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We study the scheduling problem on unrelated machines in the mechanism design setting. This problem was proposed and studied in the seminal paper of Nisan and Ronen [NR99], where they gave a 1.75-approximation randomized truthful mechanism for the case of two machines. We improve this result by a 1.6737-approximation randomized truthful mechanism. We also generalize our result to a 0.8368m-approximation mechanism for task scheduling with m machines, which improve the previous best upper bound of 0.875m[MS07].

Introduction

Mechanism design has become an active area of research both in Computer Science and Game Theory. In the mechanism design setting, players are selfish and wish to maximize their own utilities. To deal with the selfishness of the players, a mechanism should both satisfy some game-theoretical requirements such as truthfulness and some computational properties such as good approximation ratio. The study of their algorithmic aspect was initiated by Nisan and Ronen in their seminal paper "Algorithmic Mechanism Design" [START_REF] Nisan | Algorithmic mechanism design[END_REF]. The focus of that paper was on the scheduling problem on unrelated machines, for which the standard mechanism design tools ( VCG mechanisms [Clarke71, Groves1973, Vickrey61])do not suffice. They proved that no deterministic mechanism can have an approximation ratio better than 2 for this problem. This bound is tight for the case of two machines. However if we allow randomized mechanisms, this bound can be beaten. In particular they gave a 1.75-approximation randomized truthful mechanism for the case of two machines. Since then, many researchers have studied the scheduling problem on unrelated machines in mechanism design setting [JP99, Sourd01, SS02, SX02, GMW07, CKV07, CKK07, MS07]. However their mechanism remains the best to the best of our knowledge. In a recent paper [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF], Mu'alem and Schapira proved a lower bound of 1.5 for this setting. So to explore the exact bound between 1.5 and 1.75 is an interesting open problem in this area. In this paper, we improve the upper bound from 1.75 to 1.6737. Formally we give a 1.6737-approximation randomized truthful mechanism for task scheduling with two machines. Using similar techniques of [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF], we also generalize our result to a 0.8368m-approximation mechanism for task scheduling with m machines.

Let us describe the problem more carefully. There are m machines and n tasks, and each machine is controlled by an agent. We use t i j to denote the running time of task j on machine i, which is also called the type value of the agent(machine) i on task j. The objective is to minimize the completion time of the last assignment (the makespan). Unlike in the classical optimization problem, the scheduling designer does not know t i j . Each selfish agent i holds his/her own type values (the t i j s). In order to motivate the agents to report their true value t i j s, the mechanism needs to pay the agents. So a mechanism consists of an allocation algorithm and a payment algorithm. A mechanism is called truthful when telling one's true value is among the optimal strategies for each agent, no matter how other agents behave. Here the utility of each agent is the payment he/she gets minus the load of tasks allocated to his/her machine. When randomness is involved, there are two versions of truthfulness: in the stronger version, i.e. universally truthfulness, the mechanism remains truthful even if the agents know the random bits; in the weaker version, i.e. truthfulness in expectation, an agent maximizes his/her expected utility by telling the true type value. Our mechanisms proposed in this paper are universally truthful. Now we can talk about the high level idea of the technical part. Here we only talk about the allocation algorithms, and the corresponding payment algorithms, which make the mechanism truthful, will be given later. First we describe Nisan and Ronen's mechanism [START_REF] Nisan | Algorithmic mechanism design[END_REF]. In their mechanism, each task is allocated independently. For a particular task j, if the two values t 1 j and t 2 j are relatively close to each other, say t 1 j /t 2 j ∈ [3/4, 4/3], then they allocate task j randomly to machine 1 or 2 with equal probability; if one is much higher then the other, say t 1 j /t 2 j > 4/3 or t 2 j /t 1 j > 4/3, the task j is allocated to the more efficient machine. The main idea of our mechanism is to partition the tasks into three categories rather than two. So we need two threshold values, say α, β, where 1 < β < α and a biased probability r , where 1/2 < r < 1. If the two values are relatively close to each other, say t 1 j /t 2 j ∈ [1/β, β], or one is much higher then the other, say t 1 j /t 2 j > α or t 2 j /t 1 j > α , we do the same things as Nisan and Ronen's mechanism. In the remaining case, one is significantly larger than the other, but however still does not dominate, say

