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Abstract

We study in this paper a posteriori error estimates forH1-conforming numerical approximations
of diffusion problems with a scalar, piecewise constant, and arbitrarily discontinuous diffusion
coefficient. We derive estimators for the energy norm which give a guaranteed global upper
bound in the sense that they feature no undetermined constants. Local lower bounds, up to
constants independent of the diffusion coefficient, are also derived. In particular, no condition
on the diffusion coefficient like its monotonous increasing along paths around mesh vertices is
imposed, whence the present results are fully robust and include also the cases with singular
solutions. The key requirement turns out to be that the diffusion coefficient is piecewise constant
on dual cells associated with the vertices of an original simplicial mesh and that harmonic
averaging is used in the numerical scheme definition. This is the usual case, e.g., for the cell-
centered finite volume method, included in our analysis as well as the vertex-centered finite
volume, finite difference, and continuous piecewise linear finite element ones. Our estimates
consist of two estimators, one comparing a reconstructed H(div)-conforming diffusive flux with
the diffusive flux given by the piecewise linear representation of the approximate solution and
one representing an improved residual. They are based on the local conservativity of all the
studied methods on the dual grids, which we recall in the paper, as well as their mutual
relations. Numerical experiments confirm the guaranteed upper bound, full robustness, and
excellent efficiency of the presented estimators, which may still be improved by a negligible-
cost local minimization.

Key words: finite volume method, finite element method, finite difference method, discontinuous
coefficients, harmonic averaging, a posteriori error estimates, guaranteed upper bound, robustness

1 Introduction

We consider in this paper a model diffusion problem

−∇ · (a∇p) = f in Ω, (1.1a)

p = 0 on ∂Ω, (1.1b)
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where Ω ⊂ R
d, d = 2, 3, is a polygonal (polyhedral) domain (open, bounded, and connected set),

a is a scalar diffusion coefficient, and f is a source term. We shall derive here a posteriori error
estimates for continuous piecewise linear finite element, vertex-centered finite volume, cell-centered
finite volume, and finite difference approximations of this problem.

A posteriori error estimates for finite element discretization of a homogeneous form of (1.1a)–
(1.1b) (with a = 1) have been a popular research subject starting from the Babuška and Rheinboldt
work [3]. Several branches of estimators have been developed, such as the postprocessing (aver-
aging) approach, cf. Zienkiewicz and Zhu [37], the residual approach, cf. Verfürth [30], or the
equilibrated residual method, cf. Ainsworth and Oden [2]. The majority of the proposed esti-
mators have been proved both reliable, i.e., yielding a global upper bound on the error between
the exact and approximate solutions, and locally efficient, i.e., giving a local lower bound for the
error as well. Let us recall that this means that all such estimators are equivalent with the error,
and by consequence mutually equivalent. The only distinguishing point between such estimators
are then the constants which figure in the equivalences. However, up to rare exceptions such as
the works of Repin ([24] and further works), Destuynder and Métivet [11], Strouboulis et al. [27],
Carstensen and Funken [8], Luce and Wohlmuth [20], Vejchodský [29], or Korotov [18], it is only
shown that these constants are independent of the exact solution and of the mesh size but their
actual value stays unknown. To remedy this inconvenience was the first motivation of this paper
and we present here a posteriori error estimates which feature no undetermined constant in the
upper bound.

Another important remark goes to the residual branch of a posteriori error estimates, which
for (1.1a)–(1.1b) consist of two parts. The first one is the so-called residual estimator, of the form
cahK‖f + ∇ · (a∇ph)‖K , where K is one element of the mesh, hK is its diameter, ph is the finite
element approximate solution, ca is a constant depending on a, and ‖·‖ denotes the L2-norm. The

second one is the so-called mass balance estimator, typically of the form cah
1/2
σ ‖[[a∇ph]]‖σ for each

interior side (edge if d = 2, face if d = 3) σ, where [[·]] is the “jump” operator given by equation (2.3)
below. Remark now that in the case where a is piecewise constant, ∇ · (a∇ph) = 0, whence the
residual estimator reduces to cahK‖f‖K , which we believe is not optimal at all. Hence the second
motivation of this paper was to find a remedy to this situation.

The third and last motivation of the present paper was to give estimators which are robust
with respect to discontinuous a. To the best of the author’s knowledge, such estimators are only
known under the “monotonicity around vertices” condition on the distribution of the diffusion
coefficient, see Bernardi and Verfürth [6], Petzoldt [22], or Ainsworth [1]. The above condition is
however very restrictive and in particular excludes the physically interesting cases where regions
with different diffusion coefficients meet in a checkerboard pattern and where the weak solution
can present singularities.

We have in [33, 32, 13] recently derived a posteriori error estimates for mixed finite element,
finite volume, and discontinuous Galerkin methods which avoid any undetermined constant in the
upper bound and feature an improved residual of the form (in the lowest-order case) cahK‖f −
fK‖K , where fK is the mean value of f over K. This result is based purely on the elementwise
conservativity of these methods and not on the Galerkin orthogonality, which is the usual case
for finite elements. We generalize in this paper this approach to the continuous piecewise linear
finite element method on simplicial meshes (consisting of triangles if d = 2 and of tetrahedra if
d = 3). We use the fact, still not well known in the finite element community, that this method is
likewise locally conservative, and this on a dual mesh associated with the vertices of the original
simplicial one. A (nonexhaustive) list of references relevant in this respect contains the works of
Bank and Rose [4], Eymard et al. [14, Section III.12], and Hughes et al. [17], but we shall give all
necessary results in Section 3 of this paper, after given the necessary preliminaries in Section 2.
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We in fact recall or prove there equivalences between several classical numerical methods, namely
the continuous piecewise linear finite element one on a simplicial mesh and vertex-centered finite
volume, cell-centered finite volume, and finite difference ones on a dual mesh (under appropriate
assumptions), so that our results apply to all these methods.

We next in Section 4 sketch the basic results of [33, 13], giving an optimal abstract framework
for a posteriori error estimation, in order to prove our a posteriori error estimates in Section 5. For
this purpose, we shall postprocess the original diffusive flux −a∇ph, where ph is the approximate
numerical solution, into th ∈ H(div,Ω) defined in the lowest-order Raviart–Thomas–Nédélec space.
This space is extensively used in the framework of the mixed finite element method, cf. [7, 26].
Ideas in this direction have already been proposed in the literature, cf. [24, 11, 20, 29, 18] and
go back to the hypercircle method, see Synge [28]. However, our approach differs from the above
ones in particular in that we use the natural local conservativity of the finite element method over
a dual grid explained above. Using th, our residual estimator writes under the improved form
cahD‖f − ∇ · th‖D, whereas the classical mass balance estimator is replaced by its lower bound
‖a1/2∇ph + a−1/2th‖D; here D is an element of the dual grid. Comparisons with the residual,
equilibrated residual, averaging, functional, and equilibrated fluxes estimates then close Section 5.

The purpose of Section 6 is to prove the local efficiency and robustness of our estimators. A key
role for the robustness turns out to be the use of harmonic averaging in both the scheme and the
averaging in posteriori error estimates, recently introduced in the context of discontinuous Galerkin
methods by Ern et al. [12, 13]. It appears that in order to get the full robustness of our estimators,
harmonic averaging has to be used directly in the scheme definition, and this while aligning the
discontinuities of the diffusion coefficient with the dual mesh. This is contradicts the usual finite
element practice, where the discontinuities are aligned with the original simplicial mesh, but it is
in a complete agreement with the cell-centered finite volume (finite difference) approach, where
the discontinuities are classically aligned with the volumes (of mass conservation), cf. Eymard et
al. [14]. We discuss this issue in detail in Section 6.

