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Abstract. Clustering multivariate data that are contaminated by noise
is a complex issue, particularly in the framework of mixture model es-
timation because noisy data can significantly affect the parameters es-
timates. This paper addresses this problem with respect to likelihood
maximization using the Expectation-Maximization algorithm. Two dif-
ferent approaches are compared. The first one consists in defining mix-
ture models that take into account noise. The second one is based of
robust estimation of the model parameters in the maximization step of
EM. Both have been tested separately, then jointly. Finally, a hybrid
model is proposed. Results on artificial data are given and discussed.
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1 Introduction

Clustering techniques are successfully applied in many areas and some software
can be now downloaded from the Internet, e.g. EMMIX by G. McLachlan and
al. [4], MCLUST by C. Fraley and A. Raftery [5]. It aims at describing rela-
tionships between objects in order to group them in homogeneous clusters. Let
χ = x1, x2, . . . , xN be an observed p-dimensional random sample of size N . In
mixture model theory, each xk (k = 1, N) is assumed to be a realization of
a p-dimensional random vector X with the C-components mixture probability
density function (pdf):

f(x; Θ) =

C
∑

i=1

πif(x;Θi) (1)

where f(x; Θi) denotes the p-dimensional pdf of the ith component and pairs
(πi, Θi) (i = 1, C) are the model parameters. A priori probabilities πi sum up
to one. If a normal mixture model is assumed, Θi = (µi, Σi)

T with mean µi

and covariance matrix Σi. Assuming independent features of X, the model pa-
rameters Θ = (π1, . . . , πC , ΘT

1 , . . . , ΘT
C)T can be estimated by maximizing the



likelihood L(Θ) using the Expectation-Maximization (EM) iterative algorithm
due to Dempster, Laird and Rubin [3]:

L(Θ) = P (χ|Θ) =

N
∏

k=1

C
∑

i=1

πif(xk; Θi) (2)

Resulting clustering is not robust, i.e. it is too much sensitive to outliers or
noise. In this paper, we address the problem of clustering noisy data. To face
such a problem, one can choose either to perform robust estimates or to use
more complex mixture models. In section 2, we briefly recall the EM algorithm.
Robust M-estimates that can be used are presented in section 3; and we focus
on the normal case. Next, we present a comparative study of both strategies on
artificial two-dimensional data.

2 EM algorithm

In clustering problems, observed data can be regarded as being incomplete data
because the labelling is unknown. Complete data yk = (xk, zk) can be defined
by introducing for all observation xk the realization zk = (zk1, . . . , zkC) of a C-
dimensional random variable Z representing the labels of xk, i.e. zki is equal to
1 when xk arises from the ith component and 0 otherwise. Then, the maximiza-
tion of the likelihood (2) can be replaced by an easier one, namely the complete
likelihood Lc(Θ) = P (X, Z|Θ) maximization. This is achieved by the EM al-
gorithm that performs iterative maximization of the complete-data likelihood
expectation:

Q(Θ; Θ(t)) = E[Lc(Θ)|χ, Θ(t)] (3)

where (t) is an iteration index. Each EM iteration consists of two steps. Com-
putation of Q(Θ; Θ(t)) corresponds to the so-called E-Step (Expectation Step).
Assuming independent zk, the complete-data log-likelihood is:

log(Lc(Θ)) =

N
∑

k=1

C
∑

i=1

zki log(πif(xk; Θi)) (4)

Therefore:

Q(Θ;Θ(t)) =

N
∑

k=1

C
∑

i=1

E[zki|χ,Θ(t)] log(πif(xk; Θi)) (5)

and the E-Step reduces to estimating E[zki|χ,Θ(t)]. Let ẑki be this estimate.
The second step M-Step (Maximization Step) of EM consists in finding the
value of Θ that maximizes Q(Θ;Θ(t)):

Θ(t+1) = argmax
Θ

Q(Θ; Θ(t)) (6)

The EM algorithm increases monotonically the likelihood (see [9] by C.F.J. Wu
for details).