t 1 j /t 2 j ∈ [β, α] or t 2 j /t 1 j ∈ [β, α].
In this case, we allocate the task j to the more efficient one with a higher probability r (r > 1/2) and the less efficient one with a lower probability 1r. The mechanism is quite simple, so it is very computationally efficient. Intuitively our mechanism will give better approximation ratios by choosing suitable parameters α, β and r. This is indeed true. We can prove an improved approximation ratio of 1.6737 by choosing α = 1.4844, β = 1.1854, r = 0.7932. However, the proof is quite involved. One reason is that the situation for the new case (middle case) is more complicated than the original two. The main reason is that their approach becomes infeasible in the analysis of our mechanism. The proof in Nisan and Ronen's paper is basically case by case, but unfortunately the number of subcases increases double exponentially with the number of task types. So we introduce some substantial new proof techniques to overcome this. We also think this techniques may further improve the upper bound.

Related Work

Scheduling on unrelated machines is one of the most fundamental scheduling Problems. For this NP-hard optimization problem, there is a polynomial time algorithm with approximation ratio of 2 [START_REF] Lenstra | Approximation algorithms for scheduling unrelated parallel machines[END_REF]. Especially if the number of machines is bounded by some constant, Angel, Bampis and Kononov gave an FPTAS [START_REF] Angel | A FPTAS for Approximating the Unrelated Parallel Machines Scheduling Problem with Costs[END_REF]. However there is no corresponding payment strategy to make either of the above allocation algorithms truthful.

The study of this problem in the mechanism design setting is initiated by Nisan and Ronen. In their paper [START_REF] Nisan | Algorithmic mechanism design[END_REF], they gave a 1.75-approximation randomized truthful mechanism for two machines. This result was generalized by Mu'alem and Schapira to a 0.875mapproximation randomized mechanism for m machines [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF]. We improved the two upper bounds to 1.6737 and 0.8368m respectively.

For the lower bound side, Nisan and Ronen gave a lower bound of 2 for deterministic version. This bound was improved by Christodoulou, Koutsoupias and Vidali to 1 + √ 2 for 3 or more machines [START_REF] Christodoulou | A lower bound for scheduling mechanisms[END_REF]. For the randomized version, Mu'alem and Schapira gave a lower bound of 2 -1/m [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF]. This also holds for the weaker notion of truthfulness, i.e., truthfulness in expectation.

Lavi and Swarmy considered a restricted variant, where each task j only has two values of running time , and gave a 3-approximation randomized truthful mechanism [START_REF] Lavi | Truthful mechanism design for multi-dimensional scheduling via cyclemonotonicity[END_REF]. They first use the cycle monotonicity in designing mechanisms.

In [START_REF] Christodoulou | Mechanism Design for Fractional Scheduling on Unrelated Machines[END_REF], Christodoulou, Koutsoupias and Kovács considered the fractional version of this problem, in which each task can be split among the machines. For this version, they gave a lower bound of 2 -1/m and an upper bound of (m + 1)/2. We remark that these two bounds are closed for the case of two machines as in the integral deterministic version. So to explore the exact bound for the randomized version seems very interesting and desirable. We believe that our work in this paper is an important step toward this objective.

Problem and Definitions

In this section we review some definitions and results on mechanism design and scheduling problem. More details can be found in [START_REF] Nisan | Algorithmic mechanism design[END_REF].

In a mechanism design problem, there are usually some resources to distribute among n agents. Every agent i has a type value t i , which denotes his/her preference on the resources. Let t = (t i ) i∈[m] denote the vector of all agents' type values and t -i denote the vector of all agents' type vectors except agent i's. Receiving all the type values t from agents, the mechanism will produce an output o(t) = (x(t), p(t)). Here x(t) specifies the allocation of the resources and is produced by an allocation algorithm. p(t) specifies the payment to agents and is produced by an payment algorithm. Every agent i has a valuation v i (x, t i ), which describe his/her preference on the output allocation. The agent i's objective is maximizing his/her utility function u i , where u i = v i + p i , and p i is the payment obtained from the mechanism. The mechanism's objective is to maximize an objective function g(o, t). Formally, we have the following definitions.

