either D∗

h is given by the dual

mesh Dh of Section 2.1, i.e., Dint,∗
h = Dint

h and Dext,∗
h = Dext

h , or Dint,∗
h = Sh and Dext,∗

h = ∅ (Sh is

given in Section 2.1), or Dint,∗
h = Th and Dext,∗

h = ∅.

Remark 3.8 (Comparison of the estimators of Theorem 3.4 and of Corollary 3.5). The estimators
of Theorem 3.4 and of Corollary 3.5 coincide when a = 1. We find the estimators of Corollary 3.5
more physical as they measure the misfit between the true fluxes a∇ph and th and not their energy
counterparts a

1

2∇ph and a−
1

2 th in ηDF,D and do not involve the constant ca,D in ηR,D.

In order to use Theorem 3.4 and Corollary 3.5 in practice, we need to construct a (finite-
dimensional) th satisfying (3.2). We will look for a suitable th in the lowest-order Raviart–Thomas–
Nédélec space RTN(Sh) defined over a fine simplicial mesh Sh of Section 2.1 which we suppose to be
a refinement of the mesh D∗

h from Theorem 3.4 or Corollary 3.5. The space RTN(Sh) ⊂ H(div,Ω)
is a space of vector functions having on each K ∈ Sh the form (aK + dKx, bK + dKy)

t if d = 2
and (aK + dKx, bK + dKy, cK + dKz)

t if d = 3. Note that the requirement RTN(Sh) ⊂ H(div,Ω)
imposes the continuity of the normal trace across all σ ∈ Gint

h and recall that v · nσ is a constant
for all σ ∈ Gh and that these side fluxes also represent the degrees of freedom of RTN(Sh). For
more details, we refer to [16, 41]. Raviart–Thomas–Nédélec spaces have been used previously in a
posteriori error estimation in a similar concept in [30, 39, 23, 32, 44, 28, 15].

8



3.3 Constructions of the equilibrated flux th

We show here four different ways of constructing an equilibrated flux th satisfying (3.2). For this
purpose, we assume from now on, on the mesh Dh of Section 2.1:

− 〈{{a∇ph · n}}ω, 1〉∂D = (f, 1)D ∀D ∈ Dint
h . (3.9)

The weights ω are left unspecified as yet. We will see below in Section 5 that a whole collection of
numerical schemes can be shown to satisfy this property.

3.3.1 Construction of th by direct prescription

We define th ∈ RTN(Sh) by

th · nσ := −{{a∇ph · nσ}}ω ∀σ ∈ Gh, (3.10)

where the weights ω are the same as those in (3.9). Thus a simple (weighted) average of the normal
components of the approximate flux −a∇ph over the sides of Sh is used to define the equilibrated
flux th. Note that by this construction, 〈th · n, 1〉∂D = (f, 1)D for all D ∈ Dint

h is immediate,
whence (3.2) follows by the Green theorem.

This construction, however, may suffer from two inconveniences. Firstly, whenever D ∈ Dint
h

is nonconvex, the Poincaré constant CP,D from (2.6) is no longer equal to 1/π2 and its evaluation
is much more difficult leading to less sharp estimates. The second inconvenience was pointed
out in [20]: as (3.2) only holds on a set of elements SD and not on each K ∈ Sh, the residual
estimators are not higher-order terms as in [48, 24] and may dominate the diffusive flux ones.
Consequently, the effectivity index does not approach the optimal value of one. The approaches
of the three following sections improve on these two points (we present them in the energy norm
setting, similar results in the dual norm setting are rather straightforward).

3.3.2 Construction of th by local minimization involving local linear systems solution

In [20], th ·nσ is given by (3.10) only on such σ ∈ Gh which are at the boundary of some D ∈ Dint
h .

By the Green theorem, this is sufficient for (3.2). The remaining sides lie in the interior of some
D ∈ Dh (or at the boundary of Ω), so that th ·nσ can be chosen locally and independently by local
minimization of η2

R,D + η2
DF,D for each D ∈ Dh. This leads to a solution of a small linear system

for each D ∈ Dh and helps the improve the effectivity index to a value close to one.

3.3.3 Construction of th by local minimization without local linear systems solution

We suggest here an improvement of the previous approach which avoids any local systems solution.
Let D ∈ Dh be fixed. The first step is to construct t1,D ∈ RTN(SD) given by (3.10). In the

second one, we then construct t2,D ∈ RTN(SD) given by (3.10) only for such σ ∈ Gh contained in
D which are at the boundary of some E ∈ Dint

h and such that (∇·t2,D, 1)K = (f, 1)K for all K ∈ SD.
Note that as (∇ · t2,D, 1)D = 〈t2,D · n, 1〉∂D = (f, 1)D when D ∈ Dint

h , this can be done without
any (local) linear system solution by choosing the flux over one interior side and a sequential
construction as

∑

K∈SD
(f, 1)K = (f, 1)D. If D ∈ Dext

h , this argument is then replaced by the fact
that we are free to choose the fluxes over the exterior sides. Now any tD := αt1,D + (1 − α)t2,D

obviously obeys (3.2) and we can minimize ηD := ηR,D + ηDF,D as a function of the parameter α.
It turns out that it is much easier to minimize η2

R,D + η2
DF,D, as this is a quadratic function of α,

9



and the optimal value is easily found to be given by

α
(

‖a−
1

2 (t1,D − t2,D)‖2
D +m2

D,a‖∇ · (t1,D − t2,D)‖2
D

)

= −(a
1

2∇ph + a−
1

2 t2,D, a
− 1

2 (t1,D − t2,D))D

+m2
D,a(f −∇ · t2,D,∇ · (t1,D − t2,D))D.

As however this value does not necessarily minimize ηD (when it is uniquely defined by the above
formula) but η2

R,D + η2
DF,D, we finally propose as an improved estimator

ηD := min{ηD(t1,D), ηD(t2,D), ηD(αt1,D + (1 − α)t2,D)}. (3.11)

Such an estimator will be locally efficient (and robust) whenever it is the case for ηD(t1,D).

3.3.4 Construction of th by mixed finite element approximations of local Neumann/
Dirichlet problems

We adapt here to the present setting the approach of [25]. In context of a posteriori error estima-
tion, solution of local Neumann problems can be traced back at least to [10].

For a given D ∈ Dh, let

RTNN(SD) := {vh ∈ RTN(SD); vh · nσ = −a∇ph · nσ ∀σ ∈ Gint
h ∩ ∂D}.