Numerical experiments with the proposed estimates confirm all the theoretical results but show
that the effectivity index (the ratio of the estimated and actual error), although largely improved
over the classical residual estimates, does not approach the optimal value of one as it is the case
in [33, 32]. By closer investigation, it turns out that whereas in mixed finite element or finite
volume (discontinuous Galerkin) methods, the improved residual estimator represents a higher-
order term, it is not the case here, where it on the contrary dominates the estimate. We propose a
remedy to this situation, consisting in a very efficient and cheap local minimization, in Section 7.
Numerical experiments presented in Section 8 confirm this improvement as well as the guaranteed
upper bound and full robustness of our estimators.

Our error estimates do not require the mesh to be shape-regular and the datum f can be a
general function; the usual requirement of shape-regularity and of polynomial data is only needed
for the local efficiency proofs. Also, no saturation assumption, no convexity of Ω, and no addi-
tional regularity of the weak solution of (1.1a)–(1.1b) are needed in our setting. The homogeneous
Dirichlet boundary condition is considered only for the sake of clarity of exposition; general bound-
ary conditions can easily be taken in account, as we outline it in [35]. This paper is a detailed
description of the results previously announced in [34]; some additional numerical experiments for
the finite element method, together with another local minimization strategy, are then studied
in [9], and extensions to the reaction–diffusion case in [10].
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Th

Dh

Sh

Figure 1: Original simplicial mesh Th, the associated dual mesh Dh, and the fine simplicial mesh
Sh

2 Preliminaries

We give in this section the notation and assumptions, recall some inequalities which will be im-
portant in the sequel, and finally give details on the continuous problem (1.1a)–(1.1b).

2.1 Meshes and notation

We shall work in this paper with triangulations Th which for all h > 0 consist of closed simplices
such that Ω =

⋃

K∈Th
K and which are conforming (matching), i.e., such that if K,L ∈ Th, K 6= L,

then K ∩ L is either an empty set or a common face, edge, or vertex of K and L. Let hK denote
the diameter of K and let h := maxK∈Th

hK . We denote by Eh the set of all sides of Th, by E int
h the

set of interior, by Eext
h the set of exterior, and by EK the set of all the sides of an element K ∈ Th;

hσ stands for the diameter of σ ∈ Eh. We finally denote by Vh (V int
h ) the set of all (interior) vertices

of Th and put, for V ∈ Vh and K ∈ Th, respectively,

TV := {L ∈ Th; L ∩ V 6= ∅}, (2.1)

TK := {L ∈ Th; L ∩K 6= ∅}. (2.2)

We shall also consider dual partitions Dh of Ω such that Ω =
⋃

D∈Dh
D and such that for each

V ∈ Vh, V ∈ DV for exactly one DV ∈ Dh. The notation VD stands inversely for the vertex
associated with a given D ∈ Dh and we use Dint

h ,Dext
h to denote the dual volumes associated

with vertices from V int
h ,Vext

h , respectively. Next, Fh stands for all sides of Dh and F int
h (Fext

h ) for
all interior (exterior) sides of Dh. We shall always suppose that DV lies in the interior of the
polygon/polyhedron given by TV for all V ∈ Vh and that E int

h ∩F int
h has a zero (d− 1)-dimensional

Lebesgue measure. An example of such a partition is given in Figure 1; more details on different
Dh considered will be given in Section 3.

Finally, in order to define our a posteriori error estimates, we will need a second conforming
simplicial triangulation Sh of Ω. The basic requirement is that the interiors of the elements of
Sh do not intersect and sides of Th and Dh (Sh is a conforming refinement of both Th and Dh).
For the local efficiency proofs of our estimators, we will later need the assumption that {Sh}h are
shape-regular in the sense that there exists a constant κS > 0 such that minK∈Sh

|K|/hd
K ≥ κS for

all h > 0. One can easily construct a local triangulation SD of each D ∈ Dh as shown in Figure 1
and then put Sh := ∪D∈Dh

SD. We will use the notation Gh for all sides of Sh and Gint
h (Gext

h ) for
all interior (exterior) sides of Sh.
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Next, for K ∈ Th, n will always denote its exterior normal vector; we shall also employ the
notation nσ for a normal vector of a side σ ∈ Eh, whose orientation is chosen arbitrarily but fixed
for interior sides and coinciding with the exterior normal of Ω for exterior sides. For σ ∈ E int

h

shared by K,L ∈ Th such that nσ points from K to L and a function ϕ, we shall define the jump
operator [[·]] by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ . (2.3)

We put [[ϕ]]σ = ϕ|σ for any σ ∈ Eext
h . We next associate with each K ∈ Th and each σ ∈ EK a

weight ωK,σ such that

0 ≤ ωK,σ ≤ 1 ∀K ∈ Th, ∀σ ∈ EK , (2.4a)

ωK,σ + ωL,σ = 1 ∀σ = σK,L ∈ E int
h , (2.4b)

ωK,σ = 1 ∀σ ∈ Eext
h and K ∈ Th such that σ ∈ EK . (2.4c)

For σ = σK,L ∈ E int
h , we define the weighted average operator {·}ω by

{ϕ}ω := ωK,σ(ϕ|K)|σ + ωL,σ(ϕ|L)|σ, (2.5)

whereas for σ ∈ Eext
h , {ϕ}ω := ϕ|σ . We use the same type of notation also for the meshes Dh and

Sh.
Finally, we shall be working below with numerical methods whose approximate solution can

be represented by continuous piecewise linear functions on Th, with value 0 at the boundary of
Ω. The basis of this space, denoted by Xh, is spanned by the classical pyramidal functions ψV ,
V ∈ V int

h , such that ψV (U) = δV U , U ∈ Vh, δ being the Kronecker delta.
In what concerns functional notation, we denote by (·, ·)S the L2-scalar product on S and

by ‖ ·‖S the associated norm; when S = Ω, the is index dropped off. We mean by |S| the Lebesgue
measure of S, by |σ| the (d− 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular by
|s| the length of a segment s. Next, H1(S) is the Sobolev space of functions with square-integrable
weak derivatives and H1

0 (S) is its subspace of functions with traces vanishing on ∂S. Finally,
H(div, S) is the space of functions with square-integrable weak divergences, H(div, S) = {v ∈
L2(S);∇ · v ∈ L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on ∂S.

2.2 Assumptions

We shall suppose in this paper that f(x) ∈ L2(Ω) and that a(x) is a piecewise constant scalar-
valued function. We may in particular consider cases where a is piecewise constant on the triangu-
lation Th and cases where a is piecewise constant on the dual partition Dh. In all cases we suppose
that for all K ∈ Th, there exist two positive constants ca,K and Ca,K such that ca,K ≤ a(x) ≤ Ca,K

for all x ∈ K. Similar notation will be used also for D ∈ Dh or for TK , K ∈ Th. Finally, we
suppose that ca,Ω ≤ ca,K and Ca,K ≤ Ca,Ω for all K ∈ Th, for some positive constants ca,Ω and
Ca,Ω.

2.3 Poincaré and Friedrichs inequalities

Let D be a polygon or a polyhedron. The Poincaré inequality states that

‖ϕ− ϕD‖2
D ≤ CP,Dh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D), (2.6)

where ϕD is the mean of ϕ over D given by ϕD := (ϕ, 1)D/|D| and where the constant CP,D can
for each convex D be evaluated as 1/π2, cf. [21, 5]. To evaluate CP,D for nonconvex elements D is
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more complicated but it still can be done, cf. Eymard et al. [14, Lemma 10.2] or Carstensen and
Funken [8, Section 2].