Definition 2.1. A mechanism is a pair of Algorithms M = (X, P ).

• Allocation Algorithm X: Its input is m agents' type vectors, t 1 , t 2 , • • • , t m , which are reported by the agents. and its output is

x = (x 1 , • • • , x m )
, where x i = (x i j ) j∈[n] ∈ {0, 1} n are allocation vector of agent i.

• Payment Algorithm P : It outputs a payment vector p = (p 1 , • • • , p m ), which depends both on agents' type vectors and allocation vectors produced by allocation algorithm.

A mechanism is deterministic if both the allocation algorithm and payment algorithm are deterministic. When at least one of them uses random bits, it is called a randomized mechanism.

In order to increase utility, an agent may lie when reporting his/her type values. But for some mechanisms, no agent can increase his/her utility by lying. This nice property of a mechanism is called truthfulness. We give the formal definitions of truthfulness.

Definition 2.2. A deterministic mechanism is truthful iff for every agent, reporting his/her true type values is among the best strategies to maximize his/her utility, no matter how other agents acts. A randomized mechanism is truthful in expectation iff no agent can increase his/her expected utility by lying. A randomized mechanism is universally truthful iff it remains truthful even if the agents know the random bits.

From now on, we will only focus on truthful mechanisms. The most important positive result in mechanism design is generalized Vickrey-Clarke-Groves(VCG) mechanism [Vickrey61, Groves1973, Clarke71]. Many known truthful mechanisms are all in VCG family. The mechanisms of VCG family usually apply to mechanism design problem in which the objective function is the (weighted) sum of all agents' valuations. To be formal, we have Definition 2.3. [NR99] A mechanism M = (X, P ) belongs to weighted VCG family if there are real numbers(weights) β 1 , • • • , β n > 0, such that:

(1) the problem's objective function satisfies g(o, t) = i β i v i (t i , o).

(2) o(t) ∈ argmax o (g(o, t).

(3) p i (t) = 1

β i i ′ =i β i ′ v i ′ (t i ′ , o(t)) + h i (t -i )
, where h i () is an arbitrary function of t -i . Theorem 2.4. ([Roberts79]) A weighted VCG mechanism is truthful. Now we specify these mechanism notions in the problem of scheduling unrelated machines. Assume there are n tasks to be allocated to m machines, each of which is controlled by an agent. Each agent i's type value is

t i = (t i j ) j∈[n]
, where t i j denotes the time to perform task j on machine i.

We use a binary array

x i = (x i j ) j∈[n]
to specify the allocation of tasks to machine i. x i j is 1 if task j is allocated to machine i and otherwise 0. Let x = (x i ) i∈[m] denote the allocation of all the tasks. For an allocation x, agent i's valuation is

v i = -x i • t i , where x i • t i = n j=1 x i j t i j .
Definition 2.5. Given any allocation x of the tasks, the longest running time of the machines is called the makespan of the allocation. Formally, makespan(

x) = max i∈[m] x i • t i .
The objective of the mechanism is to minimize the (expected) makespan of the allocation. This is not the (weighted) sum of all agents' valuations. So we can not apply VCG mechanism here. However, we remark that if there is only one task, the makespan can be viewed as the sum of all agents' valuations. We will use this observation in our analysis.

From [START_REF] Nisan | Algorithmic mechanism design[END_REF] and [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF], we know that there is no optimal truthful mechanism for this problem, even if we allow super-polynomial running time and randomness. So we will try to find a truthful mechanism with good approximation ratio. Definition 2.6. Let t M (t) be the (expected) makespan of the mechanism M on instances t and t opt (t) be the optimal makespan of instance t. We say mechanism M has approximation ratio c iff for any instance t, t M (t)/t opt (t) ≤ c.