When a p-dimensional normal mixture model is assumed, the parameters of each
component (µi, Σi) as well as the prior probability πi are iteratively estimated

using ẑki = πif(xk;Θi)
∑

C

j=1
πjf(xk;Θj)

:

π̂
(t+1)
i =

∑N

k=1 ẑki

N
(7)

µ̂
(t+1)
i =

∑N
k=1 ẑkixi

∑N

k=1 ẑki

(8)

Σ̂
(t+1)
i =

∑N

k=1 ẑki(xk − µ̂
(t+1)
i )(xk − µ̂

(t+1)
i )T

∑N
k=1 ẑki

(9)

3 Robust estimation

Let a = (a1, . . . , am) be a parameter to be estimated within a sample. Let ek

be the difference between an observed xk and its predicted value x̂k, namely an
error. ek is a realization on a random variable e whose probability distribution
is J . Assuming independent samples, the likelihood to be maximized is a product.
Optimal a can be obtained by minimizing the following cost function:

C(a) =

N
∑

k=1

ρ(
xk − x̂k(a)

σk

) (10)

where ρ = log(J−1) and σk is a weighting factor. This is achieved by solving the
differential equations:

∂C(a)

∂aj

=

N
∑

k=1

1

σk

ψ(
xk − x̂k(a)

σk

)
∂x̂k(a)

∂aj

= 0 (11)

where ψ(x) = dρ
dx

(x). Different M-estimate models are shown in Table 1 where

w(x) = ψ(x)
x

is a weight function increasing as the error decreases.

Table 1. Different M-estimates

Model ρ(x) ψ(x) w(x)

Legendre x2 2x 2

Median |x| sgn(x) 1
|x|

Cauchy c
2

2
log(1 + (x

c
)2) x

1+( x
c
)2

1
1+( x

c
)2

Huber [6]

{

x
2

2
if |x| ≤ c

c|x| − c
2

2
else

{

x if |x| ≤ c

c sgn(x) else

{

1 if |x| ≤ c
c

|x| else



Such models can be used when estimating the parameters (µi, Σi) of the com-
ponents of a normal mixture by EM [1]. Equation (8) is simply replaced by the
following procedure:

– τ = 0
µ̃

(t+1,τ)
i = µ̂

(t+1)
i

Σ̃
(t+1,τ)
i = Σ̂

(t+1)
i

– repeat ∀k = 1, N : ek = (xk − µ̃
(t+1,τ)
i )T Σ̃

−1(t+1,τ)
i (xk − µ̃

(t+1,τ)
i )

w(ek) = ψ(ek)
ek

µ̃
(t+1,τ)
i =

∑N

k=1 w(ek) ẑki xk
∑N

k=1 w(ek) ẑki

(12)

Σ̃
(t+1,τ)
i =

∑N

k=1 w(ek) ẑki (xk − µ̃
(t+1,τ)
i )(xk − µ̃

(t+1,τ)
i )T

∑N

k=1 w(ek) ẑki

(13)

τ ← τ + 1
until reached bound

It is worthy of note that the property of monotonous increase of the likelihood
is lost by EM in case of robust estimation. The model parameters are no more

updated by solving dQ(Θ;Θ(t))
dΘ

= 0. However, these estimates (7) – (9) are good
initial values for the robust ones (12) – (13).
Since the weight functions w are monotonous decreasing functions of the error
ek, the more τ , the more robust but the less precise estimates are provided.
Therefore the number of iterations is bounded, e.g.:

– τ < τmax

–
|µ̃

(t+1,τ+1)
i

−µ̃
(t+1,τ)
i

|

µ̃
(t+1,τ)
i

< ǫ

– rate of samples having a quite zero weight α < αmax

We have combined the first and the third conditions in our experiments.

4 Mixture models

In this study, we have used normal and uniform components for computation
convenience. Let N denotes the p-dimensional gaussian pdf and U the uniform
one defined on a given hypercube H. Here are the more or less complex mixture
models that we have tested:



1. C normal components where the parameters are estimated via (7) – (9):

f(x; Θ) =

C
∑

i=1

πi N (x; µi, Σi) (14)

2. C normal and one uniform components, γ being user defined:

f(x; Θ) = γ U(x; H) +

C
∑

i=1

πi N (x; µi, Σi) (15)

3. C normal components where robust estimates (12) – (13) are used:

f(x; Θ) =

C
∑

i=1

πi N (x; µi, Σi) (16)

4. C normal and one uniform components with robust estimates:

f(x; Θ) = γ U(x; H) +

C
∑

i=1

πi N (x; µi, Σi) (17)

5. C normal components with robust estimates and one additional mixture:

f(x; Θ) =

C+1
∑

i=1

πif(x; Θi) (18)

f(x; Θi) = (1 − γi) N (x;µi, Σi) ∀i = 1, C (19)

f(x;ΘC+1) =

C
∑

i=1

γi N (x; µi, αiΣi) (20)

In this latter model we propose, each of the C components is a linear combination
of two normal pdf. The first one intends to track cluster kernel points while
the second one is supposed to deal with surrounding outliers via multiplicative
coefficients αi. All these second modes are summed up to compose a (C + 1)th

component. The combination coefficients γi are user-defined as well as αi.
Our model differs from previous work, e.g. G. Mac Lachlan and D. Peel [8] or Y.
Kharin [7], in mixing robust estimation of the parameters in (19) and classical
estimation of ones in (20).

