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GUARANTEED AND FULLY ROBUST A POSTERIORI ERROR

ESTIMATES FOR CONFORMING DISCRETIZATIONS OF

DIFFUSION PROBLEMS WITH DISCONTINUOUS

COEFFICIENTS

MARTIN VOHRALÍK

Abstract. We study in this paper a posteriori error estimates for H
1-confor-

ming numerical approximations of diffusion problems with a scalar, piecewise
constant, and arbitrarily discontinuous diffusion coefficient. We derive esti-
mators for the energy norm and a certain dual norm which give a guaranteed
global upper bound in the sense that they feature no undetermined constants.
(Local) lower bounds, up to constants independent of the diffusion coefficient,
are also derived. In particular, no condition on the diffusion coefficient like its
monotonous increasing along paths around mesh vertices is imposed, whence
the present results are fully robust and include also the cases with singular
solutions. For the energy error setting, the key requirement turns out to be
that the diffusion coefficient is piecewise constant on dual cells associated with
the vertices of an original simplicial mesh and that harmonic averaging is used
in the scheme. This is the usual case, e.g., for the cell-centered finite volume
method, included in our analysis as well as the vertex-centered finite volume,
finite difference, and continuous piecewise linear finite element ones. For the
dual norm setting, no such a requirement is necessary. Our estimates are based
on H(div)-conforming flux reconstruction obtained thanks to the local conser-
vativity of all the studied methods on the dual grids, which we recall in the
paper, together with their mutual relations. Numerical experiments confirm
the guaranteed upper bound, full robustness, and excellent efficiency of the
derived estimators.

1. Introduction

We consider in this paper a model diffusion problem

−∇ · (a∇p) = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and

connected set), a is a scalar diffusion coefficient, and f is a source term. We shall de-
rive here a posteriori error estimates for continuous piecewise linear finite element,
vertex-centered finite volume, cell-centered finite volume, and finite difference ap-
proximations of this problem.
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A posteriori error estimates for finite element discretization of (1.1a)–(1.1b) have
been a popular research subject starting from the Babuška and Rheinboldt work [5].
One may formulate the following five properties describing an optimal energy norm
a posteriori error estimate: 1) deliver an upper bound on the error in the numerical
solution which only uses the approximate solution and which can be fully, with-
out the presence of any unknown quantities, evaluated (guaranteed upper bound);
2) give an expression for the estimated error locally, for example in each element
of the computational mesh, and ensure that this estimate on the error represents
a lower bound for the actual error, up to a generic constant (local efficiency); 3)
ensure that the ratio of the estimated and actual error goes to one as the computa-
tional effort goes to infinity (asymptotic exactness); 4) guarantee the three previous
properties independently of the parameters and of their variation (robustness); 5)
give estimators which can be evaluated locally (negligible evaluation cost). Property
1) allows to give a certified error upper bound, 2) is crucial for the suitability of
the estimates for adaptive mesh refinement, 3) and 4) ensure the optimality of the
upper bound, and 5) guarantees that the evaluation cost will be much smaller than
the cost required to obtain the approximate solution itself.

A vast amount of books and papers have been dedicated to the subject, cf. [3, 38]
and [24, 46, 31, 17, 35, 26, 37, 21, 45, 22, 10] and the references therein. However,
to the best of the author’s knowledge, none of these estimators enables to fulfill the
five above properties simultaneously. The motivation of this paper was to propose
estimates as close as possible to the optimality in the above sense.

One particular issue is the robustness with respect to discontinuous coefficient a.
To the best of the author’s knowledge, robust estimators are only known under the
‘monotonicity around vertices’ condition on the distribution of the diffusion coeffi-
cient, see Bernardi and Verfürth [9, Hypothesis 2.7], Petzoldt [28], Ainsworth [1],
or Chen and Dai [16]. The above condition is however very restrictive and in
particular excludes the physically interesting cases where regions with different dif-
fusion coefficients meet in a checkerboard pattern and where the weak solution can
present singularities. We present two types of estimates which are fully robust, and
this without the ‘monotonicity’ condition. The first one applies when harmonic
averaging has been used in the scheme definition, and this while aligning the dis-
continuities of the diffusion coefficient a with a dual mesh formed around vertices.
Although unusual in the finite element method, this is very common in the cell-
centered finite volume (finite difference) approach. The second one applies to all
the methods studied in the paper and is based on the introduction of a (nonlocal)
dual norm. Estimates in this norm are then only globally efficient.

We start the paper with some preliminaries in Section 2. We then recall some
useful relations between the considered methods in Section 3, so that to be able
to treat them simultaneously. We next in Section 4 sketch an optimal abstract
framework for a posteriori error estimation, both in the energy and dual norms. In
Section 5, we then prove our a posteriori error estimates. For this purpose, we shall
postprocess the original diffusive flux −a∇ph, where ph is the approximate solution,
into th ∈ H(div,Ω) defined in the lowest-order Raviart–Thomas–Nédélec space on
a fine simplicial mesh. Ideas in this direction have already been proposed in the
literature, cf. [24, 31, 17, 26, 37, 22, 10] and go back to the Prager–Synge equal-
ity [29] and the hypercircle method [36]. We discuss four different ways of defining
the equilibrated flux th: by direct prescription, by local minimization involving
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Figure 1. Original simplicial mesh Th and the associated dual
mesh Dh (left) and the fine simplicial mesh SD of D ∈ Dh (right)

local linear systems solution, by local minimization without local linear systems
solution, and by mixed finite element approximations of local Neumann/Dirichlet
problems. Section 5 is then closed by comparisons of the present technique with
the residual, equilibrated residual, averaging, functional, and different equilibrated
fluxes estimates. The proofs of the (local) efficiency and robustness are the issue of
Section 6. Finally, numerical experiments are presented in Section 7.

Our results are based purely on the conservativity of all the studied methods on a
dual grid and not on the Galerkin orthogonality, which is the usual case for the finite
element method. The homogeneous Dirichlet boundary condition is considered
only for the sake of clarity of exposition; general boundary conditions can easily
be taken in account, as we outline it in [44]. This paper is a detailed description
of the results previously announced in [42]; some additional numerical experiments
for the finite element method, together with another local minimization strategy,
are then studied in [14], and extensions to the reaction–diffusion case in [15].

2. Preliminaries

We give in this section the notation and assumptions, recall some important
inequalities, and finally give details on the continuous problem (1.1a)–(1.1b).

2.1. Meshes and notation. We shall work in this paper with triangulations Th

which for all h > 0 consist of closed simplices such that Ω =
⋃

K∈Th
K and which

are conforming (matching), i.e., such that if K,L ∈ Th, K 6= L, then K∩L is either
an empty set or a common face, edge, or vertex of K and L. Let hK denote the
diameter of K and let h := maxK∈Th

hK . We denote by Eh the set of all sides of
Th, by E int

h the set of interior, by Eext
h the set of exterior, and by EK the set of all

the sides of an element K ∈ Th; hσ stands for the diameter of σ ∈ Eh. We finally
denote by Vh (V int

h ) the set of all (interior) vertices of Th and put, for V ∈ Vh and
K ∈ Th, respectively, TV := {L ∈ Th; L ∩ V 6= ∅} and TK := {L ∈ Th; L ∩K 6= ∅}.

We shall also consider dual partitions Dh of Ω such that Ω =
⋃

D∈Dh
D and such

that for each V ∈ Vh, V ∈ DV for exactly one DV ∈ Dh. The notation VD stands
inversely for the vertex associated with a given D ∈ Dh and we use Dint

h ,Dext
h to

denote the dual volumes associated with vertices from V int
h ,Vext

h , respectively. Next,
Fh stands for all sides of Dh and F int

h (Fext
h ) for all interior (exterior) sides of Dh.

We shall always suppose that DV lies in the interior of the polygon/polyhedron
given by TV for all V ∈ Vh and that E int

h ∩ F int
h has a zero (d − 1)-dimensional

Lebesgue measure. An example of such a partition is given in the left part of
Figure 1; more details on different Dh considered will be given in Section 3.
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In order to define our a posteriori error estimates, we will need a second con-
forming simplicial triangulation Sh of Ω. The basic requirement is that the interiors
of the elements of Sh do not intersect sides of Th and Dh (Sh is a conforming re-
finement of both Th and Dh). For the local efficiency proofs of our estimators, we
will later need the assumption that {Sh}h are shape-regular in the sense that there
exists a constant κS > 0 such that minK∈Sh

|K|/hd
K ≥ κS for all h > 0. One can

easily construct a local triangulation SD of each D ∈ Dh as shown in the right part
of Figure 1 and then put Sh := ∪D∈Dh

SD. We will use the notation Gh for all sides
of Sh and Gint

h (Gext
h ) for all interior (exterior) sides of Sh.

Next, for K ∈ Th, n will always denote its exterior normal vector; we shall also
employ the notation nσ for a normal vector of a side σ ∈ Eh, whose orientation
is chosen arbitrarily but fixed for interior sides and coinciding with the exterior
normal of Ω for exterior sides. For σ ∈ E int

h shared by K,L ∈ Th (which we denote
by σK,L) such that nσ points from K to L and a function ϕ, we shall define the
jump operator [[·]] by

(2.1) [[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ.