Our Mechanism and the Analysis

In this section, we give a truthful scheduling mechanism for 2 machines case, and show that its approximation ratio is 1.6737. Then we generalize our result to the m machines case as in [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF] and obtain a 0.8368m-approximation randomized truthful mechanism.

Generalized Randomly Biased Mechanism

Parameters: Real numbers α > β ≥ 1 > r ≥ 1 2 . (Here we choose α = 1.4844, β = 1.1854, r = 0.7932.) Input: The reported type vectors t = (t 1 , t 2 ). Output: A randomized allocation x = (x 1 , x 2 ), and a payment p = (p 1 , p 2 ). Allocation and Payment algorithm:

x 1 j ← 0, x 2 j ← 0, j = 1, 2 • • • , n; p 1 ← 0; p 2 ← 0. For each task j = 1, 2 • • • , n do s j ←          α,
with probability 1r, β, with probability r -1/2, 1/β, with probability r -1/2, 1/α, with probability 1r. if t 1 j < s j t 2 j , x 1 j = 1, p 1 ← p 1 + s j t 2 j ; else

x 2 j = 1, p 2 ← p 2 + s -1 j t 1 j . Theorem 3.1. The Generalized Randomly Biased Mechanism (GBM for short) is universally truthful and can achieve a 1.6737-approximation solution for task scheduling with two machines.

We will prove this theorem in the following two subsections. In 3.2, we will prove that our mechanism is universally truthful. Then we analyze its approximation ratio in 3.3

Truthfulness

Lemma 3.2. The Generalized Randomly Biased Mechanism is universally truthful.

Proof. To prove that the GBM is universally truthful, we only need to prove that it is truthful when the random sequence s j is fixed. Since the utility of an agent equals the sum of the utilities obtained from each task and our mechanism is task-independent, we only need consider the case of one task. In this case, say s j is fixed and there is only one task j, the mechanism is exactly the VCG mechanism with weight (1, s j ). Since a weighted VCG is truthful, the GBM mechanism is universally truthful.

Estimation of the Approximation Ratio

If this subsection, we will estimate the approximation ratio of our GBM mechanism. Since we already proved that GBM is universally truthful in 3.2, we only need to focus on the allocation algorithms of GBM. So we can restate the allocation algorithms for GBM in an equivalent but more understandable way. Intuitively we should assign one task with larger probability to the machine which has smaller type value(running time) on it. The idea of our mechanism is to partition all the tasks into several types according to the ratio of two agents' type values. For different types of tasks, we use different biased probabilities to allocate them. To be formal, we have the following definition. Definition 3.3. For a task j, we call it an h-task iff

t i j t 3-i j > α for some i ∈ {1, 2}; we called it an m-task iff β < t i j t 3-i j ≤ α for some i ∈ {1, 2}; we call it an l-task if t i j t 3-i j ≤ β for any i ∈ {1, 2}.
Then, we have the following claim.

Claim 3.4. The GBM mechanism allocates the tasks in the same way as the following allocating algorithm does.

• For h-task, we allocate it to the machine with lower type value.

• For m-task, we allocate it to the more efficient machine with probability r and to the less efficient machine with probability 1r. • For l-task, we allocate it to two machines with equal probabilities.

Proof. For each task j, we consider the probability that it is allocated to machine 1 in GBM.

According to the ratio of t 1 j t 2 j , we have the following 5 cases:

• Case 1: t 1 j ≥ αt 2 j , then P r(x 1 j = 1) = 0 • Case 2: β ≤ t 1 j < αt 2 j , then P r(x 1 j = 1) = 1 -r • Case 3: β -1 ≤ t 1 j < βt 2 j , then P r(x 1 j = 1) = (1 -r) + (r -1 2 ) = 1 2 • Case 4: α -1 ≤ t 1 j < β -1 t 2 j , then P r(x 1 j = 1) = (1 -r) + (r -1 2 ) + (r -1 2 ) = r • Case 5: t 2 j < α -1 t 2 j , then P r(x 1 j = 1) = (1 -r) + (r -1 2 ) + (r -1 2 ) + (1 -r) = 1
The probabilities that task j is assigned to machine 1 by two algorithms are always the same, so the lemma is true.

