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EXCEPTIONAL SETS FOR THE DERIVATIVES OF BLASCHKE

PRODUCTS

EMMANUEL FRICAIN, JAVAD MASHREGHI

Abstract. We obtain growth estimates for the logarithmic derivative B′(z)/B(z)

of a Blaschke product as |z| → 1 and z avoids some exceptional sets.

1. Introduction

Let f be a meromorphic function in the unit disc D. Then its order is defined by

σ = lim sup
r→1−

log+ T (r)

log 1/(1 − r)
,

where

T (r) =
1

π

∫

{|z|<r}

|f ′(z)|2

(1 + |f(z)|2)2
log(

r

|z|
) dx dy

is the Nevanlinna characteristic of f [13]. Meromorphic functions of finite order

have been extensively studied and they have numerous applications in pure and

applied mathematics, e.g. in linear differential equations. In many applications a

major role is played by the logarithmic derivative of meromorphic functions and

we need to obtain sharp estimates for the logarithmic derivative as we approach to

the boundary [7, 8]. In particular, the following result for the rate of growth of

meromorphic functions of finite order in the unit disc has application in the study

of linear differential equations [10, Theorem 5.1].
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2 EMMANUEL FRICAIN, JAVAD MASHREGHI

Theorem 1.1. Let f be a meromorphic function in the unit disc D of finite order

σ and let ε > 0. Then the following two statements hold.

(a) There exists a set E1 ⊂ (0, 1) which satisfies
∫

E1

dr

1 − r
< ∞,

such that, for all z ∈ D with |z| 6∈ E1, we have

(1.1)

∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

≤
1

(1 − |z|)3σ+4+ε
.

(b) There exists a set E2 ⊂ [0, 2π) whose Lebesgue measure is zero and a function

R(θ) : [0, 2π) \ E2 −→ (0, 1) such that for all z = reiθ with θ ∈ [0, 2π) \ E2 and

R(θ) < r < 1 the inequality (1.1) holds.

Clearly, the relation (1.1) can also be written as
∣

∣

∣

∣

f ′(z)

f(z)

∣

∣

∣

∣

=
O(1)

(1 − |z|)3σ+4+ε

as |z| → 1. But we should note that in case (b) it does not hold uniformly with

respect to |z|.

Let (zn)n≥1 be a sequence in the unit disc satisfying the Blaschke condition

(1.2)
∞

∑

n=1

(1 − |zn|) < ∞.

Then the Blaschke product

B(z) =
∞
∏

n=1

|zn|

zn

zn − z

1 − z̄n z

is an analytic function in the unit disc with order σ = 0 and

(1.3)
B′(z)

B(z)
=

∞
∑

n=1

1 − |zn|
2

(1 − z̄n z)(z − zn)
.

Thus Theorem 1.1 implies that, for any ε > 0,
∣

∣

∣

∣

∞
∑

n=1

1 − |zn|
2

(1 − z̄n z)(z − zn)

∣

∣

∣

∣

=
O(1)

(1 − |z|)4+ε
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as |z| → 1− in any of the two manners explained above. In this paper, instead of

(1.2), we pose more restrictive conditions on the rate of convergence of zeros zn and

instead we improve the exponent 4 + ε. The most common condition is

(1.4)

∞
∑

n=1

(1 − |zn|)
α < ∞,

for some α ∈ (0, 1]. However, we consider a more general assumption

(1.5)
∞

∑

n=1

h(1 − |zn|) < ∞,

where h is a positive continuous function satisfying certain smoothness conditions

which will be described below. Our main prototype for h is

(1.6) h(t) = tα (log 1/t)α1 (log2 1/t)α2 · · · (logn 1/t)αn ,

where logn = log log · · · log (n times), α ∈ (0, 1] and α1, α2, · · · , αn ∈ R. If α = 1

the first nonzero exponent among α1, α2, · · · , αn is positive [12].