We put [[ϕ]]σ := ϕ|σ for any σ ∈ Eext
h . We next associate with each K ∈ Th and

each σ ∈ EK a weight ωK,σ such that

0 ≤ ωK,σ ≤ 1 ∀K ∈ Th, ∀σ ∈ EK ,(2.2a)

ωK,σ + ωL,σ = 1 ∀σ = σK,L ∈ E int
h ,(2.2b)

ωK,σ = 1 ∀σ ∈ Eext
h and K ∈ Th such that σ ∈ EK .(2.2c)

For σ = σK,L ∈ E int
h , we define the weighted average operator {{·}}ω by

(2.3) {{ϕ}}ω := ωK,σ(ϕ|K)|σ + ωL,σ(ϕ|L)|σ,

whereas for σ ∈ Eext
h , {{ϕ}}ω := ϕ|σ. We denote by {{ϕ}} the standard average

operator with ωK,σ = ωL,σ = 1
2 and {{ϕ}} := ϕ|σ for σ ∈ Eext

h . We use the same
type of notation also for the meshes Dh and Sh.

We shall be working below with numerical methods whose approximate solution
can be represented by continuous piecewise linear functions on Th, with value 0
at the boundary of Ω. The basis of this space, denoted by X0

h, is spanned by the
classical pyramidal functions ψV , V ∈ V int

h , such that ψV (U) = δV U , U ∈ Vh,
δ being the Kronecker delta.

In what concerns functional notation, we denote by (·, ·)S the L2-scalar product
on S and by ‖ · ‖S the associated norm; when S = Ω, the is index dropped off. We
mean by |S| the Lebesgue measure of S, by |σ| the (d − 1)-dimensional Lebesgue
measure of σ ⊂ R

d−1, and in particular by |s| the length of a segment s. Next,
H1(S) is the Sobolev space of functions with square-integrable weak derivatives and
H1

0 (S) is its subspace of functions with traces vanishing on ∂S. Finally, H(div, S)
is the space of functions with square-integrable weak divergences, H(div, S) = {v ∈
L2(S);∇·v ∈ L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on ∂S.

2.2. Assumptions. We shall suppose that f(x) ∈ L2(Ω) and that a(x) is a piece-
wise constant scalar-valued function. We in particular consider cases where a is
piecewise constant on the triangulation Th and cases where a is piecewise constant
on the dual partition Dh. In all cases we denote by ca,K and Ca,K for all K ∈ Th

the best positive constants such that ca,K ≤ a(x) ≤ Ca,K for all x ∈ K. Similar
notation will be used also for D ∈ Dh, for TK , K ∈ Th, or for the entire domain.
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2.3. Poincaré and Friedrichs inequalities. LetD be a polygon or a polyhedron.
The Poincaré inequality states that

(2.4) ‖ϕ− ϕD‖2
D ≤ CP,Dh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D),

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D| and where the
constant CP,D can for each convex D be evaluated as 1/π2, cf. [27, 8]. To evaluate
CP,D for nonconvex elements D is more complicated but it still can be done, cf. [20,
Lemma 10.2] or [12, Section 2].

Lest |∂Ω ∩ ∂D| 6= 0. Then the Friedrichs inequality states that

(2.5) ‖ϕ‖2
D ≤ CF,D,∂Ωh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D.

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all

x ∈ D, the first intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-
line defined by the origin x and the vector b, CF,D,∂Ω = 1, cf. [40, Remark 5.8]. To
evaluate CF,D,∂Ω in the general case is more complicated but it still can be done,
cf. [40, Remark 5.9] or [12, Section 3].

2.4. Continuous problem. We define a bilinear form B by

(2.6) B(p, q) := (a∇p,∇q) p, q ∈ H1
0 (Ω).

The weak formulation of problem (1.1a)–(1.1b) is to find p ∈ H1
0 (Ω) such that

(2.7) B(p, q) = (f, q) ∀q ∈ H1
0 (Ω)

and the corresponding energy norm is defined by

(2.8) |||q|||2 := B(q, q)= ‖a
1

2∇q‖2, q ∈ H1
0 (Ω).

Alternatively, following the approaches of Verfürth [39] and Chaillou and Suri [13]
of the convection–diffusion and nonlinear settings, respectively, we will also present
a posteriori error estimates in a dual norm. We will use

(2.9) |||q|||# := sup
ϕ∈H1

0
(Ω)

B(q, ϕ)

‖∇ϕ‖
, q ∈ H1

0 (Ω)

for this purpose.

Remark 2.1 (Energy and dual norms). The energy norm (2.8) admits a local de-
composition and is easily computable. The dual norm (2.9) is a global norm and
its practical computation is not obvious except of particular cases. In any case,
however, it is immediate from (2.9) that there exist easily and locally computable
upper and lower bounds for ||| · |||#:

(2.10)
‖a

1

2∇q‖2

‖∇q‖
≤ |||q|||# ≤ ‖a∇q‖.

In particular, the two above norms coincide when a = 1.

3. Some H1-conforming methods and their mutual relations

The purpose of this section is to recall several classical numerical methods for
problem (1.1a)–(1.1b) and their mutual relations. Using these relations, the a
posteriori error estimates derived in this paper will apply to all these methods.
This section may be skipped temporarily if the reader is only interested in the
global a posteriori error upper bounds (Sections 4 and 5.1 below).
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3.1. Definitions. We start by giving the definitions.

Definition 3.1 (Weighted cell-centered finite volume method). Let Dh be the
Voronöı grid given by the vertices from Vh, cf. Eymard et al. [20] (this requires that
the vertices V ∈ Vext

h are suitably placed so that Ω =
⋃

D∈Dh
D). Let next N (D)

denote the set of “neighbors” of D ∈ Dh, i.e., of such E ∈ Dh that σD,E := ∂D∩∂E
is such that |σD,E | 6= 0; in such a case, let dD,E stand for the Euclidean distance of
the associated vertices VD and VE . Let finally a be piecewise constant on Dh. Then
the weighted cell-centered finite volume method for problem (1.1a)–(1.1b) reads:
find ph =

∑

D∈Dh
pDψVD

, with pD = 0 for all D ∈ Dext
h so that ph ∈ X0

h, such that

(3.1) −
∑

E∈N (D)

{{a}}ω
|σD,E |

dD,E
(pE − pD) = (f, 1)D ∀D ∈ Dint

h .

Here, two basic choices for the weights in {{a}}ω on a side σ = σD,E ∈ F int
h exist:

(3.2) ωD,σ = ωE,σ = 1
2 ,

which corresponds to the arithmetic averaging, and

(3.3) ωD,σ =
aE

aD + aE
, ωE,σ =

aD

aD + aE
,

which corresponds to the harmonic averaging.

Definition 3.2 (Vertex-centered finite volume method). Let the dual grid Dh

consist of polygonal/polyhedral dual volumes and let a be piecewise constant on
Th so that a is not double-valued on F int

h . Then the vertex-centered finite volume
method for problem (1.1a)–(1.1b) reads: find ph ∈ X0

h such that

(3.4) − 〈a∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h .

Definition 3.3 (Weighted vertex-centered finite volume method). Let the dual grid
Dh consist of polygonal/polyhedral dual volumes. Then we can design a weighted
vertex-centered finite volume method for problem (1.1a)–(1.1b) as follows: find
ph ∈ X0

h such that

(3.5) − 〈{{a}}ω∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h .

Remark 3.4 (Arithmetic/harmonic averaging in the vertex-centered finite volume
method). We first remark that when a is piecewise constant on Th, the above
definition coincides with the standard Definition 3.2, which is known to lead to
arithmetic-like averaging of a. When, however, a is piecewise constant on Dh, then
as in the cell-centered finite volume case, the two basic choices for the weights in
{{a}}ω, (3.2) and (3.3), lead respectively to arithmetic and harmonic averaging of a.

Definition 3.5 (Finite element method). The finite element method for prob-
lem (1.1a)–(1.1b) reads: find ph ∈ X0

h such that

(3.6) (a∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h .

Definition 3.6 (Finite element method with harmonic averaging). Let the dual
grid Dh consist of polygonal/polyhedral dual volumes and let a be piecewise con-
stant on Dh. Let us define ã by

(3.7) ã|K =

(

(a−1, 1)K

|K|

)−1

∀K ∈ Th.
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Then we can define a finite element method with harmonic averaging for prob-
lem (1.1a)–(1.1b) as: find ph ∈ X0

h such that

(3.8) (ã∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h .

Remark 3.7 (Arithmetic/harmonic averaging in the finite element method). We
remark that the difference between the matrices of (3.6) and (3.8) corresponds to
the difference between the matrices of the piecewise linear nonconforming finite
element method and that of the hybridization of the lowest-order Raviart–Thomas
mixed finite element method in that the first ones use the arithmetic and the second
ones use the harmonic averaging of the diffusion coefficient a, cf. [4]. In particular,
by Definitions 3.5 and 3.6, one has in the finite element method the choice between
the arithmetic and the harmonic averaging as in the finite volume one.