Remark 3.5. This claim only says that the (distribution of) allocation produced by the two methods are the same. However if we use this allocation algorithm stated in the claim, we can only make the mechanism truthful in expectation.

As in [START_REF] Nisan | Algorithmic mechanism design[END_REF], we obtain the following crucial claim, which can help us cut the number of tasks. The proof of this claim is similar , and we put it in the Appendix.

Claim 3.6. To analyze the performance of the generalized randomized biased mechanism, we only need consider the following cases:

(1) For each h-task j, the ratio of the two machines' type value is arbitrarily close to α.

So we can assume it equals α. (2) If OP T allocates an l-task j to machine i, then t 3-i j /t i j = β. (3) If OP T allocates an m-task j to machine i which has smaller type value, then t 3-i j /t i j = α.

(4) If OP T allocates an m-task j to machine i which has bigger type value, then t 3-i j /t i j = β -1 . (5) One of the machines is more efficient than the other on all h-tasks. We assume it's machine 1. (6) There are at most 8 tasks A, B, C, D, E, F, G, H. In OP T , tasks A, C, E, G are allocated to machine 1, and the others to machine 2. Tasks A, B are h-tasks. Tasks C, D, E, F are m-tasks and tasks G, H are l-tasks.

From the above analysis, we know that we only need to consider the reduced case as described in Figure 1.

type task t 1 j t 2 j opt-alloc gbm-alloc(probability) h 1 A a αa 1 1 : 0 h 2 B b αb 2 1 : 0 m 1 1 C c αc 1 r : (1 -r) m 1 2 D d βd 2 r : (1 -r) m 2 1 E βe e 1 (1 -r) : r m 2 2 F αf f 2 (1 -r) : r l 1 G g βg 1 1 2 : 1 2 l 2 H βh h 2 1 2 : 1 2 Figure 1: The Reduced Case.
Now we can estimate the approximation ratio based on this reduced case.

Lemma 3.7. The allocation produced by GBM is a 1.6737-approximation solution for the task scheduling problem with two machines.

Proof. Let t opt be the make-span of an optimal solution and let t gbm be the expected makespan of allocations produced by GBM. We want to show that t gbm ≤ 1.6737t opt .

From the allocation of the optimal solution, we have that

t opt = max{a + c + βe + g, αb + βd + f + h}.
Now we will estimate the expected makespan of our mechanism t gbm . First we introduce some notation which will be used in the following analysis. We will treat the same name X (X = A, B, • • • , H) as a random variable, which denotes the assignment of the task X. For example, C = 2 means that our mechanism assigns the task C to the second machine. Then the last column in Figure 1 can also be viewed as the distribution of the random variable X (X = A, B, • • • , H). For example P r(C = 1) = r and P r(C = 2) = 1r. Since our mechanism assigns each task independently, the random variables are also independent of each other. More precisely, for any X, Y ∈ {A, B, • • • , H}, i, j ∈ {1, 2} and X = Y , we have

P r(X = i, Y = j) = P r(X = i)P r(Y = j).
We use a random variable M to denote the machine finishing last. More precisely, M = 1 means the completion time of the first machine is not earlier than the second machine, otherwise we have M = 2. Now we compute the contribution of each task to t gbm . Let the j-th task be X. Then its contribution to t gbm contains two parts. First part is from t 1 j . t 1 j contributes to t gbm iff our mechanism assigns task X to 1 (e.t. X = 1) and the machine 1 finishes later (e.t. M = 1). The situation for t 2 j is similar. To sum up, the contribution of the j-th task X to t gbm is P r(M = 1, X = 1)t 1 j + P r(M = 2, X = 2)t 2 j . For example, the contribution of task C to t gbm is

P r(M = 1, C = 1)c + αP r(M = 2, C = 2)c = (P r(M = 1, C = 1) + αP r(M = 2, C = 2))c.
Similarly, we can compute the contribution of each task to t gbm easily. To simplify the notation, we use