5 Experiments

We have generated two data sets in order to test the robustness of the presented
mixture models. Both consist of three 2-dimensional gaussian classes and uni-
formly distributed samples supposed to be noisy points, as shown on figure 1. In
the first set the classes are well-separated while they strongly overlap in the sec-
ond one. Noisy patterns represent respectively 30% and 16.7% of each data set.



Table 2. Data sets parameters

µ1 Σ1 r1 µ2 Σ2 r2 µ3 Σ3 r3

Data set #1

(

7
9

) (

3 −2
−2 1.5

)

−2
√

2
3

(

6
3

) (

3 0
0 1

)

0

(

3
7

) (

1 0
0 1

)

0

Data set #2

(

3
5

) (

1 0
0 3

)

0

(

6
9

) (

2 1.5
1.5 2

)

3
4

(

6
5

) (

3.25 −3
−3 3.25

)

−12
13

Table 2 summarizes the theoretical parameters of the classes for both generated
datasets. The correlation coefficients ri that describe the clusters orientations
are given. As most of partitioning methods for clustering data, the number of
mixture components has to be set. One can assess this value [2] but we preferred
to choose it manually (C = 3) in order to concentrate on robust estimation
effect. The fitted parameters provided by EM significantly depend on initial val-
ues. For each model and each data set, we have run EM 50 times with same
random initial values µ̂i and identity matrices for covariance matrices. We also
have tried different values of the coefficients involved in the different models and
kept the best results according to the maximum posterior probability criterion
for the only gaussian points. Only the Cauchy M-estimate has been tested. In
addition, the resulting cluster correlation coefficients ri are estimated.

Table 3. Data set #1 – Results (final estimates values and errors)

Model #1 Model #2 Model #3 Model #4 Model #5

µ1

(

7.07
8.91

) (

7.18
8.87

) (

7.17
8.86

) (

7.14
8.84

) (

7.16
8.86

)

Σ1

(

5.32 −1.69
−1.69 2.28

) (

2.49 −1.59
−1.59 1.56

) (

0.89 −0.63
−0.63 0.59

) (

1.72 −1.2
−1.2 1.17

) (

2.77 −1.36
−1.36 1.47

)

r1 −0.48 −0.81 −0.87 −0.87 −0.67

µ2

(

6.07
2.74

) (

6.12
2.73

) (

6.21
2.73

) (

6.09
2.73

) (

6.09
2.73

)

Σ2

(

4.46 −0.01
−0.01 1.13

) (

4.06 0.08
0.08 1.04

) (

1.77 −0.01
−0.01 0.41

) (

3.31 0.00
0.00 0.89

) (

3.45 −0.00
−0.00 0.90

)

r2 −0.00 0.04 −0.01 −0.00 −0.00

µ3

(

2.77
6.90

) (

2.98
7.00

) (

2.99
7.06

) (

2.97
7.03

) (

2.86
6.99

)

Σ3

(

1.72 −0.38
−0.38 1.26

) (

2.05 −0.37
−0.37 1.66

) (

1.03 −0.08
−0.08 0.76

) (

1.78 −0.2
−0.2 1.22

) (

1.56 −0.31
−0.31 1.12

)

r3 −0.26 −0.20 −0.09 −0.13 −0.23

E 3.43% 3.43% 2.% 3.43% 2.86%

Not surprisingly, all the models give a similar low error rate value on data set #1
(see Table 3). As the gaussian classes are well separated and as the noise rate is



low enough (30%) the optimal error rate has been obtained for a low value of the
mixing coefficients γ or γi (models #2,#4 or #5). Therefore, robust estimation
has a not a significant action. The Cauchy parameter c whose value describes
the number of observed points contributing to the robust estimates compensates
a low value of the mixing coefficients (if used). The smaller γ or γi are, the less
noisy points are modelled. So the smaller Cauchy’s parameter c is in order to
filter enough. The means are very close to the theoretical ones whatever the
model is. On the other hand, taking the noise into account (models #2,#3,#4
and #5) clearly improve the clusters shapes and orientations as reflected by the
obtained covariance matrices and correlation coefficients. The optimal partition
we obtained with model #3 is shown on Figure 2 (left hand-side). Obviously,
all the outliers have been incorrectly clustered, the few ones in the upper right
corner in particular. This can be explained by the fact that original noisy points
do not enter into the error rate computation. Clusters resulting from the model
we propose (#5) are shown on Figure 2 (right hand-side).