The function h is usually defined in an open interval (0, ǫ). Of course, by extending

its domain of definition, we may assume that h is defined on the interval (0, 1), or

if required, on the entire positive real axis. Moreover, since a Blaschke sequence

satisfies (1.2), the condition (1.5) will provide further information about the rate of

increase of the zeros provided that h(t) ≥ C t as t → 0.

The condition (1.4) has been extensively studied by many authors [1, 2, 3, 9, 11, 14]

to obtain estimates for the integral means of the derivative of Blaschke products.

We [6] have recently shown that many of these estimates can be generalized for

Blaschke products satisfying (1.5).

2. Circular Exceptional Sets

The function h given in (1.6) satisfies the following conditions:

a) h is continuous, positive and increasing with h(0+) = 0;

b) h(t)/t is decreasing;
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In the following, we just need these conditions. Hence, we state our results for a

general function h satisfying a) and b).

Theorem 2.1. Let (zn)n≥1 be a sequence in the unit disc satisfying

∞
∑

n=1

h(1 − |zn|) < ∞

and let B be the Blaschke product formed with zeros zn, n ≥ 1. Let β ≥ 1. Then

there is an exceptional set E ⊂ (0, 1) such that
∫

E

dt

(1 − t)β
< ∞

and that
∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)β h2(1 − |z|)

as |z| → 1− with |z| 6∈ E.

Proof. Without loss of generality, assume that h(t) < 1 for t ∈ (0, 1). Let

E =

∞
⋃

n=1

(

|zn| − (1 − |zn|)
βh(1 − |zn|), |zn| + (1 − |zn|)

βh(1 − |zn|)

)

.

In the definition of E we implicitly assume that |zn| − (1 − |zn|)
βh(1 − |zn|) > 0 in

order to have E ⊂ (0, 1). Certainly this condition holds for large values of n. If it

does not hold for some small values of n, we simply remove those intervals from the

definition of E.

Let z ∈ D with |z| 6∈ E and fix 0 < δ ≤ (1 − |z|)/2. By (1.3), we have

B′(z)

B(z)
=

(

∑

∣

∣ |z|−|zn|

∣

∣≥δ

+
∑

∣

∣ |z|−|zn|

∣

∣<δ

)

1 − |zn|
2

(1 − z̄n z)(z − zn)
.

We use different techniques to estimate each sum. For the first sum we have

∑

∣

∣ |z|−|zn|

∣

∣≥δ

1 − |zn|
2

|1 − z̄n z| |z − zn|
≤

2

δ

∑

∣

∣ |z|−|zn|

∣

∣≥δ

1 − |zn|

1 − |zn| |z|
.
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But

1 − |zn|

1 − |z| |zn|
=

(

1 − |zn|

h(1 − |zn|)

h(1 − |z| |zn|)

1 − |z| |zn|

) (

h(1 − |zn|)

h(1 − |z| |zn|)

)

.

Since h(t) is increasing and h(t)/t is decreasing, we get

1 − |zn|

1 − |z| |zn|
≤

h(1 − |zn|)

h(1 − |z|)

and thus

∑

∣

∣ |z|−|zn|

∣

∣≥δ

1 − |zn|
2

|1 − z̄n z| |z − zn|
≤

2
∑

∣

∣ |z|−|zn|

∣

∣≥δ
h(1 − |zn|)

δ h(1 − |z|)
≤

C

δ h(1 − |z|)
.

A generalized version of this estimation technique has been used in [6, Lemma 2.1].

To estimate the second sum, we see that
∣

∣

∣

∣

1 − |zn|
2

(1 − z̄n z)(z − zn)

∣

∣

∣

∣

≤
2

|z − zn|
≤

2

(1 − |zn|)β h(1 − |zn|)

≤
C

(1 − |z|)β h(1 − |z|)
,

and thus
∣

∣

∣

∣

∑

∣

∣ |z|−|zn|

∣

∣<δ

1 − |zn|
2

(1 − z̄n z)(z − zn)

∣

∣

∣

∣

≤ C
n(|z| + δ) − n(|z| − δ)

(1 − |z|)β h(1 − |z|)
,

where n(t) is the number of points zn lying in the disc { z : |z| ≤ t }. Therefore

(2.1)

∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

≤
C

h(1 − |z|)

(

1

δ
+

n(|z| + δ) − n(|z| − δ)

(1 − |z|)β

)

provided that z ∈ D with |z| 6∈ E. The best choice of δ depends on the counting

function n(t). We make a choice for the most general case.