3.2. Equivalences. We are now ready to recall several equivalence results between
the above methods.

Lemma 3.8 (Equivalence between matrices of finite elements and vertex-centered
finite volumes). Let D ∈ Dh have Lipschitz-continuous boundaries and let |σ∩D| =
|σ|/d for each σ ∈ E int

h with a vertex VD ∈ V int
h and the associated D ∈ Dint

h . Let,
moreover, a be piecewise constant on Th. Then, for all ph ∈ X0

h,

(3.9) (a∇ph,∇ψVD
)TVD

= −〈a∇ph · n, 1〉∂D ∀D ∈ Dint
h .

Proof. Employing the Green theorem and the finite elements basis functions form,
see [7, Lemma 3] for d = 2. �

Lemma 3.9 (Equivalence between matrices of finite elements and cell-centered
finite volumes). Let d = 2, let Th be Delaunay, that is let the circumcircle of
each triangle does not contain any vertex in its interior, and let, moreover, no
circumcenters of boundary triangles lie outside the domain Ω. Let Dh be the Voronöı
grid given by the vertices from Vh and let a = 1. Then, for all ph ∈ X0

h,

(∇ph,∇ψVD
)TVD

= −
∑

E∈N (D)

|σD,E |

dD,E
(pE − pD) ∀D ∈ Dint

h .

Proof. See [20, Section III.12]. �

Remark 3.10 (Relation between finite elements and cell-centered finite volumes
if d = 3). We remark that the above lemma does not generalize to three space
dimensions, see, e.g., Letniowski [25] or Putti and Cordes [30].

Lemma 3.11 (Equivalence between right-hand sides of finite elements and finite
volumes). Let |D ∩K| = |K|/(d + 1) for each D ∈ Dint

h and each K ∈ TVD
. Let,

moreover, f be piecewise constant on Th. Then

(3.10) (f, ψVD
)TVD

= (f, 1)D ∀D ∈ Dint
h .

Proof. Straightforward using the condition |D∩K| = |K|/(d+1) for D ∈ Dint
h and

K ∈ TVD
and a quadrature formula for linear functions on simplices. �
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3.3. Consequences. The following corollaries are obvious consequences of the pre-
vious lemmas.

Corollary 3.12 (Equivalence between finite elements and vertex-centered finite
volumes). Let the assumptions of Lemmas 3.8 and 3.11 be verified. Then the fi-
nite element method given by Definition 3.5 and the vertex-centered finite volume
methods given by Definitions 3.2 and 3.3 produce the same discrete systems.

Corollary 3.13 (Local conservativity of the finite element method on dual grids).
Let the assumptions of Lemmas 3.8 and 3.11 be verified. Then the finite element
method given by Definition 3.5 is locally conservative over the dual grid Dint

h .

Corollary 3.14 (Equivalence between weighted cell- and vertex-centered finite
volumes). Let d = 2, let Th be Delaunay, let no circumcenters of boundary triangles
lie outside the domain Ω, and let Dh be the Voronöı grid given by the vertices
from Vh. Let next a be piecewise constant on Dh. Then the weighted cell-centered
finite volume method given by Definition 3.1 and the weighted vertex-centered finite
volume method given by Definition 3.3 produce the same discrete systems.

3.4. Remarks. We finish this section by some additional remarks.

Remark 3.15 (Local conservativity of the finite element method). Corollary 3.13
should be understood in the following sense: First of all, equation (3.4) states that
the sum of fluxes entering/leaving D ∈ Dint

h equals the sources on this element.
Secondly, rewriting −〈a∇ph · n, 1〉∂D as −

∑

E∈N (D)〈a∇ph · n, 1〉σD,E
and noticing

that the quantity a∇ph · n is single-valued on σD,E under the given assumptions,
local mass balance, in the sense that the mass leaving from one element (D) enters
its neighbor (E), is likewise satisfied. Consequently, the finite element method is
well locally mass conservative on Dint

h , even if it is not locally mass conservative on
Th. Remark finally that the above assertions are only valid exactly if in particular
a and f are piecewise constant on Th. In the general case, local mass conservativity
on Dh only holds up to a numerical quadrature/data oscillation.

Remark 3.16 (Choice of the dual grids). In the above developments, a large freedom
is left in what concerns the actual choice of the dual grids Dh. The basic and most
frequently used grid satisfying both the assumptions of Lemmas 3.8 and 3.11 is
given by straight lines connecting the triangle barycentres through the midpoints
of the edges of Th if d = 2 and similarly if d = 3.

Remark 3.17 (Finite difference method). Let Dh consist of squares if d = 2 and
cubes if d = 3. Then the finite difference method for problem (1.1a)–(1.1b) coincides
with cell-centered finite volume one given by Definition 3.1, cf. Eymard et al. [20].

Remark 3.18 (Tensor-valued diffusion coefficients). In problem (1.1a)–(1.1b), we
could also consider a tensor-valued diffusion coefficient A in place of the scalar-
valued a. Definitions 3.5 and 3.6 would in this case contain A in place of a and sim-
ilarly for Definitions 3.2 and 3.3. Then, for A piecewise constant on Th, Lemma 3.8
still holds true and similarly for Corollaries 3.12 and 3.13.

4. Optimal abstract framework for a posteriori error estimation

We give here an optimal abstract framework for a posteriori error estimation in
problem (1.1a)–(1.1b) in the energy norm (2.8). The basic ideas can be traced back
to the Prager–Synge equality [29], the hypercircle method [36], and [23]. We then
generalize this result to the dual norm (2.9).
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Theorem 4.1 (Abstract energy norm a posteriori error estimate). Let p be the
weak solution of problem (1.1a)–(1.1b) and let ph ∈ H1

0 (Ω) be arbitrary. Then

(4.1) |||p− ph||| = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{|(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}.

Proof. We first notice that

|||p− ph||| = B

(

p− ph,
p− ph

|||p− ph|||

)

by (2.8). Clearly, as ϕ := (p − ph)/|||p − ph||| ∈ H1
0 (Ω), we immediately have

B(p, ϕ) = (f, ϕ) by (2.7). Using this we obtain, for an arbitrary t ∈ H(div,Ω) and
employing the Green theorem,

B(p− ph, ϕ) = (f, ϕ) − (a∇ph,∇ϕ) = (f, ϕ) − (a∇ph + t,∇ϕ) + (t,∇ϕ)

≤ |(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|.

From here, it is enough to note that |||ϕ||| = 1 and that t ∈ H(div,Ω) was chosen
arbitrary to conclude that the right-hand side term of (4.1) is an upper bound on
the left-hand side one. For the converse estimate, it suffices to put t = −a∇p and
to use the Cauchy–Schwarz inequality and the fact that |||ϕ||| = 1. �

Similar arguments lead to the following corollary:

Corollary 4.2 (Abstract dual norm a posteriori error estimate). Let the assump-
tions of Theorem 4.1 be verified. Then

|||p− ph|||# = inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), ‖∇ϕ‖=1

{|(f −∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}.

The above theorem and corollary thus give equivalent expressions for the error.

5. Guaranteed a posteriori error estimates

Our purpose is now to find computable versions of the abstract a posteriori
estimates of the previous section. We first present general a posteriori error esti-
mates, applicable to any conforming method under the condition that a suitable
th ∈ H(div,Ω) can be found. We then propose different ways of construction of
such th for the different methods. We conclude this section by several remarks and
generalizations.

5.1. General guaranteed a posteriori error estimates for conforming meth-
ods. The following is a general energy norm a posteriori error estimate for any
conforming method:

Theorem 5.1 (A general guaranteed energy norm a posteriori error estimate). Let
p be the weak solution of problem (1.1a)–(1.1b) and let ph ∈ H1

0 (Ω) be arbitrary.
Let next Dh = Dint

h ∪ Dext
h be a partition of Ω such that |∂Ω ∩ ∂D| 6= 0 for all

D ∈ Dext
h . Let finally th ∈ H(div,Ω) be arbitrary but such that

(5.1) (∇ · th, 1)D = (f, 1)D ∀D ∈ Dint
h .

Then

|||p− ph||| ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)2

}
1

2

,
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where the diffusive flux estimator ηDF,D is given by

(5.2) ηDF,D := ‖a
1

2∇ph + a−
1

2 th‖D D ∈ Dh,

and the residual estimator ηR,D is given by

(5.3) ηR,D := mD,a‖f −∇ · th‖D D ∈ Dh,

where

(5.4) m2
D,a := CP,D

h2
D

ca,D
D ∈ Dint

h , m2
D,a := CF,D,∂Ω

h2
D

ca,D
D ∈ Dext

h ,

with CP,D the constant from the Poincaré inequality (2.4) and CF,D,∂Ω the constant
from the Friedrichs inequality (2.5).