C x (x = a, b, • • • , h) to denote the coefficient of x in t gbm . So we have t gbm = C a a + C b b + C c c + C d d + C e e + C f f + C g g + C h h.
where

C a = P r(M = 1), C b = P r(M = 1), C c = P r(M = 1, C = 1) + αP r(M = 2, C = 2), C d = P r(M = 1, D = 1) + βP r(M = 2, D = 2), C e = βP r(M = 1, E = 1) + P r(M = 2, E = 2), C f = αP r(M = 1, F = 1) + P r(M = 2, F = 2), C g = P r(M = 1, G = 1) + βP r(M = 2, G = 2), C h = βP r(M = 1, H = 1) + P r(M = 2, H = 2). Since t gbm = C a a + C b b + C c c + C d d + C e e + C f f + C g g + C h h = (C a a + C c c + C e β βe + C g g) + ( C b α αb + C d β βd + C f f + C h h) ≤ max(C a , C c , C e β , C g )(a + c + βe + g) + max( C b α , C d β , C f , C h )(αb + βd + f + h) ≤ max(C a , C c , C e β , C g )t opt + max( C b α , C d β , C f , C h )t opt
So the performance of our mechanism is bounded by

max(C a , C c , C e β , C g ) + max( C b α , C d β , C f , C h ).
We will give bound for every possible sum between

{C a , C c , Ce β , C g } and { C b α , C d β , C f , C h }. First C a + C b α = P r(M = 1) + P r(M = 1) α ≤ 1 + 1 α . So C a + C b α is bounded by 1 + 1 α .
Later we will choose suitable parameter α so that this value is not too big.

Now we analyze a more complicated case, say C c + C f . Substituting C c and C f , we have

C c +C f = P r(M = 1, C = 1)+αP r(M = 2, C = 2)+αP r(M = 1, F = 1)+P r(M = 2, F = 2).
Here we use P ijk to denote the joint distribution of three random variables M, C, F (e.t. P ijk = P r(M = i, C = j, F = k) ). Then we can rewrite the formula as following 

(1 + α)P r(C = 2, F = 2) = r + α(1 -r) + (1 + α)r(1 -r) = 2r + α -r 2 -αr 2 .
Similarly we can bound the remaining 14 sums as follows. Some of proofs are slightly more complicated but all of them are along similar lines. We only list the bounds here, and the details are omitted here due to the space limitation.

(1)

C a + C d β ≤ 1 + r β . (2) C a + C f ≤ 1 + (1 -r)α. (3) C a + C h ≤ 1 + β 2 . (4) C c + C b α ≤ 1 + 1 α . (Here we use the assumption that α ≤ 1 + 1 α .) (5) C c + C d β ≤ r 2 β + 1 + r 2 + α -r + αr. (6) C c + C h ≤ 1 2 + 1 2 r + α -αr + 1 2 βr. (7) Ce β + C b α ≤ 1 + 1 α . (8) Ce β + C d β ≤ (1 -r) + 1 β r + (1 + 1 β )r(1 -r) ≤ C c + C f . (9) Ce β + C f ≤ r 2 β + 1 + r 2 + α -r + αr. (10) Ce β + C h ≤ 1 + r 2β + 1 2 β -1 2 r. (11) C g + C b α ≤ 1 + 1 α .
(Here we use the assumption that α

≤ 1 + 1 α .) (12) C g + C d β ≤ 1 + r 2β + 1 2 β -1 2 r. (13) C g + C f ≤ 1 2 + 1 2 r + α -αr + 1 2 βr. (14) C g + C h ≤ 3 4 + 3 4 β. To sum up, we have 9 different bounds: 1+ 1 α , 2r +α-r 2 -αr 2 , 1+ r β , 1+(1-r)α, 1+ β 2 , r 2 β + 1 + r 2 + α -r + αr, 1 2 + 1 2 r + α -αr + 1 2 βr, 1 + r 2β + 1 2 β -1 2 r, 3 4 + 3
4 β, and one assumption that α ≤ 1 + 1 α . We want to choose suitable parameter α, β, r such that the assumption is satisfied and the maximal bound is as small as possible. This can be easily done numerically by a mathematical tool such as Matlab. We can choose α = 1.4844, β = 1.1854, r = 0.7932. Substituting these values, we can verify that all the bounds are less than 1.6737. So we proved that our mechanism has an approximate ratio of 1.6737.