The Friedrichs inequality states that

‖ϕ‖2
D ≤ CF,D,∂Ωh

2
D‖∇ϕ‖2

D ∀ϕ ∈ H1(D) such that ϕ = 0 on ∂Ω ∩ ∂D 6= ∅. (2.7)

As long as ∂Ω is such that there exists a vector b ∈ R
d such that for almost all x ∈ D, the first

intersection of Bx and ∂D lies in ∂Ω, where Bx is the straight semi-line defined by the origin x and
the vector b, CF,D,∂Ω = 1, cf. [31, Remark 5.8]. To evaluate CF,D,∂Ω in the general case is more
complicated but it still can be done, cf. [31, Remark 5.9] or Carstensen and Funken [8, Section 3].

2.4 Continuous problem

We define a bilinear form B by

B(p, ϕ) := (a∇p,∇ϕ) p, ϕ ∈ H1
0 (Ω) (2.8)

and the corresponding energy norm by

|||ϕ|||2 := B(ϕ,ϕ). (2.9)

The weak formulation of problem (1.1a)–(1.1b) is then to find p ∈ H1
0 (Ω) such that

B(p, ϕ) = (f, ϕ) ∀ϕ ∈ H1
0 (Ω). (2.10)

3 Local conservativity of finite elements and their relation to fi-

nite volumes and finite differences

The purpose of this section is to recall several relations between the continuous piecewise linear
finite element, vertex-centered finite volume (also termed finite volume element or box), cell-
centered finite volume, and finite difference methods for problem (1.1a)–(1.1b). A particular
consequence is the local conservativity of the finite element method on a dual grid under appropriate
conditions.

3.1 Definitions

We start by giving the definitions.

Definition 3.1 (Finite element method). The finite element method for problem (1.1a)–(1.1b)
reads: find ph ∈ Xh such that

(a∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h . (3.1)

Definition 3.2 (Vertex-centered finite volume method). Let the dual grid Dh consist of polygo-
nal/polyhedral dual volumes and let a be piecewise constant on Th so that a is not double-valued on
F int

h . Then the vertex-centered finite volume method for problem (1.1a)–(1.1b) reads: find ph ∈ Xh

such that
− 〈a∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint

h . (3.2)
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Definition 3.3 (Weighted cell-centered finite volume method). Let Dh be the Voronöı grid given
by the vertices from Vh, cf. Eymard et al. [14] (this requires that the vertices V ∈ Vext

h are suitably
placed so that Ω =

⋃

D∈Dh
D). Let next N (D) denote the set of “neighbors” of D ∈ Dh, i.e., of

such E ∈ Dh that σD,E := ∂D ∩ ∂E is such that |σD,E| 6= 0; in such a case, let dD,E stand for
the Euclidean distance of the associated vertices VD and VE. Let finally a be piecewise constant
on Dh. Then the weighted cell-centered finite volume method for problem (1.1a)–(1.1b) reads: find
ph =

∑

D∈Dh
pDψVD

, with pD = 0 for all D ∈ Dext
h so that ph ∈ Xh, such that

−
∑

E∈N (D)

{a}ω
|σD,E|

dD,E
(pE − pD) = (f, 1)D ∀D ∈ Dint

h . (3.3)

Here, two basic choices for the weights in {a}ω on a side σ = σD,E ∈ F int
h exist:

ωD,σ = ωE,σ =
1

2
, (3.4)

which corresponds to the arithmetic averaging, and

ωD,σ =
aE

aD + aE
, ωE,σ =

aD

aD + aE
, (3.5)

which corresponds to the harmonic averaging.

Definition 3.4 (Weighted vertex-centered finite volume method). Let the dual grid Dh consist of
polygonal/polyhedral dual volumes. Then we can design a weighted vertex-centered finite volume
method for problem (1.1a)–(1.1b) as follows: find ph ∈ Xh such that

− 〈{a}ω∇ph · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h . (3.6)

Remark 3.5 (Arithmetic/harmonic averaging in the vertex-centered finite volume method). We
first remark that when a is piecewise constant on Th, the above definition coincides with the standard
Definition 3.2, which is known to lead to arithmetic-like averaging of a. When, however, a is
piecewise constant on Dh, then as in the cell-centered finite volume case, the two basic choices for
the weights in {a}ω, (3.4) and (3.5), lead respectively to arithmetic and harmonic averaging of a.

Definition 3.6 (Finite element method with harmonic averaging). Let the dual grid Dh consist
of polygonal/polyhedral dual volumes and let a be piecewise constant on Dh. Let us define ã by

ã|K =

(

(a−1, 1)K
|K|

)−1

∀K ∈ Th. (3.7)

Then we can define a finite element method with harmonic averaging for problem (1.1a)–(1.1b) as:
find ph ∈ Xh such that

(ã∇ph,∇ψV )TV
= (f, ψV )TV

∀V ∈ V int
h . (3.8)

Remark 3.7 (Arithmetic/harmonic averaging in the finite element method). We remark that
the difference between the matrices of (3.1) and (3.8) corresponds to the difference between the
matrices of the piecewise linear nonconforming finite element method and that of the hybridization
of the lowest-order Raviart–Thomas mixed finite element method in that the first ones use the
arithmetic and the second ones use the harmonic averaging of the diffusion coefficient a, see [15,
Remark 3.2 and Lemma 8.1]. Remark in particular that by Definitions 3.1 and 3.6, one has in
the finite element method the choice between the arithmetic and the harmonic averaging as in the
finite volume one.
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3.2 Equivalences

We are now ready to recall several equivalence results between the above methods.

Lemma 3.8 (Equivalence between matrices of finite elements and vertex-centered finite volumes).
Let D ∈ Dh have Lipschitz-continuous boundaries and let |σ ∩D| = |σ|/d for each σ ∈ E int

h with
a vertex VD ∈ V int

h and the associated D ∈ Dint
h . Let, moreover, a be piecewise constant on Th.

Then, for all ph ∈ Xh,

(a∇ph,∇ψVD
)TVD

= −〈a∇ph · n, 1〉∂D ∀D ∈ Dint
h . (3.9)

Proof. Employing the Green theorem and the finite elements basis functions form, see [4, Lemma 3]
for d = 2.

Lemma 3.9 (Equivalence between matrices of finite elements and cell-centered finite volumes).
Let d = 2, let Th be Delaunay, that is let the circumcircle of each triangle does not contain any
vertex in its interior, and let, moreover, no circumcenters of boundary triangles lie outside the
domain Ω. Let Dh be constructed using the orthogonal bisectors of the edges of Th and let a = 1.
Then, for all ph ∈ Xh,

(∇ph,∇ψVD
)TVD

= −
∑

E∈N (D)

|σD,E|

dD,E
(pE − pD) ∀D ∈ Dint

h .

Proof. See [14, Section III.12].

Remark 3.10 (Relation between finite elements and cell-centered finite volumes if d = 3). We re-
mark that the above lemma does not generalize to three space dimensions, see, e.g., Letniowski [19]
or Putti and Cordes [23].

Lemma 3.11 (Equivalence between right-hand sides of finite elements and finite volumes). Let
|D∩K| = |K|/(d+1) for each D ∈ Dint

h and each K ∈ TVD
. Let, moreover, f be piecewise constant

on Th. Then
(f, ψVD

)TVD
= (f, 1)D ∀D ∈ Dint

h . (3.10)

Proof. Straightforward using the condition |D ∩K| = |K|/(d+ 1) for D ∈ Dint
h and K ∈ TVD

and
a quadrature formula for linear functions on simplices.

3.3 Consequences

The following corollaries are obvious consequences of the previous lemmas.

Corollary 3.12 (Equivalence between finite elements and vertex-centered finite volumes). Let
the assumptions of Lemmas 3.8 and 3.11 be verified. Then the finite element method given by
Definition 3.1 and the vertex-centered finite volume methods given by Definitions 3.2 and 3.4
produce the same discrete systems.

Corollary 3.13 (Local conservativity of the finite element method on dual grids). Let the assump-
tions of Lemmas 3.8 and 3.11 be verified. Then the finite element method given by Definition 3.1
is locally conservative over the dual grid Dint

h .

