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GEOMETRIC SET COVER AND HITTING SETS
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3
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Abstract. Suppose we are given a finite set of points P in R
3 and a collection of polytopes

T that are all translates of the same polytope T . We consider two problems in this paper.
The first is the set cover problem where we want to select a minimal number of polytopes
from the collection T such that their union covers all input points P . The second problem
that we consider is finding a hitting set for the set of polytopes T , that is, we want to
select a minimal number of points from the input points P such that every given polytope
is hit by at least one point.

We give the first constant-factor approximation algorithms for both problems. We
achieve this by providing an epsilon-net for translates of a polytope in R

3 of size O( 1

ǫ
).

Introduction

Suppose we are given a set of n points P in R
3 and a collection of polytopes T that

are all translates of the same polytope T . We consider two problems in this paper. The
first is the set cover problem where we want to select a minimal number of polytopes from
the collection T such that their union covers all input points P . The second problem that
we consider is finding a hitting set for the set of polytopes T , that is, we want to select a
minimal number of points from the input points P such that every given polytope is hit by
at least one point.

Both problems, the set cover problem and the hitting set problem which are in fact
dual to each other are very fundamental problems and have been studied intensively. In a
more general setting, where the sets could be arbitrary subsets, both problems are known
to be NP-hard, in fact they are even hard to approximate within o(log n) [11]. Even when
the sets are induced by geometric objects it is widely believed that the corresponding set
cover problem as well as the hitting set problem are NP-hard. Several geometric versions
of these problems were even proven to be hard to approximate. Hence, we are looking for
algorithms that approximate both problems. We give the first constant-factor approxima-
tion algorithms for the set cover problem and the hitting set problem for translates of a
polytope in R

3. The central idea to our approximation algorithms are small epsilon-nets.
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A set of elements P (also called points) along with a collection T of subsets of P (also
called ranges) is in general called a set system (P,T ) and for geometric settings also known
as range spaces. One essential characteristic of these set systems is the Vapnik-Chervonenkis

dimension, or VC-dimension [17]. The VC-dimension is the cardinality of the largest subset
A ⊆ P for which {T ∩ A : T ∈ T } is the powerset of A. If the set A is finite, we say that
the set system (P,T ) has bounded VC-dimension, otherwise we say the VC-dimension of
(P,T ) is unbounded. For instance, the set system induced by translates of a polytope has
VC-dimension three as well as the set system induced by halfspaces in R

2. A set N ⊆ P is
called an epsilon-net for a given set system (P,T ) if N ∩ T 6= ∅ for every subset T ∈ T for
which ‖T‖ ≥ ǫ · ‖P‖. In other words, an epsilon-net is a hitting set for all subsets T ∈ T
whose cardinality is an ǫ-fraction of the cardinality of the input point set P .

It is known that there exist epsilon-nets of size O
(

d
ǫ
log d

ǫ

)

for any set system of VC-
dimension d [2, 10]. This bound is in fact tight for arbitrary set systems as there exist set
systems that do not admit epsilon-nets of size less than this bound [16]. Such an epsilon-net
can be simply found by random sampling [12].

However, for special set systems that are induced by geometric objects there do exist
epsilon-nets of smaller size, namely of size O(1

ǫ
). It has been shown by Pach and Woegin-

ger [16] that halfspaces in R
2 and translates of polytopes in R

2 admit epsilon-net of size
O(1

ǫ
). Matoušek et al. [14] gave an algorithm for computing small epsilon-nets for pseudo-

disks in R
2 and halfspaces in R

3. The result for halfspaces in R
3 also follows from a more

general statement by Matoušek [13].
Among other reasons for finding epsilon-nets of small size is the fact that an epsilon-net

of size g(ǫ) immediately implies an approximation algorithm for the corresponding hitting
set with approximation guarantee of O(g(1/c)/c), where c denotes the optimal solution to
the hitting set [15]. This means, that for arbitrary set systems of fixed VC-dimension we
have an algorithm for the hitting set problem with approximation O(log c). And for set
systems that admit epsilon-nets of size O(1/ǫ) we get an approximation algorithm to the
hitting set problem with constant approximation guarantee.