We suppose here that a is piecewise constant on Th (in this case, in particular, the choice of the
weights ω in (3.9) has no influence). Let fh be given by (f, 1)K/|K| for all K ∈ Sh. We then define
th ∈ RTN(Sh) by solving on each D ∈ Dh the following minimization problem:

th|D := arg inf
vh∈RTNN(SD),∇·vh=fh

‖a
1

2∇ph + a−
1

2 vh‖D. (3.12)

Define RTNN,0(SD) as RTNN(SD) but with the normal flux condition vh ·nσ = 0. Let P
∗
0(SD)

be spanned by piecewise constants on SD with zero mean on D when D ∈ Dint
h ; when D ∈ Dext

h , the
mean value condition is not imposed. Then it is easy to show that (3.12) is equivalent to finding
th ∈ RTNN(SD) and qh ∈ P

∗
0(SD), the mixed finite element approximations of local Neumann

problems on D ∈ Dint
h and local Neumann/Dirichlet problems on D ∈ Dext

h :

(a−1th + ∇ph,vh)D − (qh,∇ · vh)D = 0 ∀vh ∈ RTNN,0(SD), (3.13a)

(∇ · th, φh)D = (f, φh)D ∀φh ∈ P
∗
0(SD). (3.13b)

Note in particular that the function −a∇ph · nσ on the boundary of each D ∈ Dint
h by (3.9)

satisfies the Neumann compatibility condition, whence also the existence and uniqueness follow.
Theorem 3.4 and Corollary 3.5 can be used here with Dint,∗

h = Sh and Dext,∗
h = ∅. The above

presentation is done in the energy norm (2.10) setting. For the dual norm (2.11), we merely need
to replace (a−1th + ∇ph,vh)D by (th + a∇ph,vh)D in (3.13a). A solution of a local linear system
on each D ∈ Dh is necessary in this approach but the results of Section 6 below reveal excellent.

3.4 Remarks and generalizations

Remark 3.9 (Comparison with standard residual estimators). The above estimates have three
basic advantages in comparison with standard residual estimators, cf. Verfürth [45]. First of all,
they feature no undetermined constant and deliver a guaranteed upper bound. Next, the classical
residual estimator hK‖f‖K is replaced by its improved version (3.4). Lastly, as it will be seen in
Section 4 below, our estimates represent local lower bounds for the classical residual estimators.
The improved behavior of our estimators over the classical one for the finite element method is
numerically studied in [20].

10



Remark 3.10 (Comparison with the equilibrated residual method). In the equilibrated residual
method, cf. [3], one searches equilibrated side fluxes expressing local conservativity over each
K ∈ Th, by means of solution of local linear systems. Contrarily to this approach, our estimators
are based on the immediately available conservativity of the finite element method over the dual
grids Dh (see Remark 5.13 below). On the other hand, we suggest the present approach only
for lowest-order finite elements, whereas the approach of [3] works for any order. Remark that a
guaranteed and locally computable upper bound can also be obtained in the equilibrated residual
method if the data oscillation term is separated as in [2].

Remark 3.11 (Comparison with the Zienkiewicz–Zhu averaging). Similarly as in the Zienkiewicz–
Zhu [52] estimator, we look here for a smoothened (averaged) flux th. We, however, only impose
th ∈ H(div,Ω), i.e., only the normal component and not the whole vector field continuity. Also,
the present residual estimators ηR,D can become crucial on rough meshes or in the presence of the
material coefficient a, see also the discussion in [27].

Remark 3.12 (Comparison with functional a posteriori estimates). Repin [39] or Korotov [28] use
instead of Theorem 3.4 the estimate

|||p − ph||| ≤
C

1/2
F,ΩhΩ

c
1/2
a,Ω

‖f −∇ · th‖ + ‖a
1

2∇ph + a−
1

2 th‖,

which follows readily from Theorem 3.1 using the Cauchy–Schwarz inequality, the Friedrichs in-
equality, and the definition of the energy seminorm. Here p is the weak solution given by (2.9),
ph ∈ H1

0 (Ω) and th ∈ H(div,Ω) are arbitrary, CF,Ω is the constant from the Friedrichs inequal-
ity (2.7) with D = Ω, and hΩ is the diameter of Ω. The advantage is that no particular construction
of th ∈ H(div,Ω) has to be done and the estimate is thus fully scheme-independent. However,
as no information from the computation is used, the residual term is in general too large by the

presence of hΩ instead of hD which we find in Theorem 3.4. Secondly, the term 1/c
1/2
a,Ω is also

greatly unfavorable in comparison with 1/c
1/2
a,D found in our estimates. Thus, a rather expensive

global minimization is usually employed in the type of estimates of [39] or [28].

Remark 3.13 (Comparison with the estimator of Luce and Wohlmuth [32]). Our estimators are
close to those of Luce and Wohlmuth [32], in particular in that we construct the dual mesh Dh

and the second simplicial triangulation Sh and a th ∈ RTN(Sh). One particular point is that the
construction of th by (3.10) with harmonic averaging, as shown in Section 4.1 below, leads to full
robustness with respect to discontinuous coefficients in the energy norm.

Remark 3.14 (Residual estimators and data oscillation). Note that whenever f ∈ H1(K) for
all K ∈ Sh, the residual estimators ηR,D in Section 3.3.4 (or those of Section 3.3.3 with t2,D

only) represent a contribution of higher order, as ‖f − fh‖K ≤ 1/πhK‖∇f‖K by the Poincaré
inequality (2.6) (using the convexity of simplices). Moreover, if f is piecewise constant on Sh, they
disappear completely.

4 Efficiency and robustness of the a posteriori error estimates

We prove here the (local) efficiency and robustness of our estimates. We first present a robustness
energy norm result in case of discontinuities aligned with the dual meshes and use of harmonic
averaging. Then robustness in the dual norm without any special requirement is proven. Finally,
some generalizations are discussed.
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4.1 Local efficiency and robustness of the energy norm estimate for harmonic
weighting and dual mesh-aligned discontinuities

The result of this section is given in the energy norm (2.10) and only applies to the case where a
is piecewise constant on Dh and ω in (3.9) represents harmonic weighting.

Theorem 4.1 (Local efficiency and robustness of the energy norm estimate for harmonic weighting
and dual mesh-aligned discontinuities). Let a be piecewise constant on Dh, let f be a piecewise
polynomial of degree m on Sh, let p be the weak solution of problem (1.1a)–(1.1b), and let ph ∈ X0

h

satisfy (3.9) with the weights (2.5). Let next Sh be shape-regular with the constant κS and let th

be given by (3.10), ηDF,D given by (3.3), and ηR,D by (3.4), D∗
h = Dh in Theorem 3.4. Then, for

each D ∈ Dh, there holds

ηDF,D ≤ C|||p − ph|||TVD
, (4.1a)

ηR,D ≤ C̃|||p − ph|||TVD
, (4.1b)

where the constant C depends only on d, κS , and m and C̃ in addition depends on CP,D if D ∈ Dint
h

or CF,D,∂Ω if D ∈ Dext
h .

The proof of Theorem 4.1 is decomposed into two parts. For ηDF,D, Lemma 4.2 shows that
the construction (3.10) implies that the normal components of th differ from those of a∇ph by
the jumps of a∇ph · n. The latter are a part of residual estimators and are therefore known to
be bounded by the error. The second estimator, ηR,D, is then efficient due to a complementarity
argument as shown in Lemma 4.3.