Corollary 3.14 (Equivalence between weighted cell- and vertex-centered finite volumes). Let
d = 2, let Th be Delaunay, let, moreover, no circumcenters of boundary triangles lie outside
the domain Ω, and let Dh be constructed using the orthogonal bisectors of the edges of Th. Let
next a be piecewise constant on Dh. Then the weighted cell-centered finite volume method given
by Definition 3.3 and the weighted vertex-centered finite volume method given by Definition 3.4
produce the same discrete systems.

8



3.4 Remarks

We finish this section by some additional remarks.

Remark 3.15 (Local conservativity of the finite element method). Corollary 3.13 should be un-
derstood in the following sense: First of all, equation (3.2) states that the sum of fluxes enter-
ing/leaving D ∈ Dint

h equals the sources on this element. Secondly, rewriting −〈a∇ph · n, 1〉∂D as
−

∑

E∈N (D)〈a∇ph ·n, 1〉σD,E
and noticing that the quantity a∇ph ·n is single-valued on σD,E under

the given assumptions, local mass balance, in the sense that the mass leaving from one element
(D) enters its neighbor (E), is likewise satisfied. Consequently, the finite element method is well
locally mass conservative on Dint

h , even if it is not locally mass conservative on Th. Remark finally
that the above assertions are only valid exactly if in particular a and f are piecewise constant on
Th. In the general case, local mass conservativity on Dh only holds up to a numerical quadrature.

Remark 3.16 (Choice of the dual grids). In the above developments, a large freedom is left in
what concerns the actual choice of the dual grids Dh. The basic and most frequently used grid
satisfying both the assumptions of Lemmas 3.8 and 3.11 is given by straight lines connecting the
triangle barycentres through the midpoints of the edges of Th if d = 2 and similarly if d = 3.

Remark 3.17 (Finite difference method). Let Dh consist of squares if d = 2 and cubes if d =
3. Then the finite difference method for problem (1.1a)–(1.1b) coincides with cell-centered finite
volume one given by Definition 3.3, cf. Eymard et al. [14].

Remark 3.18 (Tensor-valued diffusion coefficients). In problem (1.1a)–(1.1b), we could also con-
sider a tensor-valued diffusion coefficient A in place of the scalar-valued a. Definitions 3.1 and 3.6
would in this case contain A in place of a and similarly for Definitions 3.2 and 3.4. Then, for A

piecewise constant on Th, Lemma 3.8 still holds true and similarly for Corollaries 3.12 and 3.13.

Remark 3.19 (Generalizations). In [16], the above relations between finite elements and finite
volumes employing dual grids have been used in order to construct a simple, stable, and consistent
scheme enabling the discretization of strongly nonlinear convection–diffusion–reaction problems on
nonmatching grids containing nonconvex elements with one unknown per element and positive
definite systems, offering the arithmetic and harmonic averaging choices. In this reference, other
remarks on the relations between finite elements and finite volumes are stated.

4 Optimal abstract framework for a posteriori error estimation

We recall in this section the basic results of [33, 13], giving an optimal abstract framework for
a posteriori error estimation in problem (1.1a)–(1.1b). The first result is the following abstract
upper bound:

Theorem 4.1 (Abstract a posteriori error estimate). Let p be the weak solution of problem (1.1a)–
(1.1b) given by (2.10) and let ph ∈ H1

0 (Ω) be arbitrary. Then

|||p − ph||| ≤ inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t, ϕ) − (a∇ph + t,∇ϕ)}. (4.1)

Proof. We first notice that

|||p − ph||| = B

(

p− ph,
p− ph

|||p − ph|||

)
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by (2.9). Clearly, as ϕ := (p − ph)/|||p − ph||| ∈ H1
0 (Ω), we immediately have B(p, ϕ) = (f, ϕ)

by (2.10). Using this we obtain, for an arbitrary t ∈ H(div,Ω) and employing the Green theorem,

B(p− ph, ϕ) = (f, ϕ) − (a∇ph,∇ϕ) = (f, ϕ) − (a∇ph + t,∇ϕ) + (t,∇ϕ)

= (f −∇ · t, ϕ) − (a∇ph + t,∇ϕ).

From here, it is enough to note that |||ϕ||| = 1 and that t ∈ H(div,Ω) was chosen arbitrary to
conclude the proof.

Theorem 4.1 gives a framework for optimal a posteriori error estimate, as shows the following
theorem:

Theorem 4.2 (Global efficiency of the abstract estimate). Let p be the weak solution of prob-
lem (1.1a)–(1.1b) given by (2.10) and let ph ∈ H1

0 (Ω) be arbitrary. Let the a posteriori error
estimate be given by Theorem 4.1. Then

inf
t∈H(div,Ω)

sup
ϕ∈H1

0
(Ω), |||ϕ|||=1

{(f −∇ · t, ϕ) − (a∇ph + t,∇ϕ)} ≤ |||p − ph|||.

Proof. It suffices to put t = −a∇p and to use the Schwarz inequality and the fact that |||ϕ||| =
1.

It follows from the above that not only that the abstract a posteriori error estimate of Theo-
rem 4.1 gives a guaranteed upper bound (features no undetermined constant), but that it is also
globally efficient (gives a global lower bound), is fully robust with respect to data (the efficiency
constant does not depend on it), and is exact (the effectivity index is equal to 1). Finally, note that
at this stage, no additional assumptions like a polynomial form of the data or the shape regularity
of the mesh are needed.

5 Guaranteed a posteriori error estimates

Our purpose is now to find a locally computable version of the abstract a posteriori estimate of
the previous section. We first present a general a posteriori error estimate, applicable to any
conforming method under the condition that a suitable t ∈ H(div,Ω) can be found. We then
propose a way of construction of this t for the weighted vertex-centered finite volume method (3.6)
and the finite element method (3.1) and conclude by some remarks and generalizations.

5.1 A general guaranteed a posteriori error estimate for conforming methods

The following is a very general version of an a posteriori error estimate for any conforming method:

Theorem 5.1 (A general guaranteed a posteriori error estimate). Let p be the weak solution of
problem (1.1a)–(1.1b) given by (2.10) and let ph ∈ H1

0 (Ω) be arbitrary. Let next Dh be a general
partition of Ω such as those described in Section 2.1 and let th ∈ H(div,Ω) be arbitrary but such
that

(∇ · th, 1)D = (f, 1)D ∀D ∈ Dint
h . (5.1)

Then

|||p − ph||| ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)2

}
1

2

,
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where the diffusive flux estimator ηDF,D is given by

ηDF,D := ‖a
1

2∇ph + a−
1

2 th‖D D ∈ Dh, (5.2)

and the residual estimator ηR,D is given by

ηR,D := mD,a‖f −∇ · th‖D D ∈ Dh, (5.3)

where

m2
D,a := CP,D

h2
D

ca,D
D ∈ Dint

h , (5.4a)

m2
D,a := CF,D,∂Ω

h2
D

ca,D
D ∈ Dext

h , (5.4b)

with CP,D the constant from the Poincaré inequality (2.6) and CF,D,∂Ω the constant from the
Friedrichs inequality (2.7).

Proof. Put t = th in Theorem 4.1. Note that, for each D ∈ Dint
h ,

(f −∇ · th, ϕ)D = (f −∇ · th, ϕ− ϕD)D ≤ ηR,D|||ϕ|||D ,

using (5.1), the Poincaré inequality (2.6), the Schwarz inequality, and the definition (2.9) of the
energy norm. We cannot use a similar approach also for D ∈ Dext

h since there is no local conserva-
tivity supposed in (5.1) on these dual volumes. On the other hand, however, ϕ = 0 on ∂D ∩ ∂Ω,
whence

(f −∇ · th, ϕ)D ≤ ηR,D|||ϕ|||D

for each D ∈ Dext
h , using the Friedrichs inequality (2.7), the Schwarz inequality, and the defini-

tion (2.9) of the energy norm. Finally, −(a∇ph + t,∇ϕ)D ≤ ηDF,D|||ϕ|||D is immediate using the
fact that a is positive and scalar and the Schwarz inequality. Hence it now suffices to use the
Cauchy–Schwarz inequality and to notice that |||ϕ||| = 1 in order to conclude the proof.