Clarkson and Varadarajan [5] developed a technique that connects the complexity of
a union of geometric objects to the size of the epsilon-net for the dual set system. Using
this result, they are able to develop, among other approximation algorithms for geometric
objects in R

2, a constant-factor approximation algorithm for the set cover problem induced
by translates of unit cubes in R

3.
We extend their result to not only the set cover problem but also the hitting set problem

for arbitrary translates of a polytope in R
3. We do not require the polytope to be convex

or fat. This is the first constant-factor approximation algorithm for these two problems.
We achieve this by giving an epsilon-net for translates of a polytope in R

3 of size O(1
ǫ
).

We reduce the problem of finding epsilon-nets for translates of a polytope to a family of
non-piercing objects in R

2 and then generalize the epsilon-net finder for pseudo-disks of
Matoušek et al. [14] to our setting.

The set cover problem which is studied by Hochbaum and Maass [9] where one is allowed
to move the objects is fundamentally different. They give a PTAS for their problem.

1. Small Epsilon-Nets for Polytopes in R
3

Let P be a set of n points in R
3 and let T be a family of polytopes that are all translates

of the same bounded polytope T0. We want to find a set of polytopes of minimal cardinality
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among the collection T that covers all input points P . First, we find a small epsilon-net for
this set system and use this later for the constant-factor approximation of the hitting set
problem. Finally, we show how this then can be translated into a solution for the set cover
problem.

Throughout this paper we denote by T the polytope as well as the subset of points from
P that T covers and by T the family of polytopes as well as the corresponding family of
subsets of P . This will make the paper easier to read and it will be clear from the context
whether we talk about the geometric object or the corresponding set of points.

1.1. From Polytopes in R
3 to Non-Piercing Objects in R

2

So given such a set system (P,T ) we want to find an epsilon-net for it, i.e. we are
looking for a set N ⊆ P such that every subset of points T ∈ T with ‖T‖ ≥ ǫ · ‖P‖ is
stabbed by at least one point from N .

We can cut the polytope T into, lets say k polytopes T1, T2, . . . , Tk. If the polytope T
contains ǫn input points then one of the polytopes T1, T2, . . . , Tk must contain at least ǫ

k
·n

input points. Hence, in order to find an ǫ-net for the set system (P,T ) induced by translates
of T , it suffices to find ǫ

k
-net for the set systems induced by the translates of T1, T2, . . . , Tk.

Following this reasoning we can reduce our problem for finding an epsilon-net for the
set system induced by translates of arbitrary polytopes to translates of convex polytopes
by cutting the possibly non-convex polytope into a set of convex polytopes. Note that the
number of these convex polytopes only depends on the polytope T and hence is constant
for fixed T .

Wlog. let T be from now on a convex polytope. We can place a cubical grid onto the
space R

3 such that for any translate of T every cubical grid cell contains at most vertex of
T . This can be achieved by making the grid fine enough. Clearly, the maximal number t
of grid cells that can be intersected by T is bounded and only depends on T . Again, if T
contains ǫn input points then at least one of the cells must contain at least ǫ

t
·n of the input

points. Hence, we can restrict ourselves to finding epsilon-nets for translates of triangular
cones where all input points lie in a cube in R

3. This just adds a multiplicative constant to
the size of the final epsilon-net.

The case when the cubical cell only contains a halfspace or the intersection of two
halfspaces can be either seen as a special case of a cone or, in fact, be even treated separately
in a much simpler way. The case of a translate of a halfspace reduces to a one-dimensional
problem an admits an epsilon-net of size 1 and the case of two intersecting halfspaces reduces
to a problem on intervals which admits an epsilon-net of size O(1/ǫ).

In the following we will construct an epsilon-net for the set system (P, C) that is induced
by translates of a triangular cone C.

Given a cone C, we call a set of points P in non-C-degenerate position if every translate
of C has at most three points of P on its boundary. We can always perturb the input points
P in such a way that they are in non-C-degenerate position and the collection of subsets of
the form P ∩CT where CT is a translate of C does not decrease [6]. Hence, we can restrict
ourselves on non-C-degenerate set of points P .