Table 4. Data set #2 – Results (final estimates values and errors)

Model #1 Model #2 Model #3 Model #4 Model #5

µ1

(

3.97
5.06

) (

2.84
4.65

) (

2.74
4.57

) (

3.02
5.20

) (

2.95
5.11

)

Σ1

(

5.60 0.03
0.03 4.54

) (

1.45 −0.38
−0.38 3.14

) (

0.96 −0.37
−0.37 1.85

) (

1.26 −0.10
−0.10 3.38

) (

1.21 −0.17
−0.17 3.06

)

r1 0.01 −0.18 −0.28 −0.05 −0.09

µ2

(

6.06
9.13

) (

5.99
8.94

) (

6.03
9.04

) (

6.09
9.05

) (

6.10
9.06

)

Σ2

(

2.02 1.19
1.19 1.41

) (

1.70 0.95
0.95 1.40

) (

1.07 0.50
0.50 0.81

) (

1.29 0.69
0.69 1.07

) (

1.24 0.56
0.56 0.95

)

r2 0.70 0.61 0.53 0.59 0.52

µ3

(

5.68
5.17

) (

5.61
5.30

) (

5.45
5.45

) (

6.40
4.65

) (

6.30
4.74

)

Σ3

(

5.58 −5.4
−5.4 5.53

) (

3.80 −3.37
−3.37 3.45

) (

3.00 −2.65
−2.65 2.70

) (

1.90 −1.82
−1.82 2.06

) (

2.13 −2.01
−2.01 2.27

)

r3 −0.96 −0.93 −0.93 −0.92 −0.91

E 15.33% 12.67% 14.22% 10.67% 11.33%

When faced to much more overlapping clusters (data set #2), the parameter es-
timation process is strongly disturbed, the means being attracted by the dense
areas, as shown in Table 4. As expected, robust estimates tends to correct this
trend, i.e. the obtained values are closer to the theoretical ones (models #3,
#4 and #5). Consequently, the optimal Cauchy parameter values c are smaller
than those selected on data set #1. Figure 3 shows the partitions that we have
obtained with the best models involving robust estimates according to the pa-
rameter fitting and error as well (model #4 on the left hand-side, model #5 on



the right hand-side).

Table 5. Results over the 50 runs

Error Model #1 Model #2 Model #3 Model #4 Model #5

Data set#1
Mean 8.31% 9.87% 9.86% 11.87% 2.96%

StDev 10.87 12.57 15.18 15.15 0.36

Data set#2
Mean 18.82% 13.27% 16.76% 13.95% 11.93%

StDev 5.8 4.27 5. 6.97 0.2

In order to test the robustness to initial center locations, we have chosen the
optimal parameter setting with respect to the maximum posterior probability
criterion. Table 5 summarizes the means and standard deviations of the error
we have obtained over the 50 different runs. According to a mean value close to
the minimum one and a low standard deviation, our model (#5) outperforms all
the others on both datasets. We think that the lower sensitivity of this model
to initialization can be explained by the introduction of normal subcomponents
that softens the tails of the resulting component. The ability of the model 5 to
perform good clustering in spite of a bad initialization suggest us that it would
be useful in many real situations.

6 Conclusion

In this paper, we have compared two different approaches to clustering multi-
variate data in the context of mixture of components likelihood maximization
with the EM algorithm. Indeed, such algorithm often fails in finding accurate
parameters when the data are mixed with noisy data. So, one can either
take noisy data into account when defining the mixture model or use robust
estimation techniques. We have noticed that both approaches can improve
the results whatever the separability of the clusters is. Furthermore, in case
of strong overlap, their joint use give better results. We have proposed such a
model whose performances in terms of misclassification as well as accuracy of
the parameters estimates are satisfactory. Moreover, we notice that this model
is very robust to different initializations. Further investigation will concern the
automatic selection of some coefficients involved in this model.
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Fig. 1. Data sets #1 (left) and #2 (right)
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Fig. 2. Data set #1 clustering with models #3 (left) and #5 (right)
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Fig. 3. Data set #2 clustering with models #4 (left) and #5 (right)
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