In general, we will look for a suitable th in the lowest-order Raviart–Thomas–Nédélec space
RTN(Sh) defined over the fine simplicial mesh Sh introduced in Section 2.1. The space RTN(Sh) ⊂
H(div,Ω) is a space of vector functions having on each K ∈ Sh the form (aK + dKx, bK + dKy)

t

if d = 2 and (aK + dKx, bK + dKy, cK + dKz)
t if d = 3. Note that the requirement RTN(Sh) ⊂

H(div,Ω) imposes the continuity of the normal trace across all σ ∈ Gint
h and recall that v · nσ

is a constant for all σ ∈ Gh and that these side fluxes also represent the degrees of freedom of
RTN(Sh). For more details, we refer to [7, 26].

5.2 Guaranteed estimate for the weighted vertex-centered finite volume me-

thod

We show here how to construct a suitable th ∈ RTN(Sh) for the weighted vertex-centered finite
volume method (3.6).

We simply define th ∈ RTN(Sh) by

th · nσ = −{a∇ph · nσ}ω ∀σ ∈ Gh. (5.5)

We first note that th · nσ is given directly by −a∇ph · nσ for such σ ∈ Gh where there is no jump
neither in a, nor in ∇ph, using the conditions (2.4). If a = 1, then these are all the sides σ ∈ Gh
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which are in the interior of some K ∈ Th or at the boundary of Ω. The same holds true if a is
piecewise constant on Th, but if a is piecewise constant on Dh, this set is restricted to all the sides
σ ∈ Gh which are simultaneously in the interior of some K ∈ Th and D ∈ Dh or at the boundary
of Ω. For the moment, we do not specify the weights in (5.5), but it will turn out that only the
choice (3.5) will lead to robust estimates. The following is the key necessary result:

Lemma 5.2 (Reconstructed diffusion residual for the weighted vertex-centered finite volume
method (3.6)). Let ph ∈ Xh be given by the weighted vertex-centered finite volume method (3.6),
with any weights satisfying (2.4). Let th by given by (5.5), where the weights in (5.5) are the same
as those used in (3.6) for all σ ∈ F int

h if a is discontinuous and piecewise constant on Dh. If a
is piecewise constant on Th (comprising the case a = 1), let the weights in (5.5) be arbitrary but
satisfying (2.4). Then

(∇ · th, 1)D = (f, 1)D ∀D ∈ Dint
h .

Proof. The local conservativity of the weighted vertex-centered finite volume method (3.6) and the
definition (5.5) of th imply that

〈th · n, 1〉∂D = (f, 1)D ∀D ∈ Dint
h ,

noticing that {a}ω∇ph · n = {a∇ph · n}ω for all σ ∈ Gint
h , since all such sides lie in the interior

of some K ∈ Th, where ∇ph is constant. The assertion of the lemma now follows by the Green
theorem.

We are now ready to summarize our a posteriori error estimate for this method:

Theorem 5.3 (Guaranteed a posteriori error estimate for the weighted vertex-centered finite
volume method (3.6)). Let p be the weak solution of problem (1.1a)–(1.1b) given by (2.10) and
let ph be its weighted vertex-centered finite volume approximation given by (3.6), with any weights
satisfying (2.4). Let th be given by (5.5) with the weights discussed in Lemma 5.2. Then the a
posteriori error estimate of Theorem 5.1 holds true.

5.3 Guaranteed estimate for the finite element method

We give in this section a version of our a posteriori error estimate for the finite element method.

Theorem 5.4 (Guaranteed a posteriori error estimate for the finite element method (3.1)). Let
the dual mesh Dh be such that D ∈ Dh have Lipschitz-continuous boundaries, let |σ ∩D| = |σ|/d
for each σ ∈ E int

h with a vertex VD ∈ V int
h and the associated D ∈ Dint

h , and let |D∩K| = |K|/(d+1)
for each D ∈ Dint

h and each K ∈ TVD
. Let next a be piecewise constant on Th, let p be the weak

solution of problem (1.1a)–(1.1b) given by (2.10), and let ph be its finite element approximation
given by (3.1). Let finally th be given by (5.5) with any weights satisfying (2.4). Then

|||p − ph||| ≤

{

∑

D∈Dh

(ηR,D + ηDF,D)2

}
1

2

+

{

∑

K∈Th

η2
Osc,K

}
1

2

,

where ηDF,D is given by (5.2), ηR,D is given by

ηR,D := mD,a‖f̃ −∇ · th − (f̃ −∇ · th)D‖D D ∈ Dint
h , (5.6a)

ηR,D := mD,a‖f −∇ · th‖D D ∈ Dext
h (5.6b)
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with mD,a given by (5.4a)–(5.4b) and f̃ given on each K ∈ Th by (f, 1)K/|K|, and the data
oscillation estimators ηOsc,K are given by

ηOsc,K := (d+ 1)
1

2C
1

2

C,K

hK

c
1

2

a,TK

‖f − f̃‖K K ∈ Th, (5.7)

where CC,K is the constant for the interpolation error in the Clément interpolant given by ϕh =
∑

D∈Dint

h
ϕDψVD

with ϕD := (ϕ, 1)D/|D|,

‖ϕ− ϕh‖
2
K ≤ CC,Kh

2
K‖∇ϕ‖2

TK
, (5.8)

cf. Carstensen and Funken [8].

Proof. Under the assumptions of the theorem, relations (3.9) and (3.10), with f replaced by f̃ ,
hold true. Hence, taking into account the construction (5.5) of th,

(∇ · th, 1)D = (f̃ , 1)D + (f − f̃ , ψVD
)TVD

as in Lemma 5.2. Thus

(f −∇ · th, ϕ) =
∑

D∈Dint

h

{

(f̃ −∇ · th, ϕ− ϕD)D + (f − f̃ , ϕ)D − (f − f̃ , ϕDψVD
)TVD

}

+
∑

D∈Dext

h

(f −∇ · th, ϕ)D =
∑

D∈Dint

h

(f̃ −∇ · th, ϕ− ϕD)D

+(f − f̃ , ϕ− ϕh) +
∑

D∈Dext

h

(f −∇ · th, ϕ)D .

The estimate for D ∈ Dext
h is the same as that in the proof of Theorem 5.1 and similarly for

D ∈ Dint
h , noticing however that

(f̃ −∇ · th, ϕ− ϕD)D = (f̃ −∇ · th − (f̃ −∇ · th)D, ϕ− ϕD)D ≤ ηR,D|||ϕ|||D

with ηR,D given by (5.6a). As (f̃ − ∇ · th)D is not necessarily zero in this case and noticing
that ‖v − vD‖D ≤ ‖v‖D for each v ∈ L2(D), we can only improve the estimate while subtracting
(f̃ −∇· th)D. Finally, the last term is estimated using the Schwarz inequality, the inequality (5.8),
the definition (2.9) of the energy norm, the Cauchy–Schwarz inequality, and finally noting that
∑

K∈Th
|||ϕ|||2TK

≤ (d+ 1)
∑

K∈Th
|||ϕ|||2K .