Assume that δ = (1−|z|)/2. Our assumption (1.5) on the rate of increase of zeros

zn is equivalent to
∫ 1

0

h(1 − t) dn(t) < ∞,
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and it is well known that this condition implies

(2.2) n(t) =
o(1)

h(1 − t)

as t → 1−. Therefore,

(2.3) n(|z| + δ) − n(|z| − δ) ≤
o(1)

h(1 − |z|)
.

Hence, by (2.1) and (2.3), we get the promised growth for B′/B. To verify the size

of E, note that

∫

E

dt

(1 − t)β
=

∞
∑

n=1

∫ |zn|+(1−|zn|)βh(1−|zn|)

|zn|−(1−|zn|)βh(1−|zn|)

dt

(1 − t)β

=

∞
∑

n=1

∫ (1−|zn|)+(1−|zn|)βh(1−|zn|)

(1−|zn|)−(1−|zn|)βh(1−|zn|)

dτ

τβ

≤
∞

∑

n=1

2(1 − |zn|)
βh(1 − |zn|)

( (1 − |zn|) − (1 − |zn|)βh(1 − |zn|) )β

≤ C

∞
∑

n=1

h(1 − |zn|) < ∞.

�

Remark 1: As the counting function n(t) = 1/(1 − t)α suggests, the assumption

(2.4) n(|z| + δ) − n(|z| − δ) ≤ C
δ n(|z|)

1 − |z|

is fulfilled by a wide class of distribution of zeros. If (2.4) holds, by (2.3) and (2.1)

with

δ = (1 − |z|)
1+β

2 h
1

2 (1 − |z|),

we obtain
∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
O(1)

(1 − |z|)
1+β

2 h
3

2 (1 − |z|)

as |z| → 1− with |z| 6∈ E.
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Remark 2: Let us call ϕ almost increasing if ϕ(x) ≤ Const ϕ(y) provided that

x ≤ y. Almost decreasing functions are defined similarly. As it can be easily

verified, Theorem 2.1 (and also Theorem 3.1) is still true if we assume that h(t) is

almost increasing and h(t)/t is almost decreasing.

Corollary 2.2. Let α ∈ (0, 1], and α1, α2, · · · , αn ∈ R. Let (zn)n≥1 be a sequence

in the unit disc with

∞
∑

n=1

(1 − |zn|)
α (log 1/(1 − |zn|))

α1 · · · (logn 1/(1 − |zn|))
αn < ∞

and let B be the Blaschke product formed with zeros zn, n ≥ 1. Let β ≥ 1. Then

there is an exceptional set E ⊂ (0, 1) such that
∫

E

dt

(1 − t)β
< ∞

and that

(2.5)

∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)β+2α (log 1/(1 − |z|))2α1 · · · (logn 1/(1 − |z|))2αn

as |z| → 1− with |z| 6∈ E.

In particular, if

(2.6)
∞

∑

n=1

(1 − |zn|)
α < ∞,

then, for any β ≥ 1, there is an exceptional set E ⊂ (0, 1) such that

(2.7)

∫

E

dt

(1 − t)β
< ∞

and that
∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)β+2α

as |z| → 1− with |z| 6∈ E. If (|zn|)n≥1 is an interpolating sequence then

1 − |zn+1| ≤ c (1 − |zn|)
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for a constant c < 1 [4, Theorem 9.2]. Hence, (2.6) is satisfied for any α > 0 and

thus, for any β ≥ 1 and for any ε > 0, there is an exceptional set E satisfying (2.7)

such that

(2.8)

∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)β+ε

as |z| → 1− with |z| 6∈ E. It is interesting to know if in (2.8) we are able to replace

ε by zero.