Lemma 4.2 (Local efficiency of the diffusive flux estimator). Let the assumptions of Theorem 4.1
be verified. Then (4.1a) holds true.

Proof. The proof follows the techniques of [45] and [24]. Recall first the standard estimate

‖vh‖
2
K ≤ ChK

∑

σ∈EK

‖vh · n‖2
σ (4.2)

valid for each vh ∈ RTN(K) and any simplex K. Here, and similarly in the rest of the proof, the
constant C, not necessarily the same at each occurrence, depends only on d, κS , and m.

Let now K be an arbitrary element in the simplicial mesh SD of a given D ∈ Dh and let us
put vh = a∇ph + th. We have

‖a
1

2∇ph + a−
1

2 th‖
2
K = a−1

K ‖vh‖
2
K ≤ Ca−1

K hK

∑

σ∈EK∩Gint

h

‖ωL,σ[[a∇ph · nσ]]‖2
σ , (4.3)

where L denotes the neighboring element to K across σ ∈ Gint
h , using that

(a∇ph + th)|K · nσ = (a∇ph · nσ)|K − {{a∇ph · nσ}}ω = nσ · nωL,σ[[a∇ph · nσ]] (4.4)

for σ ∈ EK ∩Gint
h and (a∇ph + th)|K ·nσ = 0 for σ ∈ EK ∩Gext

h . Note that nσ ·n = ±1 is only used
as a sign determination.

Let us now consider a fixed σ = σK,L ∈ EK ∩ Gint
h . The estimate

h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

a
1

2

M |||p − ph|||M .
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is standard using the side and element bubble functions, the Green theorem, the inverse inequality,
and the equivalence of norms on finite-dimensional spaces, cf. [45]. It then follows that

ωL,σa
− 1

2

K h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

ωL,σa
− 1

2

K a
1

2

M |||p − ph|||M .

Finally, thanks to the definition (2.2) of ωL,σ, ωL,σa
− 1

2

K a
1

2

M = ωL,σ ≤ 1 if M = K and by (2.5),

ωL,σa
− 1

2

K a
1

2

M = aK(aK + aL)−1a
− 1

2

K a
1

2

L ≤ 1
2 if M = L, using the inequality 2ab ≤ a2 + b2.

Now finally, using the above results,

η2
DF,D =

∑

K∈SD

‖a
1

2∇ph + a−
1

2 th‖
2
K

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint

h

a−1
K hKω

2
L,σK,L

‖[[a∇ph · nσK,L
]]‖2

σK,L

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint

h

∑

M∈{K,L}

|||p − ph|||
2
M ≤ C|||p − ph|||

2
TVD

,

which was to be proved.

Lemma 4.3 (Local efficiency of the residual estimator). Let the assumptions of Theorem 4.1 be
verified. Then (4.1b) holds true.

Proof. Let us consider a fixed D ∈ Dh. First,

‖f −∇ · th‖K ≤ Ca
1

2

Kh
−1
K ‖a

1

2∇p+ a−
1

2 th‖K

for each K ∈ SD with C depending only on d, κS , and m follows standardly by using the element
bubble function, the equivalence of norms on finite-dimensional spaces, definition (2.9) of the weak
solution, the Green theorem, the Cauchy–Schwarz inequality, definition (2.10) of the energy norm,
and the inverse inequality, cf. [45] or [48, Lemma 7.6]. Hence

‖f −∇ · th‖D ≤ CC
1

2

a,Dh
−1
D ‖a

1

2∇p+ a−
1

2 th‖D

holds true, using also the fact that hD/minK∈SD
hK is bounded by the shape-regularity of Sh.

Thus

hDc
− 1

2

a,D‖f −∇ · th‖D ≤ Cc
− 1

2

a,DC
1

2

a,D‖a
1

2∇p+ a−
1

2 th‖D.

Next note that c
− 1

2

a,DC
1

2

a,D = 1 for a piecewise constant on Dh. Finally,

‖a
1

2∇p+ a−
1

2 th‖D ≤ |||p − ph|||D + ‖a
1

2∇ph + a−
1

2 th‖D

using the triangle inequality, which concludes the proof by virtue of the previously proved esti-
mate (4.1a).

4.2 Global efficiency and robustness of the dual norm a posteriori error esti-
mates

The result of this section is given in the dual norm (2.11) and applies without any restriction on
the distribution of discontinuities or type of averaging in (3.9).
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Theorem 4.4 (Global efficiency and robustness of the dual norm a posteriori error estimates). Let
f be a piecewise polynomial of degree m on Sh, let p be the weak solution of problem (1.1a)–(1.1b),
and let ph ∈ X0

h satisfy (3.9) with any weights satisfying (2.2). Let next Sh be shape-regular with
the constant κS and let th be given by (3.10), ηDF,D by (3.6), and ηR,D by (3.7), D∗

h = Dh in
Corollary 3.5. Then, there holds

{

∑

D∈Dh

(ηDF,D + ηR,D)2

}
1

2

≤ C|||p − ph|||#, (4.5)

where the constant C depends only on d, κS , m, and CP,D for D ∈ Dint
h and CF,D,∂Ω for D ∈ Dext

h .

Proof. Throughout this proof, C denotes a generic constant with the dependencies indicated in
the announcement, possibly different at different occurrences. Let K ∈ SD, D ∈ Dh be given.
Adding and subtracting ∇ · (a∇ph), using the triangle inequality, the fact that hD ≤ ChK , and
the inverse inequality, we have

C
1

2

P,DhD‖f −∇ · th‖K ≤ C
1

2

P,DhD(‖f + ∇ · (a∇ph)‖K + ‖∇ · (a∇ph + th)‖K)

≤ ChK‖f + ∇ · (a∇ph)‖K + C‖a∇ph + th‖K .

Using (4.2), (3.10), (4.4), and (2.2), we obtain

‖a∇ph + th‖
2
K ≤ ChK

∑

σ∈EK∩Gint

h

‖[[a∇ph · nσ]]‖2
σ

(note that in both cases that a is piecewise constant on Th or that a is piecewise constant on Dh,
a is piecewise constant on Sh). Combining the two above estimates,

∑

D∈Dh

(ηDF,D + ηR,D)2 ≤ C

(

∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K +
∑

σ∈Gint

h

hσ‖[[a∇ph · nσ]]‖2
σ

)

.

Note that this means that the present estimates represent a lower bound for the standard residual
ones (cf. [45]). The rest of the proof is based on the tools from [46].

We next prove that

{

∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

}
1

2

≤ C|||p− ph|||#. (4.6)

Let K ∈ Sh. Denote by ψK the element bubble function (cf. [45]) and put vK := (f+∇·(a∇ph))|K .
By the equivalence of norms on finite-dimensional spaces, properties of the bubble functions, and
definition (2.9) of the weak solution, we have, cf. [45],

‖vK‖2
K ≤ C(a∇(p− ph),∇(ψKvK))K .