5.4 Remarks and generalizations

Remark 5.5 (Comparison with standard residual estimators). The above estimates have three
basic advantages in comparison with standard residual estimators, cf. Verfürth [30]. First of all,
they feature no undetermined constant. We remark however that a straightforward evaluation of the
constants CP,D and CF,D,∂Ω is only possible when D ∈ Dint

h are convex and D ∈ Dext
h have suitable

form, see Section 2.3. Likewise, in the finite element method when f is not piecewise constant
on Th, CC,K should be evaluated—see in this respect also Remark 5.10 below. Next, the classical
residual estimator hK‖f‖K is replaced by its improved versions (5.3) or (5.6a)–(5.6b). Lastly, as
it will be seen in Lemma 6.2 below, the diffusive flux estimator ηDF,D represents a lower bound for

a sum of the classical edge mass balance estimators h
1

2

K‖[[a∇ph · nσ]]‖σ. The improved behavior of
our estimators over the classical one for the finite element method is numerically studied in [9].
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Remark 5.6 (Comparison with the equilibrated residual method). In the equilibrated residual
method, cf. [2], one searches equilibrated fluxes expressing local conservativity over each K ∈ Th.
Contrarily to this approach, our estimators are based on the natural conservativity of the finite
element method over dual grids Dh, leading immediately to a guaranteed and locally computable
upper bound.

Remark 5.7 (Comparison with the Zienkiewicz–Zhu averaging). The similarity of our approach
with the Zienkiewicz–Zhu [37] estimator relies in the fact that both contain what we call a diffusive
flux estimator, where th is produced from −a∇ph by averaging. Concerning the differences, first
of all, in the Zienkiewicz–Zhu estimator, one averages punctual nodal values and the postprocessed
diffusive flux th is smooth (belongs to C0). According to Theorem 4.1, there is, however, no need
for this—only normal traces of th should be continuous, i.e., th ∈ H(div,Ω) is enough, which
is achieved in our approach by averaging the side normal components. Secondly, this estimator
does not give a guaranteed upper bound since in particular the residual parts (5.3) or (5.6a)–
(5.6b) are omitted. Thirdly, these two differences become fundamentally important when a is
discontinuous, since in this case, in general, −a∇p is not smooth and only belongs to H(div,Ω),
whence th ∈ H(div,Ω) is optimal, and the residual parts play a crucial role through the presence

of the material coefficient c
1

2

a,D.

Remark 5.8 (Comparison with functional a posteriori estimates). Repin [24] or Korotov [18] use
instead of Theorem 5.1 the estimate

|||p − ph||| ≤
C

1/2
F,ΩhΩ

c
1/2
a,Ω

‖f −∇ · th‖ + ‖a
1

2∇ph + a−
1

2 th‖,

which follows readily from Theorem 4.1 using the Cauchy–Schwarz inequality, the Friedrichs in-
equality, and the definition of the energy seminorm. Here p is the weak solution given by (2.10),
ph ∈ H1

0 (Ω) and th ∈ H(div,Ω) are arbitrary, CF,Ω is the constant from the Friedrichs inequal-
ity (2.7) with D = Ω, and hΩ is the diameter of Ω. The advantage is that no particular construction
of th ∈ H(div,Ω) has to be done and the estimate is thus fully scheme-independent. However, as
no information from the computation is used, the residual term is in general too large by the pres-

ence of hΩ instead of hD which we find in Theorem 5.1. Secondly, the term 1/c
1/2
a,Ω is also greatly

unfavorable in comparison with 1/c
1/2
a,D found in our estimates.

Remark 5.9 (Comparison with the estimator of Luce and Wohlmuth [20]). Our estimators are
similar to those of Luce and Wohlmuth [20], in particular in that we construct the dual mesh Dh

and the second simplicial triangulation Sh and a th ∈ RTN(Sh). However, our construction of th

is much simpler and, moreover, as we will see later, it will lead to full robustness with respect to
discontinuous coefficients.

Remark 5.10 (Data oscillation in the finite element method). Note that whenever f ∈ H1(K) for
all K ∈ Th, the data oscillation estimators ηOsc,K in the finite element method are superconvergent,
as ‖f−f̃‖K ≤ 1/πhK‖∇f‖K by the Poincaré inequality (2.6) (here we have employed the convexity
of simplices). Moreover, if f is piecewise constant on Th, they disappear completely, so that then
the a posteriori error estimate of Theorem 5.4 coincides with that of Theorem 5.3, as the finite
element method coincides with the weighted vertex-centered finite volume one, see Corollary 3.12.

Remark 5.11 (Generalizations to other methods). The a posteriori error estimates of Theo-
rems 5.3 and 5.4 may be generalized easily to other methods discussed in Section 3 using the
equivalence results stated therein.
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6 Local efficiency and robustness of the a posteriori error esti-

mates

We prove in this section the local efficiency and robustness of our a posteriori error estimates. The
results are presented for the weighted vertex-centered finite volume method (3.6) and generaliza-
tions are discussed later.

6.1 Local efficiency and robustness of the a posteriori error estimate for weigh-

ted vertex-centered finite volumes

The local efficiency of the a posteriori error estimate of Theorem 5.3 is stated in the following
theorem:

Theorem 6.1 (Local efficiency and robustness of the a posteriori error estimate for the weighted
vertex-centered finite volume method (3.6)). Let a be piecewise constant on Dh, let f be a piecewise
polynomial of degree m, let p be the weak solution of problem (1.1a)–(1.1b) given by (2.10), and
let ph be its weighted vertex-centered finite volume approximation given by (3.6), with the weights
given by (3.5). Let next Sh be shape-regular and let the a posteriori error estimate be given by
Theorem 5.3, with in particular th given by (5.5) with the weights (3.5), ηR,D given by (5.3), and
ηDF,D by (5.2). Then, for each D ∈ Dh, there holds

ηDF,D ≤ C|||p − ph|||TVD
, (6.1)

ηR,D ≤ C̃|||p − ph|||TVD
, (6.2)

where the constant C depends only on the space dimension d, on the shape regularity parameter κS ,
and on the polynomial degree m of f and C̃ in addition depends on the constant CP,D from the
Poincaré inequality (2.6) if D ∈ Dint

h or on the constant CF,D,∂Ω from the Friedrichs inequality (2.7)
if D ∈ Dext

h .

The proof of Theorem 6.1 is decomposed into two parts:

Lemma 6.2 (Local efficiency of the diffusive flux estimator). Let the assumptions of Theorem 6.1
be verified. Then (6.1) holds true.

Proof. The proof follows the techniques of [30] and [12, 13]. Recall first the standard estimate

‖vh‖
2
K ≤ ChK

∑

σ∈EK

‖vh · n‖2
σ

valid for each vh ∈ RTN(K) and any simplex K. Here, and similarly in the rest of the proof, the
constant C, not necessarily the same at each occurrence, depends only on d, κS , and m.

Let now K be an arbitrary element in the simplicial mesh SD of a given D ∈ Dh and let us
put vh = a∇ph + th. We have

‖a
1

2∇ph + a−
1

2 th‖
2
K = a−1

K ‖vh‖
2
K ≤ Ca−1

K hK

∑

σ∈EK∩Gint

h

‖ωL,σ[[a∇ph · nσ]]‖2
σ ,

where L denotes the neighboring element to K across σ ∈ Gint
h , using that

(a∇ph + th)|K · nσ = (a∇ph · nσ)|K − {a∇ph · nσ}ω = nσ · nωL,σ[[a∇ph · nσ]]
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for σ ∈ EK ∩Gint
h and (a∇ph + th)|K ·nσ = 0 for σ ∈ EK ∩Gext

h . Note that nσ ·n = ±1 is only used
as a sign determination.

Let us now consider a fixed σ = σK,L ∈ EK ∩ Gint
h . The estimate

h
1

2

K‖[[∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

|||p − ph|||M

for the case where a = 1 is standard using the side and element bubble functions, the Green
theorem, the inverse inequality, and the equivalence of norms on finite-dimensional spaces, cf. [30].
It implies

h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

a
1

2

M |||p − ph|||M .