An Improved Mechanism for m Machines

As an application of our main result, we turn to the case of m machines. In [START_REF] Nisan | Algorithmic mechanism design[END_REF], Nisan and Ronen gave a truthful deterministic mechanism that achieves an m-approximation. Recently, Mu'alem and Schapira [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF] generalized Nisan and Ronen's truthful randomized mechanism for 2 machines to the case of m machines. They partitioned the m machines into two sets of machines with equal size, S 1 and S 2 . Then they construct a new instance with only two machines, with type values t i j = min a∈S i t a j , i = 1, 2. Applying the mechanism for 2 machines case, They showed a universally truthful randomized mechanism that obtains an approximation of 0.875m. Using this idea and our improved result for two machines case, we can improve the ratio from 0.875m to 0.8368m. To be self contained, we give the formal description of the mechanism here. The proof is similar with [START_REF] Mu'alem | Setting lower bounds on truthfulness[END_REF] and omitted here.

' & $ % Parameters: real numbers α > β ≥ 1 > r ≥ 1 2 . Input: the reported type value vectors t = (t 1 , t 2 , • • • , t m ). Output: an randomized allocation x = (x 1 , x 2 , • • • , x m ) and a payment p = (p 1 , p 2 , • • • , p m ). Mechanism:
(1) For each machine i, let x i ← ∅; p i ← 0.

(2) Partition the set of machines into two sets S 1 , S 2 with equal size. If m is not even, we can add an extra machine with infinite type values on every task. (3) For each task j, Let t a = min i∈S

1 t i j , a = argmin i∈S 1 t i j , t a ′ = min i∈S 1 -{a} t i j . Let t b = min i∈S 2 t i j , b = argmin i∈S 1 t i j , t b ′ = min i∈S 1 -{a} t i j . ( 4 
) Apply our mechanism GBM for two machines case to machine a and b on task j. Also the payment strategy need a little change. If a gets the task, and it will gain a payment p a j in GBM, then we pay it min{p a j , t a ′ j }. If b gets the task, and it will gain a payment p b j in GBM, then we pay it min{p b j , t b ′ j }. This change is in order to keep the mechanism truthful.

Theorem 3.8. m-GBM is an universally truthful randomized mechanism for the scheduling problem that obtains an approximation ratio of 0.8369m when choosing α = 1.4844, β = 1.1854, r = 0.7932.

Conclusions and Open Problems

This is the first improvement since Nisan and Ronen proposed the problem and the 1.75-mechanism. We believe it is possible to further improve the upper bound using our technics. A direct open problem is to close the gap between the lower bound of 1.5 and our new upper bound of 1.6737.

Another more important direction is to generalize the mechanisms for 2 machine to mechanisms for m machines in a more clever way. In the general case, the gap between the best lower bounds (constants) and the best upper bounds (Θ(m)) is huge both in deterministic and randomized versions. Any improvement in either direction is highly desirable. agent a has smaller type value. So there are 8 types of tasks. We will prove that any two task j 1 , j 2 of the same type can be combined into a single task j of the same type. Firstly, notice that j 1 , j 2 have the same ratio of the two agents' type values. so task j still has this ratio, hence the same type. Further more, they are all allocated by GBM with the same probability distribution.

In one direction, combining will leave t opt unchanged. Obviously, combining can only increase t opt because any allocation obtained for the new instance can be get for the old one. Also t opt can be achieved for the new instance since two tasks of the same type are allocated to the same agent.

In the other direction, combining can only increase t gbm . For the h-task case, t gbm is also unchanged because GBM always allocate the h-tasks to the more efficient agent.

