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Acceptability conditions for BSS problems

V. Vigneron'-? S. Lagrange?, C. Jutten?

'MATISSE-SAMOS UMR 8595 2LIS
90, rue de Tolbiac avenue Félix Viallet
75634 Paris cedex 13 38040 Grenoble cedex

Abstract. The Herault-Jutten (HJ) algorithm is a neuromimetic struc-
ture capable to perform blind source separation (BSS) of a linear mixture
from an array of sensors without knowing the transmission characteris-
tics of the channels, nor the inputs. The learning algorithm developed
by Herault and Jutten is based on the generalized Hebb’s rule in such
a way that each output signal will be proportional to only one source
by cancelling the influence of the other source. In this article, we show
how theoretic stability conditions can be used for parameter estimation
to restore the primary sources via interval computations.

1 Introduction

Consider the HJ network presented in Figure 1 [2]. Suppose the observation
signals x;(t) and x5(¢) are linear combinations of the input signals (primary
sources) s1(t) and sa(t), i.e.:

.131(75) = ansl(t) + algsg(t), Z‘Q(t) = aglsl(t) + CLQQSQ(t), (1)

which can be written in a more compact matrix form X (¢) = AS(t), where
X(t) = (z1(t),22(t)),S = (s1(t),s2(t)) and A € R**? is a regular constant
matrix. The sources are assumed to be zero-mean, i.e. E[s1] = E[s2] = 0,
stationary and independent. The outputs of the system are given (omitting
time index t) by:

Y1 = T1 — Wi2Y2, Y2 = Ta — WY1 (2)

The network contains adaptative weights wi2 and ws; which must be adjusted
in such a way that: (i) each output signal will be proportional to only one
primary sources by canceling the influence of the other sources (i7) the out-
put signals y1(t) and yo(t) are statistically independent (after the adaptation
process). Eliminating x1 and x5 from equations (1), we obtain from Eq.(2):

Yy = m((an — wi2a21)81 + (@12 — wi2a22)s2), (3)

Y2 = m((azl - w21a11)51 + (&22 - w21a12)52). (4)



The independence of the signals mathematically means that these signals must
be at least decorrelated,i.e. E[s1s2] =0 and therefore E[y;ys] = 0.
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Figure 1: The two-channels Herault-Jutten network.

The latter condition is not sufficient to find the learning rule. Statistical
independence of the output signals y; and yo implies E[f(y1)g(y2)] = 0, where
f and g are nonlinear functions, typical examples are f(z) = 23, g(z) = .
On the basis of the above requirements, Herault and Jutten have proposed to
consider the following adaptation rule for the coefficients w;; [2]

d'le 3

- dU}21 . 3
o =l il LR (5)

where p1 > 0 is a constant. It is expected that ]E[d““7] 0=E[f(yi)g9(y;)] — 0
(i # j). The functions f(-) and g(-) introduce higher-order moments.

The study is carried out first by examining stability conditions. An interval
algorithm for BSS is then derived and equilibrium point zones are examined.

2 Stability conditions

A rigorous stability analysis of the network was given by Sorouchyari in terms
of Lyapunov stability theory [6]. Equilibrium points of the H-J network are
solutions of the system:

1 w12 -t ai; a2 1 0 0 1

<’LU21 1 ) <a21 a22> - <0 1) or <1 0> ’ (6)
The first solution reads wis = Zﬁ and woy = “21 the second reads wis = Z;
and wop = 222 [6]. It should be noted that the circuit Fig. 1 behaves as a
feedback network which is stable under the condition wisws < 1. Comon
et al. [1] and Sorouchyari [6] investigate the convergence properties of the
algorithm and perform a stability analysis for a 2 inputs/2 outputs network.
They demonstrate that there are 4 paired equilibrium points in the sense that
if the point (a,b) is a equilibrium point, then the point ( , b) is also a solution

(see [6]).