Proof. Put t = th in Theorem 4.1. Note that, for each D ∈ Dint
h ,

(f −∇ · th, ϕ)D = (f −∇ · th, ϕ− ϕD)D ≤ ηR,D|||ϕ|||D ,

using (5.1), the Poincaré inequality (2.4), the Cauchy–Schwarz inequality, and the
definition (2.8) of the energy norm. We cannot use a similar approach also for
D ∈ Dext

h since there is no local conservativity supposed in (5.1) on these dual
volumes. On the other hand, however, ϕ = 0 on ∂D ∩ ∂Ω, whence

(f −∇ · th, ϕ)D ≤ ηR,D|||ϕ|||D

for each D ∈ Dext
h , using the Friedrichs inequality (2.5), the Cauchy–Schwarz in-

equality, and the definition (2.8) of the energy norm. Finally, −(a∇ph + t,∇ϕ)D ≤
ηDF,D|||ϕ|||D is immediate using the fact that a is positive and scalar and the
Cauchy–Schwarz inequality. Hence it now suffices to use the Cauchy–Schwarz in-
equality and to notice that |||ϕ||| = 1 in order to conclude the proof. �

The proof of following corollary is completely similar:

Corollary 5.2 (A general guaranteed dual norm a posteriori error estimate). Let
the assumptions of Theorem 5.1 be verified. Then

|||p− ph|||# ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)2

}
1

2

,

with the diffusive flux estimator ηDF,D given by

(5.5) ηDF,D := ‖a∇ph + th‖D D ∈ Dh,

and the residual estimator ηR,D given by

(5.6) ηR,D := mD‖f −∇ · th‖D D ∈ Dh,

where

(5.7) m2
D := CP,Dh

2
D D ∈ Dint

h , m2
D := CF,D,∂Ωh

2
D D ∈ Dext

h .

Remark 5.3 (Assumptions of Theorem 5.1 and Corollary 5.2). Note that for Theo-
rem 5.1 and Corollary 5.2, no additional assumptions like a polynomial form of the
data, of the approximate solution, or a shape regularity of the mesh are needed.

Remark 5.4 (The mesh Dh in Theorem 5.1 or Corollary 5.2). The meshes Dh in
Theorem 5.1 or Corollary 5.2 will differ in different types of estimates. Usually,
either Dh is given by the dual mesh Dh, or Dint

h = Sh and Dext
h = ∅, where Dh and

Sh are given in Section 2.1.
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In order to use Theorem 5.1 and Corollary 5.2 in practice, we need to construct a
(finite-dimensional) th satisfying (5.1). We will look for a suitable th in the lowest-
order Raviart–Thomas–Nédélec space RTN(Sh) defined over a fine simplicial mesh
Sh which we suppose to be a refinement of the mesh Dh from Theorem 5.1 or
Corollary 5.2. The space RTN(Sh) ⊂ H(div,Ω) is a space of vector functions
having on eachK ∈ Sh the form (aK +dKx, bK +dKy)

t if d = 2 and (aK +dKx, bK +
dKy, cK+dKz)

t if d = 3. Note that the requirement RTN(Sh) ⊂ H(div,Ω) imposes
the continuity of the normal trace across all σ ∈ Gint

h and recall that v · nσ is a
constant for all σ ∈ Gh and that these side fluxes also represent the degrees of
freedom of RTN(Sh). For more details, we refer to [11, 33].

5.2. Constructions of the equilibrated flux th for the vertex-centered fi-
nite volume method. We show here four different ways of constructing th on the
example of the vertex-centered finite volume method (3.4). We treat the extensions
to the other methods in the following sections.

5.2.1. Construction of th by direct prescription. We define th ∈ RTN(Sh) by

(5.8) th · nσ = −{{a∇ph · nσ}} ∀σ ∈ Gh.

We first note that th ·nσ is given directly by −a∇ph ·nσ for such σ ∈ Gh which are
in the interior of some K ∈ Th (where a and ∇ph are constant) or at the boundary
of Ω; a simple averaging is used otherwise. We have the following key result:

Lemma 5.5 (Reconstructed diffusion residual for the vertex-centered finite volume
method). Let ph ∈ X0

h be given by the vertex-centered finite volume method (3.4).
Let th by given by (5.8). Then (5.1) holds true.

Proof. The local conservativity of the vertex-centered finite volume method (3.4)
and the definition (5.8) of th imply that

〈th · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h .

The assertion of the lemma follows by the Green theorem. �

Consequently, th given by (5.8) can be used in Theorem 5.1 and Corollary 5.2
with Dh being the dual mesh of the vertex-centered finite volume method (3.4).
Such an estimate, however, may suffer from two inconveniences. Whenever D ∈
Dint

h is nonconvex, the Poincaré constant CP,D from (2.4) is no longer equal to 1/π2

and its evaluation is much more difficult leading to less sharp estimates. The second
inconvenience was pointed out in [14]: as (5.1) only holds on a set of elements SD

and not on each K ∈ Sh, the contribution of the residual estimators may dominate
the diffusive flux ones, not being a higher-order term as in [41, 43, 18], and the
effectivity index does not approach the optimal value of one. The approaches of the
three following sections improve on these two points (we present them in the energy
norm setting, similar results in the dual norm setting are rather straightforward).

5.2.2. Construction of th by local minimization involving local linear systems solu-
tion. In [14], th ·nσ is given by (5.8) only on such σ ∈ Gh which are at the boundary
of some D ∈ Dint

h . By the Green theorem, this guarantees (5.1) as in Lemma 5.5.
The remaining sides lie in the interior of some D ∈ Dh (or at the boundary of Ω),
so that th · nσ can can be chosen locally and independently by local minimization
of η2

R,D + η2
DF,D for each D ∈ Dh. This leads to a solution of a small linear system

for each D ∈ Dh and helps the improve the effectivity index to a value close to one.
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5.2.3. Construction of th by local minimization without local linear systems solu-
tion. We suggest here an improvement which avoids any local systems solution.

Let D ∈ Dh be fixed. The first step is to construct t1,D ∈ RTN(SD) given
by (5.8). In the second one, we then construct t2,D ∈ RTN(SD) given by (5.8)
only for such σ ∈ Gh contained in D which are at the boundary of some E ∈ Dint

h

and such that (∇· t2,D, 1)K = (f, 1)K for all K ∈ SD. Note that as (∇· t2,D, 1)D =
〈t2,D · n, 1〉∂D = (f, 1)D when D ∈ Dint

h , this can be done without any (local)
linear system solution by choosing the flux over one interior side and a sequential
construction as

∑

K∈SD
(f, 1)K = (f, 1)D. If D ∈ Dext

h , this argument is then
replaced by the fact that we are free to choose the fluxes over the exterior sides.
Now any tD := αt1,D + (1 − α)t2,D obviously obeys (5.1) and we can minimize
ηD := ηR,D + ηDF,D as a function of the parameter α. It turns out that it is much
easier to minimize η2

R,D+η2
DF,D, as this is a quadratic function of α, and the optimal

value is easily found to be given by

α
(

‖a−
1

2 (t1,D − t2,D)‖2
D +m2

D,a‖∇ · (t1,D − t2,D)‖2
D

)

= −(a
1

2∇ph + a−
1

2 t2,D, a
− 1

2 (t1,D − t2,D))D

+m2
D,a(f −∇ · t2,D,∇ · (t1,D − t2,D))D.

As however this value does not necessarily minimize ηD (when it is uniquely defined
by the above formula) but η2

R,D+η2
DF,D, we finally propose as an improved estimator

(5.9) ηD := min{ηD(t1,D), ηD(t2,D), ηD(αt1,D + (1 − α)t2,D)}.

Such an estimator will be locally efficient (and robust) whenever it is the case for
ηD(t1,D). Hence, in Section 6 below, we only prove the efficiency for ηD(t1,D).

5.2.4. Construction of th by mixed finite element approximations of local Neu-
mann/Dirichlet problems. We adapt here to the present setting the approach of [19].
For a given D ∈ Dh, let

RTNN(SD) = {vh ∈ RTN(SD); vh · nσ = −{{a∇ph · nσ}} ∀σ ∈ Gint
h ∩ ∂D}.

Let fh be given by (f, 1)K/|K| for all K ∈ Sh. We then define th ∈ RTN(Sh) by
solving on each D ∈ Dh the following minimization problem:

(5.10) th|D = arg inf
vh∈RTNN(SD),∇·vh=fh

‖a
1

2∇ph + a−
1

2 vh‖D.