Next, by the inverse inequality and the properties of the bubble functions,

h2
K‖∇(ψKvK)‖K ≤ ChK‖vK‖K .
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Put λ|K = h2
KψKvK and note that λ ∈ H1

0 (Ω). Using the two above inequalities,

∑

K∈Sh

h2
K‖vK‖2

K ≤ C
∑

K∈Sh

h2
K(a∇(p − ph),∇(ψKvK))K = C

B(p− ph, λ)

‖∇λ‖
‖∇λ‖

≤ C|||p − ph|||#

{

∑

K∈Sh

h4
K‖∇(ψKvK)‖2

K

}
1

2

≤ C|||p − ph|||#

{

∑

K∈Sh

h2
K‖vK‖2

K

}
1

2

employing also the definition (2.11) of the dual norm and the Cauchy–Schwarz inequality. Thus (4.6)
is proved.

The final point of the proof is to show that

{

∑

σ∈Gint

h

hσ‖[[a∇ph · nσ]]‖2
σ

}
1

2

≤ C|||p− ph|||#. (4.7)

For σ ∈ Gint
h , put v|σ := [[a∇ph · nσ]]; we keep the same notation for the lifting of v|σ to the two

simplices K and L sharing the side σ. Let ψσ be the face bubble function (cf. once again [45]).
Then there holds

‖vσ‖
2
σ ≤ C〈vσ, ψσvσ〉σ ,

‖ψσvσ‖K ≤ Ch
1

2
σ ‖vσ‖σ.

Put λ :=
∑

σ∈Gint

h
hσψσvσ. Note that λ ∈ H1

0 (Ω), as only the interior sides appear in the sum.

Finally, note that by the second of the above inequalities,

‖λ‖K ≤
∑

σ∈EK∩Gint

h

hσ‖ψσvσ‖K ≤ C
∑

σ∈EK∩Gint

h

h
3

2
σ ‖vσ‖σ .

Using the above inequalities and the Green theorem,

∑

σ∈Gint

h

hσ‖vσ‖
2
σ

≤C
∑

σ∈Gint

h

〈[[a∇ph · nσ]], λ〉σ = C
∑

K∈Sh

{(f + ∇ · (a∇ph), λ)K − (a∇(p − ph),∇λ)K}

≤C|||p− ph|||#‖∇λ‖ + C

{

∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

}
1

2

{

∑

K∈Sh

h−2
K ‖λ‖2

K

}
1

2

≤C|||p− ph|||#

{

∑

K∈Sh

h−2
K ‖λ‖2

K

}
1

2

≤ C|||p− ph|||#

{

∑

σ∈Gint

h

hσ‖vσ‖
2
σ

}
1

2

,

where we have also employed (4.6), the inverse inequality, and the Cauchy–Schwarz inequality.
Thus (4.7) is proved.

4.3 Efficiency of the estimates by local Neumann/Dirichlet problems

We show here the efficiency of the estimates constructed using the approach of Section 3.3.4. For
simplicity, we present the result in the energy norm (2.10) setting only; a similar (robust) result
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in the dual norm (2.11) can likewise be established. We only show here that our estimates in this
case represent local lower bounds for the classical residual ones; local efficiency proof can the be
completed using the standard results, cf. [45] or Sections 4.1 and 4.2.

Theorem 4.5 (Efficiency of the estimates by local Neumann/Dirichlet problems). Let the assump-
tions of Section 3.3.4 be verified, let th be the solution of (3.13a)–(3.13b), let Sh be shape-regular
with the constant κS , and consider the energy norm (2.10) setting and Dint,∗

h = Sh and Dext,∗
h = ∅

in Theorem 3.4. Then, for all D ∈ Dh,

ηR,K = C
1

2

P,K

hK

c
1

2

a,K

‖f − fh‖K ∀K ∈ SD, (4.8)

{

∑

K∈SD

η2
DF,K

}
1

2

≤ Cc
− 1

2

a,D

({

∑

K∈SD

h2
K‖fh + ∇ · (a∇ph)‖2

K

}
1

2

+

{

∑

σ∈Gint

D

hσ‖[[a∇ph · nσ]]‖2
σ

}
1

2

)

,

(4.9)

where the constant C depends only on d and κS .

Proof. Firstly, (4.8) is an immediate consequence of (3.13b). Let D ∈ Dh be fixed. To show (4.9),
we first need a hybridized version of (3.13a)–(3.13b), cf. [16, 41]. Therein, (3.13a) is replaced by

(a−1th + ∇ph,vh)D − (qh,∇ · vh)D +
∑

K∈SD

〈vh · n, λh〉∂K = 0 ∀vh ∈ RTN∗
N,0(SD);

RTN∗
N,0(SD) is the same space as RTNN,0(SD) with, however, no normal trace continuity con-

straint and λh is the Lagrange multiplier. In this hybridized version, we can put vh = th + a∇ph

to infer that

‖a
1

2∇ph + a−
1

2 th‖
2
D = (qh, fh + ∇ · (a∇ph))D −

∑

σ∈Gint

D

〈[[a∇ph · n]], λh〉σ, (4.10)

using that ∇ · th = fh by (3.13b) and that the normal trace of th is continuous. Next, employing
the approach of [48, Section 4.1] (cf. also [6, 5]), there exists a postprocessing q̃h ∈ M(SD) of qh
such that

−a∇q̃h = th + a∇ph ∀K ∈ SD, (4.11a)

(q̃h, 1)K = qh|K |K| ∀K ∈ SD, (4.11b)

〈q̃h, 1〉σ = λh|σ|σ| ∀σ ∈ Gint
D , (4.11c)

〈q̃h, 1〉σ = 0 ∀σ ∈ Gext
D ⊂ ∂Ω. (4.11d)

Here, M(SD) is a space of particular piecewise polynomials on SD of total degree ≤ 2. Let hereafter
C be a generic constant only dependent on d and κS , possibly different at different occurrences.
Note that the mean value of q̃h over D is zero when D ∈ Dint

h , whereas mean values over the
sides lying in ∂Ω are zero when D ∈ Dext

h . Thus, for both D ∈ Dint
h and D ∈ Dext

h , we have the
Poincaré/Friedrichs inequality ‖q̃h‖ ≤ ChD‖∇q̃h‖D, cf. [47]. Employing also the inverse inequality

‖q̃h‖σ ≤ Ch
− 1

2
σ ‖q̃h‖K for any K sharing σ ∈ Gint

D , the Cauchy–Schwarz inequality, and the facts
that hD/minK∈SD

hK and the number of elements in SD are bounded by the shape-regularity of
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Sh, we infer from (4.10)

‖a
1

2∇ph + a−
1

2 th‖
2
D

=(q̃h, fh + ∇ · (a∇ph))D −
∑

σ∈Gint

D

〈[[a∇ph · n]], q̃h〉σ

≤‖q̃h‖D‖fh + ∇ · (a∇ph)‖D + C

{

∑

σ∈Gint

D

h−1
σ ‖[[a∇ph · nσ]]‖2

σ

}
1

2

‖q̃h‖D

≤C‖∇q̃h‖D

({

∑

K∈SD

h2
K‖fh + ∇ · (a∇ph)‖2

K

}
1

2

+

{

∑

σ∈Gint

D

hσ‖[[a∇ph · nσ]]‖2
σ

}
1

2

)

.