Stability analysis performed by Sorouchyari consists to introduce a small
perturbation on the stationnary points and to consider the further behaviour
of the system around these points [4]. The stability conditions proposed are
therefore:

wipwar <1 and  E[yi]E[yi] > 9(Elyiys))® (7)

Sorouchyari [6] shows that only one of the stationary points will be a stable
separating solution.

The stability criteria in Eq. (7) which are based on the jacobian structure of the
mixing matrix and which decide if the parameters w12 and wo; are admissible,
have several drawbacks: () the choice of the initial value relies on guesswork,
(#4) no guarantee of convergence to the global optimum can be provided, (#i%)
we are not interested in the optimal value, we rather like to characterize the
set of all the acceptable values, (iv) uncertainty on the estimate is evaluated
on the base of asymptotic assumptions, so no reliable evaluation is provided of
the precision with which the estimated value is obtained.

3 Maximum consistency

This is why we shall look for the set of all models that are acceptable. The
first step is then to list all the properties that the model should have to be
acceptable. Acceptability will be defined here by a set of inequalities to be
satisfied by the parameters. Once these conditions of acceptability have been
defined, we wish to characterize — approximately but in a guaranteed way —
the set of all values W (sometimes called likelihood set) of w12 and we; that are
consistent/admissible with the data, i.e. the set of all values that are consistent
with the prior feasible set and that satisfy all conditions of acceptability. This
will be performed by the algorithm given in section 4.

Interval arythmetic An interval [z] is a closed and connected subset of R.
The set of intervals of R will be denoted IR. Let define [z] = {z e R|T <z <
z,T € R,z € R}, where T and z are the upper and under bounds of [z]. A real
number is an interval such that T = x = x. Basic operations on real numbers
and vectors such as +, —, x, /,sin, exp, ... extend to intervals in a natural way.
For instance [z] X [y] = {z xy | = € [z],y € [y]} = min(z-y,2-J,T-y,T -
7,),max(z -y, z -G, T -y, T-F,)]. A box [x] of R? is a cartesian product of p
intervals, i.e. [x] = [v1] X ... x [2,].

[f] is an inclusion function of the vector function f if, for any box [z], [f]([x])
is also a box such that

Vla], f([2]) £ {f(z) | € [2]} C [f]([]. (8)

[£]([x]) is thus the smallest box that contains f(x), i.e. the envelopping box of
f([z]), see Fig. 2.a. Interval computation makes it possible to obtain inclusion
functions of a large class of nonlinear functions.

The interval union [z]U [y] is the smallest box which contains the union of two



boxes [x] U [y].

In the HJ neural-like system, we aim at characterizing the parameter set
W C IR? such that (W,X) = f~'(Y) from the knowledge of the set of pairs
datum Y = {(y1,,y2;)}_; € R? and the vector function (suposedly inversible)
f. Let X be the set of unknown primary sources. Then the BSS problem is
formulated here as a problem of set inversion, which must be solved globally.
The analysis of the parameter space of interest (w12, ws1) will be performed by
building sets of non-overlapping boxes with nonzero width. Exploration is lim-
ited to an initial box of interest, say [w)] (0) which is split by the algorithm into
smaller boxes whenever needed until either a conclusion can be reached or the
width of the box considered becomes smaller than some tolerance parameter e.
Interval analysis provide us two basic tests for deciding whether the given box
[71([x], [w]) is included in Y:

()], [w]) € [y] =[w] € W ie. [w] is feasible, 9)
(2], [w]) N[y] = @ =[w] "W =0 ie [w] isunfeasible.  (10)

In all other cases, [w] is indeterminate and has a width greater than the pre-
cision parameter e. Then it should be bisected into two subpavings namely
W~ containing all boxes that were proved feasible, and W consisting of all
indeterminate boxes and the test should be recursively applied to these newly
generated boxes (see Figure 2.b). From these subpavings, it is easy to bracket
the portion of W C W contained in [w](0) as: W~ C [w](0) N W C Wy :=
W-uUwt.
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Figure 2: (a) Minimal inclusion function [f] of a function f. (b) Feasibility of boxes.