Define RTNN,0(SD) as RTNN(SD) but with the normal flux condition vh ·nσ =
0. Let P

∗
0(SD) be spanned by piecewise constants on SD with zero mean on D when

D ∈ Dint
h ; when D ∈ Dext

h , the mean value condition is not imposed. Then it is easy
to show that (5.10) is equivalent to finding th ∈ RTNN(SD) and qh ∈ P

∗
0(SD), the

mixed finite element approximations of local Neumann problems on D ∈ Dint
h and

local Neumann/Dirichlet problems on D ∈ Dext
h :

(a−1th + ∇ph,vh)D − (qh,∇ · vh)D = 0 ∀vh ∈ RTNN,0(SD),(5.11a)

(∇ · th, φh)D = (f, φh)D ∀φh ∈ P
∗
0(SD).(5.11b)

Note in particular that the function −{{a∇ph · nσ}} on the boundary of each D ∈
Dint

h by (3.4) satisfies the compatibility condition, whence also the existence and
uniqueness follow. Theorem 5.1 and Corollary 5.2 are to be used here with Dint

h =
Sh and Dext

h = ∅. A solution of a local linear system on each D ∈ Dh is necessary
but the results of Section 7 below reveal excellent.
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5.3. Construction of the equilibrated flux th for the weighted vertex-
centered finite volume method. In the spirit of the previous section, we show
here one particular way of constructing a suitable th ∈ RTN(Sh) for the weighted
vertex-centered finite volume method (3.5). We simply define th ∈ RTN(Sh) by

(5.12) th · nσ = −{{a∇ph · nσ}}ω ∀σ ∈ Gh.

For the moment, we do not specify the weights in (5.12), but it will turn out that
the choice (3.3) will lead to fully robust energy norm a posteriori error estimates.
The following is the equivalent of Lemma 5.5 in the present setting:

Lemma 5.6 (Reconstructed diffusion residual for the weighted vertex-centered fi-
nite volume method). Let ph ∈ X0

h be given by the weighted vertex-centered finite
volume method (3.5), with any weights satisfying (2.2). Let th by given by (5.12),
where the weights in (5.12) are the same as those used in (3.5) for all σ ∈ F int

h if a is
discontinuous and piecewise constant on Dh. If a is piecewise constant on Th (com-
prising the case a = 1), let the weights in (5.12) be arbitrary but satisfying (2.2).
Then (5.1) holds true.

5.4. Guaranteed estimates for the finite element method. Recall from Corol-
lary 3.12 that whenever f is piecewise constant on Th, the a posteriori error esti-
mates for the finite element method (3.6) can be obtained by any of the approaches
of Section 5.2. For general f , let fh be given by (f, 1)K/|K| on all K ∈ Th. Fol-
lowing [34], we then have:

Theorem 5.7 (Guaranteed a posteriori error estimate for the finite element me-
thod). Let p be the weak solution of problem (1.1a)–(1.1b), let ph be its finite
element approximation given by (3.6), let p̃ be the weak solution of problem (1.1a)–
(1.1b) with f replaced by fh, and let p̃h be its finite element approximation. Then

|||p− ph||| ≤ |||p̃− p̃h||| + 2

{

∑

K∈Th

η2
Osc,K

}
1

2

,

where

ηOsc,K := C
1

2

P,K

hK

c
1

2

a,K

‖f − fK‖K K ∈ Th.

Proof. The triangle inequality implies

|||p− ph||| ≤ |||p− p̃||| + |||p̃− p̃h||| + |||p̃h − ph|||.

By the same reasoning as in the proof of Theorem 4.1, using the definitions of the
weak solutions, and finally similarly as in the proof of Theorem 5.1,

|||p− p̃||| = sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

(a∇(p− p̃),∇ϕ) = sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

(f − fh, ϕ)

≤ sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

∑

K∈Th

(f − fK , ϕ− ϕK)K ≤

{

∑

K∈Th

η2
Osc,K

}
1

2

.

Estimating the term |||p̃h − ph||| similarly in a discrete setting concludes the proof.
�

The version of Theorem 5.7 for the dual norm ||| · |||# is obvious.
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5.5. Remarks and generalizations.

Remark 5.8 (Comparison with standard residual estimators). The above estimates
have three basic advantages in comparison with standard residual estimators, cf.
Verfürth [38]. First of all, they feature no undetermined constant and deliver a
guaranteed upper bound. We remark however that defining th by (5.8), the evalu-
ation of the constants CP,D and CF,D,∂Ω is necessary, which is only straightforward
when D ∈ Dint

h are convex and D ∈ Dext
h have suitable form, see Section 2.3.

Thus the approach of Section 5.2.4 (or that of Section 5.2.3 with t2,D only), where
CP,D = 1/π2 and CF,D,∂Ω does not appear at all, seems preferable. Next, the clas-
sical residual estimator hK‖f‖K is replaced by its improved version (5.3). Lastly,
as it will be seen in Section 6 below, our estimates represent local lower bounds for
the classical residual estimators. The improved behavior of our estimators over the
classical one for the finite element method is numerically studied in [14].

Remark 5.9 (Comparison with the equilibrated residual method). In the equili-
brated residual method, cf. [3], one searches equilibrated fluxes expressing local
conservativity over each K ∈ Th, by means of solution of local linear systems.
Contrarily to this approach, our estimators are based on the immediately available
conservativity of the finite element method over the dual grids Dh. We remark that
we obtain immediately a guaranteed and locally computable upper bound. This is
also possible in the approach of [3] if the data oscillation term is separated, cf. [2].

Remark 5.10 (Comparison with the Zienkiewicz–Zhu averaging). The similarity of
our approach with the Zienkiewicz–Zhu [46] estimator relies in the fact that both
contain what we call a diffusive flux estimator, where th is produced from −∇ph by
averaging. Concerning the differences, first of all, in the Zienkiewicz–Zhu estima-
tor, one averages punctual nodal values and the postprocessed diffusive flux th is
smooth (belongs to C0). According to Theorem 4.1, there is, however, no need for
this—only normal traces of th should be continuous, i.e., th ∈ H(div,Ω) is enough,
which is achieved in our approach by averaging the side normal components. Sec-
ondly, this estimator does not give a guaranteed upper bound since in particular
the residual part (5.3) is omitted. Thirdly, these two differences become funda-
mentally important when a is discontinuous. The flux th then has to be produced
from −a∇ph and not from −∇ph and also the weaker regularity th ∈ H(div,Ω) is
optimal, as −a∇p is not smooth and only belongs to H(div,Ω). Also, the residual

parts play a crucial role through the presence of the material coefficient c
1

2

a,D, see

also the discussion in [21].

Remark 5.11 (Comparison with functional a posteriori estimates). Repin [31] or
Korotov [22] use instead of Theorem 5.1 the estimate

|||p− ph||| ≤
C

1/2
F,ΩhΩ

c
1/2
a,Ω

‖f −∇ · th‖ + ‖a
1

2∇ph + a−
1

2 th‖,

which follows readily from Theorem 4.1 using the Cauchy–Schwarz inequality, the
Friedrichs inequality, and the definition of the energy seminorm. Here p is the
weak solution given by (2.7), ph ∈ H1

0 (Ω) and th ∈ H(div,Ω) are arbitrary, CF,Ω

is the constant from the Friedrichs inequality (2.5) with D = Ω, and hΩ is the
diameter of Ω. The advantage is that no particular construction of th ∈ H(div,Ω)
has to be done and the estimate is thus fully scheme-independent. However, as



GUARANTEED AND ROBUST A POSTERIORI ERROR ESTIMATES 15

no information from the computation is used, the residual term is in general too
large by the presence of hΩ instead of hD which we find in Theorem 5.1. Secondly,

the term 1/c
1/2
a,Ω is also greatly unfavorable in comparison with 1/c

1/2
a,D found in our

estimates. Thus, a rather expensive global minimization is usually employed in the
type of estimates of [31] or [22].

Remark 5.12 (Comparison with the estimator of Luce and Wohlmuth [26]). Our
estimators are similar to those of Luce and Wohlmuth [26], in particular in that
we construct the dual mesh Dh and the second simplicial triangulation Sh and a
th ∈ RTN(Sh). However, in particular the construction of th by (5.12), as shown
below, leads to full robustness with respect to discontinuous coefficients in the
energy norm.

Remark 5.13 (Residual estimators and data oscillation). Note that whenever f ∈
H1(K) for all K ∈ Sh, the residual estimators ηR,D in Section 5.2.4 (or those of
Section 5.2.3 with t2,D only) represent a contribution of higher order, as ‖f−fh‖K ≤
1/πhK‖∇f‖K by the Poincaré inequality (2.4) (using the convexity of simplices).
Moreover, if f is piecewise constant on Sh, they disappear completely.

Remark 5.14 (Generalizations to other methods). The above a posteriori error
estimates may be generalized easily to other methods discussed in Section 3 using
the equivalence results stated therein.

6. Efficiency and robustness of the a posteriori error estimates

We prove here the (local) efficiency and robustness of our estimates. We first
present a robustness energy norm result for the weighted vertex-centered finite
volume method (3.5). Then robustness in the dual norm for all the considered
methods is proven. Finally, some generalizations are discussed.

6.1. Local efficiency and robustness of the energy norm a posteriori error
estimate for weighted vertex-centered finite volumes. The result of this
section is given in the energy norm (2.8) and only applies to the harmonic-weighted
vertex-centered finite volume method (3.5).