It then follows that

ωL,σa
− 1

2

K h
1

2

K‖[[a∇ph · nσ]]‖σ ≤ C
∑

M∈{K,L}

ωL,σa
− 1

2

K a
1

2

M |||p − ph|||M .

Finally, thanks to the definition (2.4) of ωL,σ, ωL,σa
− 1

2

K a
1

2

M = ωL,σ ≤ 1 if M = K and by (3.5),

ωL,σa
− 1

2

K a
1

2

M = aK(aK + aL)−1a
− 1

2

K a
1

2

L ≤ 1
2 if M = L, using the inequality 2ab ≤ a2 + b2.

Now finally, using the above results,

η2
DF,D =

∑

K∈SD

‖a
1

2∇ph + a−
1

2 th‖
2
K ≤ C

∑

K∈SD

∑

σK,L∈EK∩Gint

h

a−1
K hKω

2
L,σK,L

‖[[a∇ph · nσK,L
]]‖2

σK,L

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint

h

∑

M∈{K,L}

|||p − ph|||
2
M ≤ C|||p− ph|||

2
TVD

,

which was to be proved.

Lemma 6.3 (Local efficiency of the residual estimator). Let the assumptions of Theorem 6.1 be
verified. Then (6.2) holds true.

Proof. Let us consider a fixed D ∈ Dh. First,

‖f −∇ · th‖K ≤ Ca
1

2

Kh
−1
K ‖a

1

2∇p+ a−
1

2 th‖K

for each K ∈ SD with C depending only on d, κS , and m follows standardly by the Green theorem,
the inverse inequality, the equivalence of norms on finite-dimensional spaces, and using the element
bubble functions, cf. [30], so that

‖f −∇ · th‖D ≤ CC
1

2

a,Dh
−1
D ‖a

1

2∇p+ a−
1

2 th‖D

holds true, using also the fact that hD/minK∈SD
hK is bounded by the shape-regularity of Sh.

Thus

hDc
− 1

2

a,D‖f −∇ · th‖D ≤ Cc
− 1

2

a,DC
1

2

a,D‖a
1

2∇p+ a−
1

2 th‖D.

Next note that c
− 1

2

a,DC
1

2

a,D = 1 for a piecewise constant on Dh. Finally,

‖a
1

2∇p+ a−
1

2 th‖D ≤ |||p − ph|||D + ‖a
1

2∇ph + a−
1

2 th‖D

using the triangle inequality, which concludes the proof by virtue of the previously proved esti-
mate (6.1).

We conclude this section by several remarks and comments on generalizations:
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6.2 Remarks and generalizations

Remark 6.4 (Unconditioned robustness with respect to discontinuous a). When a is piecewise
constant on Dh, when the harmonic averaging (3.5) has been used in the weighted vertex-centered
finite volume method (3.6), and when the diffusive flux th is likewise defined using harmonic
averaging (3.5), equations (6.1)–(6.2) imply a full robustness of the estimators of Theorem 5.3
with respect to the diffusion coefficient a. In particular, no condition on the spatial distribution
of the discontinuities in a is necessary, whereas in the previous results [6, 22, 1], a “monotonicity
around vertices” condition on the distribution of the diffusion coefficient was always necessary.

Remark 6.5 (Diffusion coefficient a piecewise constant on Th). If a is piecewise constant on
Th (whence the choice of the weights does not influence (3.6), cf. Remark 3.5) but harmonic
averaging (3.5) has been used in order to define the diffusive flux th, equation (6.1) still holds
true, i.e., the diffusive flux estimator ηDF,D is still fully robust. It however follows from the proof

of Lemma 6.3 that in equation (6.2), an additional factor c
− 1

2

a,DC
1

2

a,D appears, whence the residual
estimator ηR,D is not robust in this case.

Remark 6.6 (Local efficiency and robustness of the a posteriori error estimates for the finite
element methods (3.1) and (3.8)). If a is piecewise constant on Th and under the other assumptions
of Lemmas 3.8 and 3.11, we have by Corollary 3.12 that the above remark holds true also for the
finite element method (3.1). On the other hand, when a is piecewise constant on Dh, the finite
element method with harmonic averaging (3.8) leads to the same results as those of Theorem 6.1,
up to the data oscillation estimators.

Remark 6.7 (Comparison with discontinuous Galerkin methods). In discontinuous Galerkin
methods, similar results have been obtained for the diffusive flux estimator, see [12, 13]. In these
methods, however, an additional nonconformity estimator appears, whose robustness can for the
moment only be proved under the “monotonicity around vertices” condition on the distribution of
the diffusion coefficient, cf. [1].

Remark 6.8 (Comparison with the approach of [32] for cell-centered finite volume methods).
In the present paper, the results of the cell-centered finite volume method of Definition 3.3 are
interpreted as a piecewise linear continuous function over a (Delaunay) triangular mesh Th asso-
ciated with the Voronöı grid Dh. In [32], a different definition (postprocessing) of the approximate
solution, based on the finite volume fluxes and not using any other mesh than the given one, is
used. One advantage of the present approach is that it, using harmonic averaging, leads to full
robustness. Additional comparisons are presented in [35].

7 Improvements by local minimization

We suggest here an improvement of the estimators studied in the previous sections, where th ∈
RTN(Sh) was prescribed by (5.5). The motivation comes from Figure 2, which details the

residual and diffusive flux estimates, given respectively by ηR := {
∑

D∈Dh
η2
R,D}

1

2 and ηDF :=

{
∑

D∈Dh
η2
DF,D}

1

2 , for the example studied in the next section and complete estimates presented
therein in Figure 7. We can clearly see that the residual estimator represents a major contribution
while dominating the diffusive flux one. This is in a strict opposition to the case of mixed finite
element, finite volume, and discontinuous Galerkin methods, cf. [33, 32, 13], where the residual
estimator, defined in an analogous way, represents a higher-order term, only significant on rough
grids. The explication of this phenomenon is indeed quite easy. In the above-cited methods, the
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Figure 2: Comparison of residual and diffusive fluxes estimators in uniformly/adaptively refined
meshes for α = 0.53544095 (left) and α = 0.12690207 (right)

vector field th and formula (5.3) are given directly on the simplicial elements and (5.1) holds el-
ementwise on Th with ∇ · th, a constant on each element, given by the mean value of f over K,
whence the superconvergence by the Poincaré inequality (2.6) whenever f is piecewise H1 on Th.
In contrast to this situation, in the present setting, (5.1) is only valid on a set of elements SD.

On the other hand, in the present setting, prescribing th ∈ RTN(Sh) by (5.5) is only a sufficient
but not necessary condition for (5.1) to hold. In particular, it is enough to use the definition (5.5)
on those sides of Gh which are at the boundary of some D ∈ Dint

h to ensure the validity of (5.1),
whereas th ·nσ can be chosen freely on the other sides. A particularly interesting feature is that all
these sides are in the interior of some D ∈ Dh (or at the boundary of Ω when D ∈ Dext

h ), so that
their choice in one dual volume does not affect the choice in the neighboring one and can be done
locally. Whereas a true local minimization has been studied in [9], we propose and numerically
investigate here a different approach, where in particular no (local) linear system has to be solved.