For the m-task case, assume j 1 , j 2 are both m a b , a, b ∈ {1, 2}. Let Y denote an allocation of all the tasks except task j 1 , j 2 . Let t Y,j 1 ,j 2 (resp.t Y,j ) denote the expected make-span when j 1 , j 2 (resp. j) are (is) allocated by GBM and all other tasks are allocated according to Y . We have to show that t Y,j 1 ,j 2 ≤ t Y,j . Let T 1 , T 2 denote finishing time of two agents respectively when allocation is Y . If agent i finishes last regardless of how j 1 , j 2 are allocated, then t Y,j 1 ,j 2 = T i + r i (t i j 1 + t i j 2 ) = t Y,j Here r i denotes the probability that j 1 , j 2 and j are allocated to agent i. Otherwise, if agent i finishes last iff both j 1 , j 2 are allocated to it, then T 3-i ≤ T i + t i j 1 + t i j 2 t Y,j 1 ,j 2 = r 2 i (T i + t i j 1 + t i j 2 ) + r i (1r i )(T 3-i + t 3-i j 1 + T 3-i + t 3-i j 2 ) + (1r i ) 2 (T 3-i + t 3-i j 1 + t 3-i j 2 ) ≤ (r 2 i + r i (1r i ))(T i + t i j 1 + t i j 2 ) + ((1r i ) 2 + r i (1r i ))(T 3-i + t 3-i j 1 + t 3-i j 2 ) = r i (T i + t i j 1 + t i j 2 ) + (1r i )(T 3-i + t 3-i j 1 + t 3-i j 2 ) = t Y,j Finally assume that t i j 1 ≥ t i j 2 , i = 1, 2 and consider the last case where the agent to which j 1 is allocated finishes last. In this case t Y,j 1 ,j 2 = r 2 i (T i + t i j 1 + t i j 2 ) + r i (1r i )(T i + t i j 1 ) + r i (1r i )T 3-i + t 3-i j 1 ) + (1r i ) 2 (T 3-i + t 3-i j 1 + t 3-i j 2 ) ≤ (r 2 i + r i (1r i ))(T i + t i j 1 + t i j 2 ) + ((1r i ) 2 + r i (1r i ))(T 3-i + t 3-i j 1 + t 3-i j 2 ) = r i (T i + t i j 1 + t i j 2 ) + (1r i )(T 3-i + t 3-i j 1 + t 3-i j 2 ) = t Y,j

The l-task case is similar with m-task case, with r i = 1 2 .

P

  111 + P 112 + α(P 221 + P 222 ) + α(P 111 + P 121 ) + (P 212 + P 222 ). Then we recombine the terms as following (P 111 + P 112 + P 212 ) + α(P 111 + P 121 + P 221 ) + (1 + α)P 222 .The first term is bounded by P r(C = 1) (since P r(C = 1) = P 111 + P 112 + P 212 + P 211 ); similarly the second term is bounded by αP r(F = 1); the third term is bounded by (1 + α)P r(C = 2, F = 2). So we can bound C c + C f by P r(C = 1) + αP r(F = 1) +
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Appendix

Proof of Claim 3.6

(1) For h-task j, assume t 1 j < t 2 j . We can decrease t 2 j to αt 1 j , then t gbm will not change since GBM always allocates task j to agent 1. But this may help OP T , so the approximation ratio can only be worse.

(2) Increasing t 3-i j to βt i j will not affect OP T but will increase t gbm . This is because the probability to allocate j does not change as long as it is still an l-task, and one type value is increased.

(3) It is similar with the above. We can keep increasing t 3-i j while j is still m-task. Here β ≤ t 3-i j /t i j ≤ α, so we can make it equal α. (4) Here β -1 ≥ t 3-i j /t i j ≥ α -1 , so we can increase t 3-i j until this ratio equals β -1 . (5) This is the same as in [START_REF] Nisan | Algorithmic mechanism design[END_REF]. We omit the proof here. (6) Let h a , l a , a ∈ {1, 2} denote an h-task or l-task respectively which is allocated to agent a in OP T . Let m a b , a, b ∈ {1, 2} denote an m-task allocated to agent b in OP T , on which