The assertion follows from (4.11a) while scaling by c
− 1

2

a,D and dividing by ‖a
1

2∇ph + a−
1

2 th‖D.

4.4 Remarks and generalizations

We conclude this section by several remarks and comments on generalizations.

Remark 4.6 (Unconditioned energy norm robustness with respect to discontinuous a). When a
is piecewise constant on Dh and when the harmonic averaging (2.5) has been used, equations
(4.1a)–(4.1b) imply a full robustness of the estimators of Theorem 3.4 with respect to the diffusion
coefficient a. No condition on the spatial distribution of the discontinuities in a is necessary,
whereas in the previous results [12, 35, 22, 1, 17], a “monotonicity around vertices” condition or a
similar assumption on the distribution of the diffusion coefficient was always necessary.

Remark 4.7 (Diffusion coefficient a piecewise constant on Th). If a is piecewise constant on Th

(whence the choice of the weights has no influence in (3.9)) but harmonic averaging (2.5) has been
used in order to define the diffusive flux th in (3.10), equation (4.1a) still holds true, i.e., the
diffusive flux estimator ηDF,D is still fully robust. It however follows from the proof of Lemma 4.3

that in equation (4.1b), an additional factor c
− 1

2

a,DC
1

2

a,D appears, whence the residual estimator ηR,D

is not robust in this case. Note also that as −a∇ph · nσ = th · nσ for all σ ⊂ ∂D in this case, one
here actually comes to

ηDF,D ≤ C|||p− ph|||D,

ηR,D ≤ C̃|||p − ph|||D,

i.e., one has the local efficiency directly on each dual volume D ∈ Dh and not on the patch TVD
of

the original simplicial elements sharing the vertex VD.

Remark 4.8 (Unconditioned dual norm robustness). Note that Theorem 4.4 gives full robustness
with respect to the discontinuities in a without any restriction on a for any of the methods con-
sidered in this paper. In fact, tensor-valued A can also be considered, cf. Remark 5.18 below.
However, this result is established in the dual norm ||| · |||# and one only has global efficiency.

5 Some H
1-conforming methods, their mutual relations, and ap-

plication of the estimates

The purpose of this section is to recall several classical numerical methods for problem (1.1a)–
(1.1b) and their mutual relations. Using these relations, we infer the validity of (3.9) (and hence
of our a posteriori error estimates) for all the considered methods.
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5.1 Definitions

We start by giving the definitions.

Definition 5.1 (Weighted cell-centered finite volume method). Let Dh be the Voronöı grid given
by the vertices from Vh, cf. Eymard et al. [26] (this requires that the vertices V ∈ Vext

h are suitably
placed so that Ω =

⋃

D∈Dh
D). Let next N (D) denote the set of “neighbors” of D ∈ Dh, i.e., of

such E ∈ Dh that σD,E := ∂D ∩ ∂E is such that |σD,E| 6= 0; in such a case, let dD,E stand for the
Euclidean distance of the associated vertices VD and VE . Let finally a be piecewise constant on
Dh. Then the weighted cell-centered finite volume method for problem (1.1a)–(1.1b) reads: find
ph =

∑

D∈Dh
pDψVD

, with pD = 0 for all D ∈ Dext
h so that ph ∈ X0

h, such that

−
∑

E∈N (D)

{{a}}ω
|σD,E|

dD,E
(pE − pD) = (f, 1)D ∀D ∈ Dint

h . (5.1)

The two basic choices for the weights in {{a}}ω are the arithmetic averaging (2.4) and the harmonic
averaging (2.5).

Definition 5.2 (Vertex-centered finite volume method). Let the dual grid Dh consist of polygo-
nal/polyhedral dual volumes and let a be piecewise constant on Th so that a is not double-valued
on F int

h . Then the vertex-centered finite volume method for problem (1.1a)–(1.1b) reads: find
ph ∈ X0

h such that
− 〈a∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint

h . (5.2)

Definition 5.3 (Weighted vertex-centered finite volume method). Let the dual grid Dh consist of
polygonal/polyhedral dual volumes. Then we can design a weighted vertex-centered finite volume
method for problem (1.1a)–(1.1b) as follows: find ph ∈ X0

h such that

− 〈{{a}}ω∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h . (5.3)

Remark 5.4 (Arithmetic/harmonic averaging in the vertex-centered finite volume method). We
first remark that when a is piecewise constant on Th, the above definition coincides with the
standard Definition 5.2, which is known to lead to arithmetic-like averaging of a. When, however,
a is piecewise constant on Dh, then as in the cell-centered finite volume case, the two basic choices
for the weights in {{a}}ω , (2.4) and (2.5), lead respectively to arithmetic and harmonic averaging
of a.

Definition 5.5 (Finite element method). The finite element method for problem (1.1a)–(1.1b)
reads: find ph ∈ X0

h such that

(a∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h . (5.4)

Definition 5.6 (Finite element method with harmonic averaging). Let the dual grid Dh consist
of polygonal/polyhedral dual volumes and let a be piecewise constant on Dh. Let us define ã by

ã|K =

(

(a−1, 1)K
|K|

)−1

∀K ∈ Th. (5.5)

Then we can define a finite element method with harmonic averaging for problem (1.1a)–(1.1b)
as: find ph ∈ X0

h such that

(ã∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h . (5.6)
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Remark 5.7 (Arithmetic/harmonic averaging in the finite element method). We remark that the
difference between the matrices of (5.4) and (5.6) corresponds to the difference between the ma-
trices of the piecewise linear nonconforming finite element method and that of the hybridization
of the lowest-order Raviart–Thomas mixed finite element method in that the first ones use the
arithmetic and the second ones use the harmonic averaging of the diffusion coefficient a, cf. [6]. In
particular, by Definitions 5.5 and 5.6, one has in the finite element method the choice between the
arithmetic and the harmonic averaging as in the finite volume one.

5.2 Equivalences

We are now ready to recall several equivalence results between the above methods.

Lemma 5.8 (Equivalence between matrices of finite elements and vertex-centered finite volumes).
Let D ∈ Dh have Lipschitz-continuous boundaries and let |σ ∩D| = |σ|/d for each σ ∈ E int

h with
a vertex VD ∈ V int

h and the associated D ∈ Dint
h . Let, moreover, a be piecewise constant on Th.

Then, for all ph ∈ X0
h,

(a∇ph,∇ψVD
)TVD

= −〈a∇ph · n, 1〉∂D ∀D ∈ Dint
h . (5.7)

Proof. Employing the Green theorem and the finite elements basis functions form, see [9, Lemma 3]
for d = 2.