3. Radial Exceptional Sets

Contrary to the preceding section, we now study the behavior of
∣

∣

∣

∣

B′(reiθ)

B(reiθ)

∣

∣

∣

∣

as r → 1 for a fixed θ. We obtain an upper bound for the quotient B′/B as long as

eiθ ∈ T \ E where E is an exceptional set of Lebesgue measure zero.

Theorem 3.1. Let B be the Blaschke product formed with zeros zn = rne
iθn, n ≥ 1,

satisfying
∞

∑

n=1

h(1 − rn) < ∞.

Then there is an exceptional set E ⊂ T whose Lebesgue measure |E| is zero such

that for all z = reiθ with eiθ ∈ T \ E
∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|) h(1 − |z|)

as |z| → 1−.

Proof. Let us consider the open set

Un = { z ∈ D : (1 − |z|) > C|z − zn| }

with C > 1, and we define

In = { ζ ∈ T : ∃z ∈ Un & ζ = z/|z| }.
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In other words, In is the radial projection of Un on the unit circle T. Then we know

that

(3.1) |In| ≤ C ′(1 − rn),

where C ′ is a constant just depending on C. Let

E =
∞
⋂

n=1

∞
⋃

k=n

Ik.

By (3.1), we see that |E| = 0.

Fix z ∈ D with z/|z| 6∈ E. Hence, there is N such that z/|z| 6∈ Ik for all k ≥ N .

Let R = (1 + |z|)/2. Now, we write

B′(z)

B(z)
=

(

∑

|zn|≥R

+
∑

|zn|<R, n≥N

+
N−1
∑

n=1

)

1 − |zn|
2

(1 − z̄n z)(z − zn)
,

and as in the preceding case

(3.2)
∑

|zn|≥R

1 − |zn|
2

|1 − z̄n z| |z − zn|
≤

o(1)

(1 − |z|) h(1 − |z|)
.

To estimate the second sum, we see that
∣

∣

∣

∣

1 − |zn|
2

(1 − z̄n z)(z − zn)

∣

∣

∣

∣

≤
2

|z − zn|
≤

2C

1 − |z|
, (|z| 6∈ E),

and thus, by (2.2),

(3.3)

∣

∣

∣

∣

∑

|zn|<R, n≥N

1 − |zn|
2

(1 − z̄n z)(z − zn)

∣

∣

∣

∣

≤
2C n(R)

1 − |z|
≤

o(1)

(1 − |z|) h(1 − |z|)
.

Since the last sum is uniformly bounded (θ is fixed), (3.2) and (3.3) give the required

result. �

Corollary 3.2. Let α ∈ (0, 1], and α1, α2, · · · , αn ∈ R. If α = 1 the first nonzero

number among α1, α2, · · · , αn is positive. Let B be the Blaschke product formed with
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zeros zn = rneiθn, n ≥ 1, satisfying

∞
∑

n=1

(1 − rn)α (log 1/(1 − rn))α1 · · · (logn 1/(1 − rn))αn < ∞.

Then there is an exceptional set E ⊂ T whose Lebesgue measure |E| is zero such

that for all z = reiθ with eiθ ∈ T \ E

(3.4)

∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)1+α (log 1/(1 − |z|))α1 · · · (logn 1/(1 − |z|))αn

as |z| → 1−.

In particular, if
∞

∑

n=1

(1 − rn)α < ∞,

then there is an exceptional set E ⊂ T whose Lebesgue measure |E| is zero such

that for all z = reiθ with eiθ ∈ T \ E

(3.5)

∣

∣

∣

∣

B′(z)

B(z)

∣

∣

∣

∣

=
o(1)

(1 − |z|)1+α

as |z| → 1−.

Remark: Theorems 2.1 and 3.1 can be easily generalized to obtain estimates for

B(k)(z)

B(j)(z)

as |z| → 1−. This is a standard technique which can been find for example in [9, 11].
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