Theorem 6.1 (Local efficiency and robustness of the energy norm a posteriori error
estimate for the weighted vertex-centered finite volume method). Let a be piecewise
constant on Dh, let f be a piecewise polynomial of degree m on Sh, let p be the weak
solution of problem (1.1a)–(1.1b), and let ph be its weighted vertex-centered finite
volume approximation (3.5), with the weights (3.3). Let next Sh be shape-regular
with the constant κS and let th be given by (5.12) with the weights (3.3), ηDF,D

given by (5.2), and ηR,D by (5.3). Then, for each D ∈ Dh, there holds

ηDF,D ≤ C|||p − ph|||TVD
,(6.1a)

ηR,D ≤ C̃|||p− ph|||TVD
,(6.1b)

where the constant C depends only on d, κS , and m and C̃ in addition depends on
CP,D if D ∈ Dint

h or CF,D,∂Ω if D ∈ Dext
h .

The proof of Theorem 6.1 is decomposed into two parts. For ηDF,D, Lemma 6.2
shows that the construction (5.12) implies that the normal components of th differ
from those of a∇ph by the jumps of a∇ph ·n. The latter are a part of residual esti-
mators and are therefore known to be bounded by the error. The second estimator,
ηR,D, is then efficient due to a complementarity argument as shown in Lemma 6.3.
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Lemma 6.2 (Local efficiency of the diffusive flux estimator). Let the assumptions
of Theorem 6.1 be verified. Then (6.1a) holds true.

Proof. The proof follows the techniques of [38] and [18]. Recall first the standard
estimate

(6.2) ‖vh‖
2
K ≤ ChK

∑

σ∈EK

‖vh · n‖2
σ

valid for each vh ∈ RTN(K) and any simplex K. Here, and similarly in the rest
of the proof, the constant C, not necessarily the same at each occurrence, depends
only on d, κS , and m.

Let now K be an arbitrary element in the simplicial mesh SD of a given D ∈ Dh

and let us put vh = a∇ph + th. We have

(6.3) ‖a
1

2∇ph + a−
1

2 th‖
2
K = a−1

K ‖vh‖
2
K ≤ Ca−1

K hK

∑

σ∈EK∩Gint

h

‖ωL,σ[[a∇ph · nσ]]‖2
σ,

where L denotes the neighboring element to K across σ ∈ Gint
h , using that

(6.4) (a∇ph + th)|K ·nσ = (a∇ph ·nσ)|K −{{a∇ph ·nσ}}ω = nσ ·nωL,σ[[a∇ph ·nσ]]

for σ ∈ EK∩Gint
h and (a∇ph+th)|K ·nσ = 0 for σ ∈ EK∩Gext

h . Note that nσ ·n = ±1
is only used as a sign determination.

Let us now consider a fixed σ = σK,L ∈ EK ∩ Gint
h . The estimate

h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

a
1

2

M |||p− ph|||M .

is standard using the side and element bubble functions, the Green theorem, the in-
verse inequality, and the equivalence of norms on finite-dimensional spaces, cf. [38].
It then follows that

ωL,σa
− 1

2

K h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

ωL,σa
− 1

2

K a
1

2

M |||p− ph|||M .

Finally, thanks to the definition (2.2) of ωL,σ, ωL,σa
− 1

2

K a
1

2

M = ωL,σ ≤ 1 if M = K

and by (3.3), ωL,σa
− 1

2

K a
1

2

M = aK(aK + aL)−1a
− 1

2

K a
1

2

L ≤ 1
2 if M = L, using the

inequality 2ab ≤ a2 + b2.
Now finally, using the above results,

η2
DF,D =

∑

K∈SD

‖a
1

2∇ph + a−
1

2 th‖
2
K

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint

h

a−1
K hKω

2
L,σK,L

‖[[a∇ph · nσK,L
]]‖2

σK,L

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint

h

∑

M∈{K,L}

|||p− ph|||
2
M ≤ C|||p − ph|||

2
TVD

,

which was to be proved. �

Lemma 6.3 (Local efficiency of the residual estimator). Let the assumptions of
Theorem 6.1 be verified. Then (6.1b) holds true.
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Proof. Let us consider a fixed D ∈ Dh. First,

‖f −∇ · th‖K ≤ Ca
1

2

Kh
−1
K ‖a

1

2∇p+ a−
1

2 th‖K

for eachK ∈ SD with C depending only on d, κS , andm follows standardly by using
the element bubble function, the equivalence of norms on finite-dimensional spaces,
definition (2.7) of the weak solution, the Green theorem, the Cauchy–Schwarz in-
equality, definition (2.8) of the energy norm, and the inverse inequality, cf. [38]
or [41, Lemma 7.6]. Hence

‖f −∇ · th‖D ≤ CC
1

2

a,Dh
−1
D ‖a

1

2∇p+ a−
1

2 th‖D

holds true, using also the fact that hD/minK∈SD
hK is bounded by the shape-

regularity of Sh. Thus

hDc
− 1

2

a,D‖f −∇ · th‖D ≤ Cc
− 1

2

a,DC
1

2

a,D‖a
1

2∇p+ a−
1

2 th‖D.

Next note that c
− 1

2

a,DC
1

2

a,D = 1 for a piecewise constant on Dh. Finally,

‖a
1

2∇p+ a−
1

2 th‖D ≤ |||p− ph|||D + ‖a
1

2∇ph + a−
1

2 th‖D

using the triangle inequality, which concludes the proof by virtue of the previously
proved estimate (6.1a). �

6.2. Global efficiency and robustness of the dual norm a posteriori error
estimates. The result of this section is given in the dual norm (2.9) and applies
to all the methods studied in this paper. It is based on the direct prescription of th

by (5.8) or (5.12). Similar result based on the approach of Section 5.2.4 is possible.

Theorem 6.4 (Global efficiency and robustness of the dual norm a posteriori error
estimates). Let f be a piecewise polynomial of degree m on Sh, let p be the weak
solution of problem (1.1a)–(1.1b), and let ph ∈ X0

h be arbitrary. Let next Sh be
shape-regular with the constant κS and let th be given by (5.12) with any weights
satisfying (2.2), ηDF,D by (5.5), and ηR,D by (5.6). Then, there holds

{

∑

D∈Dh

(ηDF,D + ηR,D)2

}
1

2

≤ C|||p− ph|||#,(6.5)

where the constant C depends only on d, κS , m, and CP,D for D ∈ Dint
h and CF,D,∂Ω

for D ∈ Dext
h .

Proof. Throughout this proof, C denotes a generic constant with the dependencies
indicated in the announcement, possibly different at different occurrences. Let
K ∈ SD, D ∈ Dh be given. Adding and subtracting ∇ · (a∇ph), using the triangle
inequality, the fact that hD ≤ ChK , and the inverse inequality, we have

C
1

2

P,DhD‖f −∇ · th‖K ≤ C
1

2

P,DhD(‖f + ∇ · (a∇ph)‖K + ‖∇ · (a∇ph + th)‖K)

≤ ChK‖f + ∇ · (a∇ph)‖K + C‖a∇ph + th‖K .

Using (6.2), (5.12), (6.4), and (2.2), we obtain

‖a∇ph + th‖
2
K ≤ ChK

∑

σ∈EK∩Gint

h

‖[[a∇ph · nσ]]‖2
σ
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(note that in both cases that a is piecewise constant on Th or that a is piecewise
constant on Dh, a is piecewise constant on Sh). Combining the two above estimates,

∑

D∈Dh

(ηDF,D +ηR,D)2 ≤ C

(

∑

K∈Sh

h2
K‖f+∇· (a∇ph)‖2

K +
∑

σ∈Gint

h

hσ‖[[a∇ph ·nσ]]‖2
σ

)

.

Note that this means that the present estimates represent a lower bound for the
standard residual ones (cf. [38]). The rest of the proof is based on the tools from [39].

We next prove that

(6.6)

{

∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

}
1

2

≤ C|||p− ph|||#.

Let K ∈ Sh. Denote by ψK the element bubble function (cf. [38]) and put vK :=
(f + ∇ · (a∇ph))|K . By the equivalence of norms on finite-dimensional spaces,
properties of the bubble functions, and definition (2.7) of the weak solution, we
have, cf. [38],

‖vK‖2
K ≤ C(a∇(p− ph),∇(ψKvK))K .

Next, by the inverse inequality and the properties of the bubble functions,

h2
K‖∇(ψKvK)‖K ≤ ChK‖vK‖K .

Put λ|K = h2
KψKvK and note that λ ∈ H1

0 (Ω). Using the two above inequalities,

∑

K∈Sh

h2
K‖vK‖2

K ≤ C
∑

K∈Sh

h2
K(a∇(p− ph),∇(ψKvK))K = C

B(p− ph, λ)

‖∇λ‖
‖∇λ‖

≤ C|||p− ph|||#

{

∑

K∈Sh

h4
K‖∇(ψKvK)‖2

K

}
1

2

≤ C|||p− ph|||#

{

∑

K∈Sh

h2
K‖vK‖2

K

}
1

2

employing also the definition (2.9) of the dual norm and the Cauchy–Schwarz in-
equality. Thus (6.6) is proved.