Lemma 5.9 (Equivalence between matrices of finite elements and cell-centered finite volumes).
Let d = 2, let Th be Delaunay, that is let the circumcircle of each triangle does not contain any
vertex in its interior, and let, moreover, no circumcenters of boundary triangles lie outside the
domain Ω. Let Dh be the Voronöı grid given by the vertices from Vh and let a = 1. Then, for all
ph ∈ X0

h,

(∇ph,∇ψVD
)TVD

= −
∑

E∈N (D)

|σD,E|

dD,E
(pE − pD) ∀D ∈ Dint

h .

Proof. See [26, Section III.12].

Remark 5.10 (Relation between finite elements and cell-centered finite volumes if d = 3). We re-
mark that the above lemma does not generalize to three space dimensions, see, e.g., Letniowski [31]
or Putti and Cordes [37].

Lemma 5.11 (Equivalence between right-hand sides of finite elements and finite volumes). Let
|D∩K| = |K|/(d+1) for each D ∈ Dint

h and each K ∈ TVD
. Let, moreover, f be piecewise constant

on Th. Then
(f, ψVD

)TVD
= (f, 1)D ∀D ∈ Dint

h . (5.8)

Proof. Straightforward using the condition |D ∩K| = |K|/(d+ 1) for D ∈ Dint
h and K ∈ TVD

and
a quadrature formula for linear functions on simplices.

5.3 Consequences

The following corollaries are obvious consequences of the previous lemmas.

Corollary 5.12 (Equivalence between finite elements and vertex-centered finite volumes). Let
the assumptions of Lemmas 5.8 and 5.11 be verified. Then the finite element method given by
Definition 5.5 and the vertex-centered finite volume methods given by Definitions 5.2 and 5.3
produce the same discrete systems.
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Corollary 5.13 (Local conservativity of the finite element method on dual grids). Let the assump-
tions of Lemmas 5.8 and 5.11 be verified. Then the finite element method given by Definition 5.5
is locally conservative over the dual grid Dint

h .

Corollary 5.14 (Equivalence between weighted cell- and vertex-centered finite volumes). Let
d = 2, let Th be Delaunay, let no circumcenters of boundary triangles lie outside the domain Ω,
and let Dh be the Voronöı grid given by the vertices from Vh. Let next a be piecewise constant on
Dh. Then the weighted cell-centered finite volume method given by Definition 5.1 and the weighted
vertex-centered finite volume method given by Definition 5.3 produce the same discrete systems.

5.4 Remarks

We finish this section by some additional remarks.

Remark 5.15 (Local conservativity of the finite element method). Corollary 5.13 should be un-
derstood in the following sense: First of all, equation (5.2) states that the sum of fluxes enter-
ing/leaving D ∈ Dint

h equals the sources on this element. Secondly, rewriting −〈a∇ph · n, 1〉∂D as
−
∑

E∈N (D)〈a∇ph ·n, 1〉σD,E
and noticing that the quantity a∇ph ·n is single-valued on σD,E under

the given assumptions, local mass balance, in the sense that the mass leaving from one element (D)
enters its neighbor (E), is likewise satisfied. Consequently, the finite element method is well locally
mass conservative on Dint

h , even if it is not locally mass conservative on Th. Remark finally that
the above assertions are only valid exactly if in particular a and f are piecewise constant on Th.
In the general case, local mass conservativity on Dh only holds up to a numerical quadrature/data
oscillation.

Remark 5.16 (Choice of the dual grids). In the above developments, a large freedom is left in what
concerns the actual choice of the dual grids Dh. The basic and most frequently used grid satisfying
both the assumptions of Lemmas 5.8 and 5.11 is given by straight lines connecting the triangle
barycentres through the midpoints of the edges of Th if d = 2 and similarly if d = 3.

Remark 5.17 (Finite difference method). Let Dh consist of squares if d = 2 and cubes if d = 3. Then
the finite difference method for problem (1.1a)–(1.1b) coincides with cell-centered finite volume
one given by Definition 5.1, cf. Eymard et al. [26].

Remark 5.18 (Tensor-valued diffusion coefficients). In problem (1.1a)–(1.1b), we could also con-
sider a tensor-valued diffusion coefficient A in place of the scalar-valued a. Definitions 5.5 and 5.6
would in this case contain A in place of a and similarly for Definitions 5.2 and 5.3. Then, for A
piecewise constant on Th, Lemma 5.8 still holds true and similarly for Corollaries 5.12 and 5.13.

5.5 Application of the a posteriori error estimates

Through the above developments, we easily see that condition (3.9) is satisfied for the majority of
the considered methods. In particular, the robustness lower bound result of Section 4.1 applies to
the harmonic-weighted vertex-centered finite volume method (5.3) or the harmonic-weighted cell-
centered finite volume method (5.1). Also, whenever f is piecewise constant on Th, the a posteriori
error estimates for the finite element methods (5.4) or (5.6) are covered. It thus remains to check
the case of finite element methods and general f . We do this for the finite element method (5.4)
in the energy norm setting; the case (5.6) and the dual norm setting are similar.

Let fh be given by (f, 1)K/|K| on all K ∈ Th. Following [42], we then have:

Theorem 5.19 (Guaranteed a posteriori error estimate for the finite element method). Let p be
the weak solution of problem (1.1a)–(1.1b), let ph be its finite element approximation given by (5.4),
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let p̃ be the weak solution of problem (1.1a)–(1.1b) with f replaced by fh, and let p̃h be its finite
element approximation. Then

|||p − ph||| ≤ |||p̃ − p̃h||| + 2

{

∑

K∈Th

η2
Osc,K

}
1

2

,

where

ηOsc,K := C
1

2

P,K

hK

c
1

2

a,K

‖f − fK‖K K ∈ Th.

Proof. The triangle inequality implies

|||p − ph||| ≤ |||p − p̃||| + |||p̃ − p̃h||| + |||p̃h − ph|||.

By the same reasoning as in the proof of Theorem 3.1, using the definitions of the weak solutions,
and finally similarly as in the proof of Theorem 3.4,

|||p − p̃||| = sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

(a∇(p − p̃),∇ϕ) = sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

(f − fh, ϕ)

≤ sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

∑

K∈Th

(f − fK, ϕ − ϕK)K ≤

{

∑

K∈Th

η2
Osc,K

}
1

2

.

Estimating the term |||p̃h − ph||| similarly in a discrete setting concludes the proof.