Wout 18 a finite union of boxes guaranteed to contain the portion of W of
interest. A stack will be used to store the boxes still under considerations. Ini-
tialisation is performed by setting stack = @, W+ = & The algorithm requires
a very large search box [w](0) =] — oo; 0o[ to which W is guaranteed to belong.
Upon completion of this algorithm, te consistency of W given the data is max-
imized and no indeterminate box will have a width larger than e [3]. Under a



few realistic technical conditions WT and W,y will tend to W (respectively
from within and from without) when ¢ — 0 [5]. At the end, the set W~ of
all boxes that have been proved to be feasible can be plotted in the parameter
space (see Figure 2.b).

Conditions of acceptability of BSS solutions A first example of accept-
ability conditions is that the residuals between the data (y1,y2)” and corre-
sponding model output lie betwen known bounds that express the confidence
interval attached to individual measurements. Such criterion is performed in-
directly in minimizing nonlinear correlations (see section 2): f([y1,])9([y2;]) €
10;00[, Vi € {1,...,T}. Other acceptability conditions not directly related to
the errors could be considered as well, for instance the coputation of guar-
anteed stability domains. A necessary and suficient condition for the HJ
model to be asymptotically stable is that equations (7) are satisfied, i.e. iif

(9T Plval?” — ] Tl ) €] — 0030 and (1~ [wis][wau]) €]0; oof, where [y P[y:]” =
T ZiT[yli]2[y2i]2v W4 =7 ZiT[ylirl and W4 =7 Z?[y2i]4'

4 Test simulation

As an illustration, consider the discrete time model in which the data have been

. . _ . 1’1([6) _ 1 0,6 81(.’4})
generated by simulating for £ = 1,...,500: <x2(k)) = (0’ 3 1 ) (SQ(k) ,
where s1(k) = sin(7, 3kT.), s2(k) = sin(4kT.), T. = 0,2 and by adding to (x1 (k), z2(k))
a random white noise with a uniform distribution in the interval [-1072;1072].

CONSISTENCY ALGORITHM
inputs:  ([z1(k)], [x2(k)]),i =1,...,T; (assumed to be zero-mean))
init: ly1;] == [y2;] :i=] —o0;00[,i =1,...,T;
[wi2] == [wa1] :=] = 5, 5[;
[0F] := [05 00]; [0-] := [~00;0]; [] := [0; 00];
repeat
fori:=1toT
1 [wi2] := [wi2] N (5~ ([z1:] = [1]));
2 [w21] := [w21] N (5= ([z2:] = [y2]);
3 [y1] == [y1s] O ([21:] = [wiz] x [y2,]);
4 [y2,] == [y2,] O ([p2i] = [w1] x [ya,]);
5 (5] := k] N ([y1,] X [ya,] x [y1,] x [y2,]);
6 [67]:=[67]N (1 = [waz] X [wa1]);
endfor
T )=o) n (] el - 9Pl
while the contraction is significant
output:  [wiz], [wa1];

We are thus certain that the interval data ([z(k)], [z2(k)]) contain the un-
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Figure 3: (a) True values of the parameters wiz, wa1. (b-c¢) Contracted domains for
([wiz], [w21]) without/including stability conditions.

known true data. The prior domains (frame boxes) are [w12](0) := [w21](0) :=
] —5,5[ and for the [y;](k)’s are all taken equal to [—10,10]%. The problem to
solve is: given conditions of acceptability of the HJ system, compute accurate
interval enclosure for the unknown true values for the y1,, y2,’s and wia, wa1’s.

Results After completion, the contracted intervals in the Figures 3.b and ¢
include the true values of the parameters. A large number of bisections have
to be performed. The computing time is about 0,5 seconds for both cases.

Conclusion For the first time, this paper studies the application of interval
analysis to parameter estimation in BSS problems. An algorithm to enclose
efficiently all consistent values for the unknown parameter vector inside a box
has been presented in a error bounded context. An illustrative example has
shown the efficiency of the approach.
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