The final point of the proof is to show that

(6.7)

{

∑

σ∈Gint

h

hσ‖[[a∇ph · nσ]]‖2
σ

}
1

2

≤ C|||p− ph|||#.

For σ ∈ Gint
h , put v|σ := [[a∇ph · nσ]]; we keep the same notation for the lifting of

v|σ to the two simplices K and L sharing the side σ. Let ψσ be the face bubble
function (cf. once again [38]). Then there holds

‖vσ‖
2
σ ≤ C〈vσ , ψσvσ〉σ,

‖ψσvσ‖K ≤ Ch
1

2

σ ‖vσ‖σ.

Put λ :=
∑

σ∈Gint

h
hσψσvσ. Note that λ ∈ H1

0 (Ω), as only the interior sides appear

in the sum. Finally, note that by the second of the above inequalities,

‖λ‖K ≤
∑

σ∈EK∩Gint

h

hσ‖ψσvσ‖K ≤ C
∑

σ∈EK∩Gint

h

h
3

2

σ ‖vσ‖σ.
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Using the above inequalities and the Green theorem,
∑

σ∈Gint

h

hσ‖vσ‖
2
σ

≤C
∑

σ∈Gint

h

〈[[a∇ph · nσ]], λ〉σ = C
∑

K∈Sh

{(f + ∇ · (a∇ph), λ)K − (a∇(p− ph),∇λ)K}

≤C|||p− ph|||#‖∇λ‖ + C

{

∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

}
1

2

{

∑

K∈Sh

h−2
K ‖λ‖2

K

}
1

2

≤C|||p− ph|||#

{

∑

K∈Sh

h−2
K ‖λ‖2

K

}
1

2

≤ C|||p− ph|||#

{

∑

σ∈Gint

h

hσ‖vσ‖
2
σ

}
1

2

,

where we have also employed (6.6), the inverse inequality, and the Cauchy–Schwarz
inequality. Thus (6.7) is proved. �

6.3. Remarks and generalizations. We conclude this section by several remarks
and comments on generalizations.

Remark 6.5 (Unconditioned energy norm robustness with respect to discontinuous
a). When a is piecewise constant on Dh, when the harmonic averaging (3.3) has
been used in the weighted vertex-centered finite volume method (3.5), and when
the diffusive flux th is likewise defined using harmonic averaging (3.3), equations
(6.1a)–(6.1b) imply a full robustness of the estimators of Theorem 5.1 with respect
to the diffusion coefficient a. In particular, no condition on the spatial distribution
of the discontinuities in a is necessary, whereas in the previous results [9, 28, 16, 1], a
‘monotonicity around vertices’ condition or a similar assumption on the distribution
of the diffusion coefficient was always necessary.

Remark 6.6 (Diffusion coefficient a piecewise constant on Th). If a is piecewise
constant on Th (whence the choice of the weights does not influence (3.5), cf.
Remark 3.4) but harmonic averaging (3.3) has been used in order to define the
diffusive flux th in (5.12), equation (6.1a) still holds true, i.e., the diffusive flux es-
timator ηDF,D is still fully robust. It however follows from the proof of Lemma 6.3

that in equation (6.1b), an additional factor c
− 1

2

a,DC
1

2

a,D appears, whence the residual
estimator ηR,D is not robust in this case. Note also that as −a∇ph · nσ = th · nσ

for all σ ⊂ ∂D in this case (cf. Section 5.3), one here actually comes to

ηDF,D ≤ C|||p − ph|||D,

ηR,D ≤ C̃|||p− ph|||D,

i.e., one has the local efficiency directly on each dual volume D ∈ Dh and not on
the patch TVD

of the original simplicial elements sharing the vertex VD.

Remark 6.7 (Local efficiency and robustness of the a posteriori error estimates for
the finite element methods (3.6) and (3.8)). If a is piecewise constant on Th and
under the other assumptions of Lemmas 3.8 and 3.11, we have by Corollary 3.12
that Remark 6.6 holds true also for the finite element method (3.6). On the other
hand, when a is piecewise constant on Dh, the finite element method with harmonic
averaging (3.8) leads to a scheme which is very close to the harmonic-weighted
vertex-centered finite volume method (3.5). Indeed, as |D∩K| = |K|/3 for D ∈ Dh
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associated with one of the vertices of K ∈ Th for the meshes of Section 2.1, the
coefficient ã|K from (3.7) is given by the harmonic averaging of the three values aD,
aE , and aF that a takes at the three dual volumes D, E, and F associated with
the vertices of K. Consequently, for f piecewise constant on Th, (3.8) gives (3.5)
where {{a}}ω is now the harmonic average of aD, aE , and aF . To obtain a guaranteed
estimate, one defines th ∈ RTN(Sh) by fixing th ·n on the boundary ofD ∈ Dint

h by
−ã∇ph · n and by (5.12) for the other sides of Sh, while separating the oscillations
in f as in Theorem 5.7. Robustness can then be proved as in Theorem 6.1. In
particular, there appears a sum over all L ∈ SD;L ⊂ K in (6.3).

Remark 6.8 (Unconditioned dual norm robustness). Note that Theorem 6.4 gives
full robustness with respect to the discontinuities in a without any restriction on
a for any of the methods considered in the paper. In fact, tensor-valued A can
also be considered, cf. Remark 3.18. However, this result is established in the dual
norm ||| · |||# and one only has global efficiency.

7. Numerical experiments

We present in this section the results of several numerical experiments.

7.1. A one-dimensional example with a smooth solution. We begin with a
one-dimensional model problem

−p′′ = π2 sin(πx) in ]0, 1[,

p = 0 in 0, 1.

The exact solution is smooth and given by p(x) = sin(πx). We consider the vertex-
centered finite volume method (3.4) on a series of uniformly refined meshes and
construct a one-dimensional equivalent of the equilibrated field th given by (5.8).
The results (we consider here the energy norm case of Theorem 5.1) are reported
in Figure 2. It turns out that in this one-dimensional setting, one actually has
(∇ · th, 1)K = (f, 1)K for all K ∈ Sh instead of (5.1) and hence the residual
estimators ηR,D represent a contribution of higher order and are only significant on
coarsest meshes. Define the experimental order of convergence (e.o.c.) by

e.o.c. :=
log(eN ) − log(eN−1)

1
d log |VN−1| −

1
d log |VN |

;

here eN is the error on the last mesh, eN−1 is the error on the last but one mesh,
and |VN | and |VN−1| denote the corresponding number of vertices. The e.o.c. is
equal to 1.001 here.

7.2. Robust energy norm estimates for the vertex-centered finite volume
method with harmonic averaging. We consider here a model problem taken
from [32], where Ω = (−1, 1) × (−1, 1) is divided into four subdomains Ωi along
the Cartesian axes (the subregion {x > 0, y > 0} ∩ Ω is denoted by Ω1 and the
subsequent numbering is done counterclockwise) and a is constant and equal to ai

in Ωi. Supposing in addition that f = 0, analytical solution writing

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each Ωi can be found. Here (r, θ) are the polar coordinates in Ω, ai and bi are
constants depending on Ωi, and α is a parameter. This solution is continuous across
the interfaces but only the normal component of its flux u = −S∇p is continuous;
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Figure 2. Estimated and actual energy error (left) and corre-
sponding effectivity index (right) for the one-dimensional example

Th

Dh

Figure 3. Example of a given nonmatching dual mesh Dh and
the corresponding primal triangular mesh Th for the harmonic-
weighted vertex-centered finite volume method (3.5)

it exhibits a singularity at the origin and it only belongs to H1+α(Ω). We assume
Dirichlet boundary conditions given by this solution and consider two sets of the
coefficients. In the first one, a1 = a3 = 5, a2 = a4 = 1, α = 0.53544095, and in
the second one, a1 = a3 = 100, a2 = a4 = 1, α = 0.12690207. The corresponding
values of ai, bi can be found in [32, 41].

In order to get robust energy norm a posteriori error estimates, we know from
Theorem 6.1 that a has to be piecewise constant on Dh. If, however, we would
first construct a simplicial mesh Th of Ω and then a dual grid Dh as in Section 2.1,
it would be very difficult to keep the dual mesh aligned with the inhomogeneities,
especially for adaptive refinement. A possible solution is to first define the dual
mesh Dh and only then the primal one Th. On the resulting couple of grids Dh, Th,
we then use the weighted vertex-centered finite volume method (3.5). Recall that
on square grids (and their uniform refinements), this method is equivalent to the
weighted cell-centered finite volume one, cf. Corollary 3.14, as well as to the finite
difference one, cf. Remark 3.17. The advantage of the scheme (3.5) is that it can be
used also when the original square grid has been locally refined (into a nonmatching



22 MARTIN VOHRALÍK

Figure 4. Estimated (left) and actual (right) energy error distri-
bution on a uniformly refined mesh, α = 0.535, harmonic-weighted
vertex-centered finite volume method (3.5)

Figure 5. Estimated (left) and actual (right) energy error dis-
tribution on an adaptively refined mesh, α = 0.127, harmonic-
weighted vertex-centered finite volume method (3.5)

grid) as in Figure 3. Note however that the symmetry of this scheme is then lost.
We remark that the present methodology works also for the finite element method
with harmonic averaging (3.7), which stays symmetric.