We end this section by the following remark:

Remark 5.20 (Local efficiency and robustness of the a posteriori error estimates for the finite
element methods (5.4) and (5.6)). If a is piecewise constant on Th and under the other assumptions
of Lemmas 5.8 and 5.11, we have by Corollary 5.12 that Remark 4.7 holds true also for the finite
element method (5.4). On the other hand, when a is piecewise constant on Dh, the finite element
method with harmonic averaging (5.6) leads to a scheme which is very close to the harmonic-
weighted vertex-centered finite volume method (5.3). Indeed, as |D ∩ K| = |K|/3 for D ∈ Dh

associated with one of the vertices of K ∈ Th for the meshes of Section 2.1, the coefficient ã|K
from (5.5) is given by the harmonic averaging of the three values aD, aE, and aF that a takes
at the three dual volumes D, E, and F associated with the vertices of K. Consequently, for f
piecewise constant on Th, (5.6) gives (5.3) where {{a}}ω is now the harmonic average of aD, aE , and
aF . To obtain a guaranteed estimate, one defines th ∈ RTN(Sh) by fixing th · n on the boundary
of D ∈ Dint

h by −ã∇ph · n and by (3.10) for the other sides of Sh, while separating the oscillations
in f as in Theorem 5.19. Robustness can then be proved as in Theorem 4.1.

6 Numerical experiments

We present in this section the results of several numerical experiments.

6.1 A one-dimensional example with a smooth solution

We begin with a one-dimensional model problem

−p′′ = π2 sin(πx) in ]0, 1[,

p = 0 in 0, 1.
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Figure 2: Estimated and actual energy error (left) and corresponding effectivity index (right) for
the one-dimensional example

Th

Dh

Figure 3: Example of a given nonmatching dual mesh Dh and the corresponding primal triangular
mesh Th for the harmonic-weighted vertex-centered finite volume method (5.3)

The exact solution is smooth and given by p(x) = sin(πx). We consider the vertex-centered finite
volume method (5.2) on a series of uniformly refined meshes and construct a one-dimensional
equivalent of the equilibrated field th given by (3.10). The results are reported in Figure 2. It
turns out that in this one-dimensional setting, one actually has (∇·th, 1)K = (f, 1)K for all K ∈ Sh

instead of (3.2) and hence the residual estimators ηR,D represent a contribution of higher order
and are only significant on coarsest meshes. We also observe asymptotic exactness in the right
part of Figure 2. Define the experimental order of convergence (e.o.c.) by

e.o.c. :=
log(eN ) − log(eN−1)

1
d log |VN−1| −

1
d log |VN |

;

here eN is the error on the last mesh, eN−1 is the error on the last but one mesh, and |VN | and
|VN−1| denote the corresponding number of vertices. The e.o.c. is equal to 1.001 here.

6.2 Robust energy norm estimates for the vertex-centered finite volume method
with harmonic averaging

We consider here a model problem taken from [40], where Ω = (−1, 1) × (−1, 1) is divided into
four subdomains Ωi along the Cartesian axes (the subregion {x > 0, y > 0} ∩ Ω is denoted by Ω1

and the subsequent numbering is done counterclockwise) and a is constant and equal to ai in Ωi.
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Figure 4: Estimated (left) and actual (right) energy error distribution on a uniformly refined mesh,
α = 0.535, harmonic-weighted vertex-centered finite volume method (5.3)

Figure 5: Estimated (left) and actual (right) energy error distribution on an adaptively refined
mesh, α = 0.127, harmonic-weighted vertex-centered finite volume method (5.3)

Supposing in addition that f = 0, analytical solution writing

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each Ωi can be found. Here (r, θ) are the polar coordinates in Ω, ai and bi are constants
depending on Ωi, and α is a parameter. This solution is continuous across the interfaces but only
the normal component of its flux u = −S∇p is continuous; it exhibits a singularity at the origin
and it only belongs to H1+α(Ω). We assume Dirichlet boundary conditions given by this solution
and consider two sets of the coefficients. In the first one, a1 = a3 = 5, a2 = a4 = 1, α = 0.53544095,
and in the second one, a1 = a3 = 100, a2 = a4 = 1, α = 0.12690207. The corresponding values of
ai, bi can be found in [40, 48].

In order to get robust a posteriori error estimates in the energy norm, we know from Theo-
rem 4.1 that a has to be piecewise constant on Dh. If, however, we would first construct a simplicial
mesh Th of Ω and then a dual grid Dh as in Section 2.1, it would be very difficult to keep the dual
mesh aligned with the inhomogeneities, especially for adaptive refinement. A possible solution is to
first define the dual mesh Dh and only then the primal one Th. On the resulting couple of grids Dh,
Th, we then use the weighted vertex-centered finite volume method (5.3). Recall that on square
grids (and their uniform refinements), this method is equivalent to the weighted cell-centered fi-
nite volume one, cf. Corollary 5.14, as well as to the finite difference one, cf. Remark 5.17. The
advantage of the scheme (5.3) is that it can be used also when the original square grid has been
locally refined (into a nonmatching grid) as in Figure 3. Note however that the symmetry of this
scheme is then lost. We remark that the present methodology works also for the finite element
method with harmonic averaging (5.5), which stays symmetric.
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(right), harmonic-weighted vertex-centered finite volume method (5.3)
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Figure 7: Estimated and actual energy errors for α = 0.535 (left) and α = 0.127 (right), harmonic-
weighted vertex-centered finite volume method (5.3), estimates with local minimization (3.11)

We in Figure 4 present the predicted and actual distribution of the error for α = 0.535 and
uniform mesh refinement, using the estimators of Theorem 3.4 on the dual mesh Dh and with
th given by (3.10) (the interpolation error on nonhomogeneous Dirichlet boundary conditions is
neglected). A similar comparison, this time for adaptive mesh refinement and α = 0.127, is shown
in Figure 5. A square cell of the original dual mesh is refined into 9 identical subsquares if the
estimated energy error is greater than 50% of the maximum of the estimators. We can see that in
both cases the predicted error distribution is excellent and that in particular, the singularity at the
origin is well detected. These results clearly illustrate the robust local lower bound of Theorem 4.1.
We finally in Figure 6 give examples of the approximate solutions on the adaptively refined meshes
in both cases; the strength of the singularity in the second case is quite obvious.

Knowing precisely the error distribution and refining adaptively the meshes, the next step
is to check whether this leads to an increased efficiency of the calculations. This is illustrated
in Figure 7, from which it is evident that one can achieve a given precision with much fewer
elements using adaptive mesh refinement based on our estimator. Here, the error in the energy
norm (2.10) is approximated with a 7-point quadrature formula in each subtriangle K ∈ SD. In
the code TALISMAN, which we use for numerical computations in this section, at most 9 levels of
refinement can be used. This technical limitation is the reason why we in the adaptive case and
for α = 0.127 only present results with at most 716 dual volumes—this maximal refinement level
is achieved near the origin but the maximal error is still located there. For α = 0.535, the e.o.c.
for uniform refinement was 0.449 and for the adaptive one 1.006. For α = 0.127, these values were
respectively 0.0757 and 1.024. Following [7], the somewhat slower convergence rate for uniform
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Figure 8: Energy error effectivity indices for α = 0.535 (left) and α = 0.127 (right), harmonic-
weighted vertex-centered finite volume method (5.3), estimates with local minimization (3.11)

refinement (compare with the finite element case below) in the energy norm is related to the fact
that the coefficient a is not aligned with the mesh Th on which we reconstruct the approximate
solution ph.