Let now D ∈ Dh be fixed. The first step is to construct t1,D ∈ RTN(SD) given by (5.5). In
the second one, we then construct t2,D ∈ RTN(SD) given by (5.5) only for such σ ∈ Gh which are
at the boundary of some D ∈ Dint

h and such that (∇·t2,D, 1)K = (f, 1)K for all K ∈ SD. Note that
as (∇ · t2,D, 1)D = 〈t2,D · n, 1〉∂D = (f, 1)D when D ∈ Dint

h , this can be done without any (local)
linear system solution by choosing the flux over one interior side and a sequential construction as
∑

K∈SD
(f, 1)K = (f, 1)D. If D ∈ Dext

h , this argument is then replaced by the fact that we are
free to choose the fluxes over the exterior sides. Now any tD := αt1,D + (1 − α)t2,D obviously
obeys (5.1) and we can minimize ηD := ηR,D + ηDF,D as a function of this parameter. It turns
out that it is much easier to minimize η2

R,D + η2
DF,D, as this is a quadratic function of α, and the

optimal value is easily found to be given by

α
(

‖a−
1

2 (t1,D − t2,D)‖2
D +m2

D,a‖∇ · (t1,D − t2,D)‖2
D

)

= −(a
1

2∇ph + a−
1

2 t2,D, a
− 1

2 (t1,D − t2,D))D +m2
D,a(f −∇ · t2,D,∇ · (t1,D − t2,D))D.

As however this value does not necessarily minimize ηD (when it is uniquely defined by the above
formula) but η2

R,D + η2
DF,D, we finally propose as an improved estimator

ηD := min{ηD(t1,D), ηD(t2,D), ηD(αt1,D + (1 − α)t2,D)}. (7.1)
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Th

Dh

Figure 3: Example of a given nonmatching dual mesh Dh and the corresponding primal triangular
mesh Th

8 Numerical experiments

We present in this sections results of numerical experiments. We consider a model problem taken
from [25], where Ω = (−1, 1) × (−1, 1) is divided into four subdomains Ωi along the Cartesian
axes (the subregion {x > 0, y > 0} ∩ Ω is denoted by Ω1 and the subsequent numbering is done
counterclockwise) and a is constant and equal to ai in Ωi. Supposing in addition that f = 0,
analytical solution writing

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each Ωi can be found. Here (r, θ) are the polar coordinates in Ω, ai and bi are constants
depending on Ωi, and α is a parameter. This solution is continuous across the interfaces but only
the normal component of its flux u = −S∇p is continuous; it exhibits a singularity at the origin
and it only belongs to H1+α(Ω). We assume Dirichlet boundary conditions given by this solution
and consider two sets of the coefficients. In the first one, a1 = a3 = 5, a2 = a4 = 1, α = 0.53544095,
and

a1 = 0.44721360; b1 = 1.00000000;

a2 =−0.74535599; b2 = 2.33333333;

a3 =−0.94411759; b3 = 0.55555556;

a4 =−2.40170264; b4 =−0.48148148.

In the second one, a1 = a3 = 100, a2 = a4 = 1, α = 0.12690207, and

a1 = 0.10000000; b1 = 1.00000000;

a2 =−9.60396040; b2 = 2.96039604;

a3 =−0.48035487; b3 =−0.88275659;

a4 = 7.70156488; b4 =−6.45646175.

In order to get robust a posteriori error estimates, we know from Theorem 6.1 that a has to be
piecewise constant on Dh. If, however, we would first construct a simplicial mesh Th of Ω and then
a dual grid Dh as in Section 2.1, it would be very difficult to keep the dual mesh aligned with the
inhomogeneities, especially for adaptive refinement. A possible solution is to first define the dual
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Figure 4: Estimated (left) and actual (right) error distribution on a uniformly refined mesh,
α = 0.53544095

Figure 5: Estimated (left) and actual (right) error distribution on an adaptively refined mesh,
α = 0.12690207

mesh Dh and only then the primal one Th. This type of approach has been proposed in, e.g., [16]
and we employ it here. On the resulting couple of grids Dh, Th, we then use the weighted vertex-
centered finite volume method (3.6). Recall that on square grids (and their uniform refinements),
this method is equivalent to the weighted cell-centered finite volume one, cf. Corollary 3.14, as
well as to the finite difference one, cf. Remark 3.17. The advantage of the scheme (3.6) is that it
can be used also when the original square grid has been locally refined (into a nonmatching grid)
as in Figure 3. Note however that the symmetry of this scheme is then lost.

We in Figure 4 present the predicted and actual distribution of the error for α = 0.53544095
and uniform mesh refinement, using the estimators of Theorem 5.3 (the interpolation error on
nonhomogeneous Dirichlet boundary conditions is neglected). A similar comparison, this time for
adaptive mesh refinement and α = 0.12690207, is done in Figure 5. A square cell of the original
dual mesh is refined into 9 identical subsquares if the estimated energy error is greater than 25% of
the maximum of the estimators. We can see that in both cases the predicted error distribution is
excellent and that in particular, the singularity at the origin is well detected. These results clearly
illustrate the robust local lower bound of Theorem 6.1. We finally in Figure 6 give examples of
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Figure 6: Approximate solutions on adaptively refined meshes, α = 0.53544095 (left) and α =
0.12690207 (right)
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Figure 7: Estimated and actual error against the number of dual volumes in uniformly/adaptively
refined meshes for α = 0.53544095 (left) and α = 0.12690207 (right)

the approximate solutions on the adaptively refined meshes in both cases; the strength of the
singularity in the second case is quite obvious.

Knowing precisely the error distribution and refining adaptively the meshes, the next step is to
check whether this leads to an increased efficiency of the calculations. This is in our case illustrated
in Figure 7, from which it is evident that one can achieve a given precision with much fewer elements
using adaptive mesh refinement based on our estimator. Here, the error in the energy norm (2.9)
is approximated with a 7-point quadrature formula in each subtriangle K ∈ SD. In the code
TALISMAN [36], which we use for numerical computations, at most 9 levels of refinement can be
used. This technical limitation is the reason why we in the adaptive case and for α = 0.12690207
only present results with a most 1660 dual volumes—this maximal refinement level is achieved
near the origin but the maximal error is still located there. Finally, in Figure 8, we give the
effectivity indices for the estimators of Theorem 5.3. We can clearly observe a confirmation of
their robustness: whereas the inhomogeneity ratio rises from 5 to 100, the effectivity indices stay
et the level of 2 for uniform refinement and are only slightly increased for adaptive refinement
(since triangles with smaller angles exist in this case).
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Figure 8: Effectivity indices against the number of dual volumes in uniformly/adaptively refined
meshes for α = 0.53544095 (left) and α = 0.12690207 (right), original estimate of Theorem 5.3
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Figure 9: Effectivity indices against the number of dual volumes in uniformly/adaptively refined
meshes for α = 0.53544095 (left) and α = 0.12690207 (right), estimate of Theorem 5.3 with local
minimization (7.1)

We finally investigate the improvement of our error bound using the local minimization ap-
proach described in Section 7. It turns out that for α = 0.53544095, the minimum in (7.1) is
attained by the estimator ηD(t2,D); the residual estimators are actually equal to zero in this
case since f is a constant. For α = 0.12690207, the situation is similar in the majority of
the cells but in some of them, the minimum in (7.1) is attained by the minimization estima-
tor ηD(αt1,D +(1−α)t2,D). The resulting effectivity indices are presented in Figure 9. We remark
that in the adaptive refinement case, the cells marked for refinement were selected using the original
estimators of Theorem 5.3. This approach gives better numerical results and is in coincidence with
our theoretical results, since we only have the local efficiency for these original estimators. Note
that for α = 0.12690207, the adaptive refinement had to be again stopped before the singularity
has been resolved for the technical reason indicated above and that a further decrease of the effec-
tivity index in this case is likely. Finally, the presented results suggest that the estimator (7.1) is
asymptotically exact, and this even in the case of discontinuous coefficients and singular solutions.
A theoretical investigation of this observation will be a subject of some next work.
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[34] Vohraĺık, M. A posteriori error estimation in the finite element method based on its local
conservativity and using local minimization. Submitted to C. R. Math. Acad. Sci. Paris.,
2007.
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