We in Figure 4 present the predicted and actual distribution of the error for α =
0.535 and uniform mesh refinement, using the estimators of Theorem 5.1 on the dual
mesh Dh and with th given by (5.12) (the interpolation error on nonhomogeneous
Dirichlet boundary conditions is neglected). A similar comparison, this time for
adaptive mesh refinement and α = 0.127, is shown in Figure 5. A square cell of
the original dual mesh is refined into 9 identical subsquares if the estimated energy
error is greater than 50% of the maximum of the estimators. We can see that in
both cases the predicted error distribution is excellent and that in particular, the
singularity at the origin is well detected. These results clearly illustrate the robust
local lower bound of Theorem 6.1. We finally in Figure 6 give examples of the
approximate solutions on the adaptively refined meshes in both cases; the strength
of the singularity in the second case is quite obvious.

Knowing precisely the error distribution and refining adaptively the meshes, the
next step is to check whether this leads to an increased efficiency of the calculations.
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Figure 6. Approximate solutions on adaptively refined meshes,
α = 0.535 (left) and α = 0.127 (right), harmonic-weighted vertex-
centered finite volume method (3.5)
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Figure 7. Estimated and actual energy errors for α = 0.535 (left)
and α = 0.127 (right), harmonic-weighted vertex-centered finite
volume method (3.5), estimates with local minimization (5.9)
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Figure 8. Energy error effectivity indices for α = 0.535 (left) and
α = 0.127 (right), harmonic-weighted vertex-centered finite volume
method (3.5), estimates with local minimization (5.9)
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This is illustrated in Figure 7, from which it is evident that one can achieve a given
precision with much fewer elements using adaptive mesh refinement based on our
estimator. Here, the error in the energy norm (2.8) is approximated with a 7-point
quadrature formula in each subtriangle K ∈ SD. In the code TALISMAN, which
we use for numerical computations in this section, at most 9 levels of refinement can
be used. This technical limitation is the reason why we in the adaptive case and
for α = 0.127 only present results with at most 716 dual volumes—this maximal
refinement level is achieved near the origin but the maximal error is still located
there. For α = 0.535, the e.o.c. for uniform refinement was 0.449 and for the
adaptive one 1.006. For α = 0.127, these values were respectively 0.0757 and
1.024. Following [6], the somewhat slower convergence rate for uniform refinement
(compare with the finite element case below) in the energy norm is related to the
fact that the coefficient a is not aligned with the mesh Th.

Finally, in Figure 8, we give the effectivity indices using the local minimization
approach described in Section 5.2.3. We can clearly observe a confirmation of the
robustness of our estimators: whereas the inhomogeneity ratio rises from 5 to 100,
the effectivity indices stay et the level of 1.4 for uniform refinement and improve for
adaptive refinement. Moreover, the local minimization of Section 5.2.3 allows for
almost asymptotic exactness, and this even in the case of discontinuous coefficients
and singular solutions.

7.3. Energy estimates for the finite element method based on local Neu-
mann/Dirichlet mixed finite element problems. For the same model prob-
lem as in the previous section, we present here the results for the finite element
method (3.6) with the energy error estimators of Theorem 5.1 based on local Neu-
mann/Dirichlet mixed finite element problems of Section 5.2.4 (thus Dint

h = Sh and
Dext

h = ∅ in Theorem 5.1). The initial mesh consisted of 24 right-angled triangles,
conforming with the 4 subdomains (for the corresponding mesh Sh, we refer to
Figure 11).

Figure 9 shows the estimated and actual energy errors using the estimators
based on the local Neumann/Dirichlet mixed finite element problems described in
Section 5.2.4. For α = 0.535, the e.o.c. for uniform refinement is 0.537 and for
the adaptive one 0.999; for α = 0.127, these values are, respectively, 0.172 and
0.946. This is fully in agreement with the smoothness of the weak solutions (recall
that p ∈ H1+α(Ω)) for the uniform refinement and shows optimal behavior of the
adaptive refinement strategy. For α = 0.127, the adaptive refinement is stopped
for roughly 700 elements as the diameter of the smallest triangles near the origin
reaches 10−16 which is the computer double precision.

The corresponding effectivity indices are presented in Figure 10. As predicted by
the theory, we can observe in comparison with Figure 8 that the estimates are no
more robust with respect to the discontinuities in a. The effectivity index is around
1.6 for α = 0.535 and 4.7 for α = 0.127, although it gets down to 1.27 for adaptive
mesh refinement. As seen from Figure 11, the biggest overestimation appears in
the central dual volume and the error distribution is no more predicted accurately
(compare with Figures 4 and 5). The two forthcoming sections improve on these
points.
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Figure 9. Estimated and actual energy errors for α = 0.535 (left)
and α = 0.127 (right), finite element method (3.6), estimates by
local Neumann/Dirichlet mixed finite element problems (5.10)
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Figure 10. Energy error effectivity indices for α = 0.535 (left)
and α = 0.127 (right), finite element method (3.6), estimates by
local Neumann/Dirichlet mixed finite element problems (5.10)
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Figure 12. Estimated and actual dual errors for α = 0.535 (left)
and α = 0.127 (right), finite element method (3.6), estimates by
local Neumann/Dirichlet mixed finite element problems (5.10)
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Figure 13. Dual error effectivity indices for α = 0.535 (left) and
α = 0.127 (right), finite element method (3.6), estimates by local
Neumann/Dirichlet mixed finite element problems (5.10)

7.4. Robust dual norm estimates for the finite element method. With the
same setting as in the previous section, we now switch to the estimates in the dual
norm (2.9) of Corollary 5.2. We still define th by (5.10).

Figure 12 reports the estimated and actual dual error; here ‘error up’ means
the computable upper bound on the dual error from (2.10), whereas ‘error down’
means the computable lower bound from (2.10). In the dual error upper bound,
for α = 0.535, the e.o.c. for uniform refinement is 0.539 and for the adaptive one
0.991; for α = 0.127, these values are, respectively, 0.195 and 1.152. In Figure 13,
we then report the corresponding effectivity indices. As predicted by Theorem 6.4,
the estimates in the dual norm are fully robust. In particular, the effectivity index
in the dual error upper bound is stable around the optimal value of 1; note that
its values below 1 are possible since the estimates are derived for the dual norm
and not for this upper bound. One conclusion from Figures 12 and 13 is that now
the nonrobustness has been shifted to the gap between the computable upper and
lower bounds for the dual error. Finally, Figure 14 shows the predicted dual error
distribution and actual dual upper bound error distribution which reveals excellent
(note in particular that there is no gap in the scales of the figures).
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Figure 14. Estimated (left) and actual (right) dual error distri-
bution on Sh for α = 0.535, finite element method (3.6), estimates
by local Neumann/Dirichlet mixed finite element problems (5.10)

7.5. Energy norm estimates based on local refinements of individual dual
volumes. We finally come back shortly to the energy norm framework of Sec-
tion 7.3. The idea is to solve the mixed finite element minimization problem (5.10)
on a local refinement of the mesh SD in individual dual volumes D ∈ Dh, with
the hope to decrease the error estimates in individual dual volumes. The local

refinement is driven by the quantity ‖a
1

2∇ph + a−
1

2 th‖K on each element K of the
local refinement of SD. We refine here only the central dual volume, as only in this
dual volume the overestimation dependent on the jumps in a occurs. Figure 15
shows that this indeed enables to substantially decrease the effectivity indices (to
be compared with Figure 10), although robustness is only achieved for α = 0.535;
for α = 0.127, still an overestimation by a factor of 2.1 appears. Such a procedure
also allows to predict much more precisely the error distribution, see the right part
of Figure 16, in comparison with Figure 11. Another possible use of the indepen-
dent refinement of only those dual volumes where the error indicator is large is to
include the obtained local refinement to the mesh of the entire domain. Such a
procure is illustrated in the left part of Figure 16, and, in the present case, allows
to substantially improve the classical local refinement illustrated in the right part
of Figure 10. Note that only two steps of the local refinement cycle on the global
level allow to achieve the same precision as 49 steps in Section 7.3. Finally, the
predicted and actual error distribution in the locally refined central dual volume is
shown in Figure 17. It indicates that with the boundary conditions on ∂D given by
−{{a∇ph · nσ}}, one cannot obtain a robust estimate and correct error distribution
in the energy norm setting for the finite element method (3.6) even with such a
local refinement of one dual volume; a larger domain would probably be necessary,
indicating the nonlocality of the error distribution. Thus, in confirmation of the
theory of Section 6, only the approaches of Sections 7.2 and 7.4 seem to give robust
estimates (and correct error distribution).
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11-2007), Université Paris 6 and Ecole des Ponts, 2007.
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23. P. Ladevèze, Comparaison de modèles de milieux continus, Ph.D. thesis, Université Pierre et
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