Finally, in Figure 8, we give the effectivity indices using the local minimization approach de-
scribed in Section 3.3.3. We can clearly observe a confirmation of the robustness of our estimators:
whereas the inhomogeneity ratio rises from 5 to 100, the effectivity indices stay et the level of 1.4
for uniform refinement and improve for adaptive refinement. Moreover, the local minimization of
Section 3.3.3 allows for almost asymptotic exactness, and this even in the case of discontinuous
coefficients and singular solutions.

6.3 Energy estimates for the finite element method based on local Neumann/
Dirichlet mixed finite element problems

For the same model problem as in the previous section, we present here the results for the fi-
nite element method (5.4) with the energy error estimators of Theorem 3.4 based on local Neu-
mann/Dirichlet mixed finite element problems of Section 3.3.4 (thus Dint,∗

h = Sh and Dext,∗
h = ∅

in Theorem 3.4). The initial mesh consisted of 24 right-angled triangles, conforming with the 4
subdomains (for the corresponding mesh Sh, we refer to Figure 11).

Figure 9 shows the estimated and actual energy errors using the estimators based on the local
Neumann/Dirichlet mixed finite element problems described in Section 3.3.4. For α = 0.535, the
e.o.c. for uniform refinement is 0.537 and for the adaptive one 0.999; for α = 0.127, these values
are, respectively, 0.172 and 0.946. This is fully in agreement with the smoothness of the weak
solutions (recall that p ∈ H1+α(Ω)) for the uniform refinement and shows optimal behavior of
the adaptive refinement strategy. For α = 0.127, the adaptive refinement is stopped for roughly
700 elements as the diameter of the smallest triangles near the origin reaches 10−16 which is the
computer double precision.

The corresponding effectivity indices are presented in Figure 10. As predicted by the theory,
we can observe in comparison with Figure 8 that the estimates are no more robust with respect to
the discontinuities in a. The effectivity index is around 1.6 for α = 0.535 and 4.7 for α = 0.127,
although it gets down to roughly 1.27 for adaptive mesh refinement. As seen from Figure 11, the
biggest overestimation appears around the center and the error distribution is no more predicted
accurately (compare with Figures 4 and 5). The two forthcoming sections improve on these points.
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Figure 9: Estimated and actual energy errors for α = 0.535 (left) and α = 0.127 (right), finite
element method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)
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Figure 10: Energy error effectivity indices for α = 0.535 (left) and α = 0.127 (right), finite element
method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)

6.4 Robust dual norm estimates for the finite element method

With the same setting as in the previous section, we now switch to the estimates in the dual
norm (2.11) of Corollary 3.5.

Figure 12 reports the estimated and actual dual error; here “error up” means the computable
upper bound on the dual error from (2.12), whereas “error down” means the computable lower
bound from (2.12). In the dual error upper bound, for α = 0.535, the e.o.c. for uniform refinement
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Figure 11: Estimated (left) and actual (right) energy error distribution on Sh for α = 0.127, finite
element method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)
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Figure 12: Estimated and actual dual errors for α = 0.535 (left) and α = 0.127 (right), finite
element method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)
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Figure 13: Dual error effectivity indices for α = 0.535 (left) and α = 0.127 (right), finite element
method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)

is 0.539 and for the adaptive one 1.017; for α = 0.127, these values are, respectively, 0.195 and 1.109.
In Figure 13, we then report the corresponding effectivity indices. As predicted by Theorem 4.4,
the estimates in the dual norm are fully robust. In particular, the effectivity index in the dual
error upper bound is stable around the optimal value of 1; note that its values below 1 are possible
since the estimates are derived for the dual norm and not for this upper bound. One conclusion
from Figures 12 and 13 is that now the nonrobustness has been shifted to the gap between the
computable upper and lower bounds for the dual error. Finally, Figure 14 shows the predicted
dual error distribution and actual dual upper bound error distribution which reveals excellent (note
in particular that there is no gap in the scales of the figures, contrarily to the energy setting of
Figure 11).

6.5 Energy norm estimates based on local refinements of individual dual vol-
umes

We finally come back shortly to the energy norm framework of Section 6.3. The idea is to solve
the mixed finite element minimization problem (3.12) on a local refinement of the mesh SD in
individual dual volumes D ∈ Dh, with the hope to decrease the error estimates in individual dual
volumes. The local refinement is driven by the quantity ‖a

1

2∇ph + a−
1

2 th‖K on each element
K of the local refinement of SD. We refine here only the central dual volume, as only in this
dual volume the overestimation dependent on the jumps in a occurs. Figure 15 shows that this
indeed enables to substantially decrease the effectivity indices (to be compared with Figure 10),
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Figure 14: Estimated (left) and actual (right) dual error distribution on Sh for α = 0.535, finite
element method (5.4), estimates by local Neumann/Dirichlet mixed finite element problems (3.12)
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Figure 15: Energy error effectivity indices for α = 0.535 (left) and α = 0.127 (right), finite element
method (5.4), estimates by local refinements of individual dual volumes

although robustness is only achieved for α = 0.535; for α = 0.127, still an overestimation by
a factor of 2.1 appears. Such a procedure also allows to predict much more precisely the error
distribution, see the right part of Figure 16, in comparison with Figure 11. Another possible use
of the independent refinement of only those dual volumes where the error indicator is large is to
include the obtained local refinement to the mesh of the entire domain. Such a procure is illustrated
in the left part of Figure 16, and, in the present case, allows to substantially improve the classical
local refinement illustrated in the right part of Figure 10. Note that only two steps of the local
refinement cycle on the global level allow to achieve the same precision as 49 steps in Section 6.3.
Finally, the predicted and actual error distribution in the locally refined central dual volume is
shown in Figure 17. It indicates that with the boundary conditions on ∂D given by −{{a∇ph ·nσ}},
one cannot obtain a robust estimate and correct error distribution in the energy norm setting for
the finite element method (5.4) even with such a local refinement of one dual volume; a larger
domain would probably be necessary, indicating the nonlocality of the error distribution. Thus, in
confirmation of the theory of Section 4, only the approaches of Sections 6.2 and 6.4 seem to give
robust estimates (and correct error distribution).
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Figure 16: Estimated and actual energy error for α = 0.127 (left) and estimated energy error
distribution, finite element method (5.4), estimates by local refinements of ind. dual volumes
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Figure 17: Estimated (left) and actual (right) energy error distribution on the locally refined
central dual volume, α = 0.127, finite element method (5.4)
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[25] Ern, A., and Vohraĺık, M. Flux reconstruction and a posteriori error estimation for
discontinuous Galerkin methods on general nonmatching grids. C. R. Math. Acad. Sci. Paris
347 (2009), 441–444.
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