We place a coordinate system such that the input points all have z-coordinate greater
than 0 and a ray r emitting from the apex of the cone C and lying entirely in the cone
should intersect the plane z = 0. We refer to such a cone as a cone that opens to the bottom
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and the ray r as its internal ray. Figure 1 illustrates this setup for the two-dimensional
case.

z = 0

C

r

Figure 1: The cone C and its
internal ray r.

The following two definitions are helpful generalizations
the lower envelope.

Definition 1.1. Given a finite point set P and a triangular
cone C that opens to the bottom consider the arrangement
of all translates of C that have a point of P on its boundary
but no point of P in its interior. The upper set of plane
segments that can be seen from above is called the lower

envelope of P with respect to cone C.

Figure 2 illustrates the definition of the lower envelope
in the two-dimensional case. This definition is similar to
the definition of alpha-shapes where the cone is replaced
by a ball. We call all points that lie on the lower envelope with respect to cone C lower

envelope points and denote this set by L.

Figure 2: The lower envelope with respect to
cone C, the corresponding cones
are drawn dotted.

Figure 3: The flattened lower envelope with
respect to cone C, lower envelope
is drawn dotted.

Definition 1.2. Let C be a triangular cone that opens to the bottom and let P ⊆ R
3 be

a finite set of points in non-C-degenerate position. Let C ′ be a cone that is flatter that C
by small δ and such that it contains C and the combinatorial structure of P and C ′ is the
same as for P and C. See figure 3 for an illustration. Then, the lower envelope of P with
respect to C ′ is called the flattened lower envelope of P with respect to cone C.

Such a cone C ′ always exists for a finite point set that is in non-C-degenerate position.
From now on we will abbreviate the term lower envelope with respect to cone C by lower
envelope since we will throughout this paper only talk about the same cone C. The flattened
lower envelope can be basically seen as a slightly flattened version of the lower envelope.

The next lemma shows that we can reduce the problem of finding an epsilon-net with
respect to cones of arbitrary point sets to lower envelope points.

Lemma 1.3. If for every finite point set P ′ ⊆ R
3 of lower envelope points in non-C-

degenerate position there exists an epsilon-net with respect to translates of a cone C of size

s(ǫ) then there exists an epsilon-net with respect to translates of a cone C of size 3s(ǫ) for

every finite point set P ⊆ R
3 in non-C-degenerate position.
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Figure 4: The projection of
points onto flattened
lower envelope.

.Proof. Let P ⊆ R
3 be such a finite point set in non-C-

degenerate position and let C denote the cone. Let L
denote the set of lower envelope points. Let L̄ = P \ L
be the set of all non-lower envelope points. We project
all non-lower envelope points L̄ along the internal ray r
of cone C onto the flattened lower envelope (cf. figure 4).
We denote the projection of a point p by p′. Let P ′ be
union of the projected points and L. Clearly, P ′ is a set
of lower envelope points in non-C-degenerate position.

Suppose we have an epsilon-net N ′ for this point set
P ′. From this epsilon-net N ′ we will construct an epsilon-
net N for the original point set P . If a point from the set L is in the epsilon-net N ′, we
also add it to the epsilon-net N for P . If however, a projected point p′ is in N ′ then we add
to N the three points p1, p2 and p3 from the lower envelope L that determine the cone C
on whose boundary also p′ lies. Note that whenever an arbitrary cone contains the point p′

then it has to contain one of the three points p1, p2 or p3.
We have the following two properties:

(1) If a cone contains at least ǫn points from the set P then it contains at least ǫn points
from the set P ′.

(2) If a cone contains a point from the epsilon-net N ′ for P ′ then the cone contains a
point from the epsilon-net N for P .

Both properties prove that the set N is indeed an epsilon-net for P .

The preceding lemma assures that we can restrict ourselves on a finite set of lower
envelope points in non-C-degenerate position. For such a set system we will now construct
a corresponding set system of points in the plane and a collection of regions in the plane.

Definition 1.4. Let C be a cone and let P ′ be a finite set of lower envelope points in non-
C-degenerate position and let C be a collection of translates of C. We define a projection τ
from the flattened lower envelope onto the plane z = 0 by projecting each point along the
internal ray r. Let the projection of all points p′ ∈ P ′ which all lie on the be denoted as
the set S. For each cone of the collection the image of the intersection of the cone with the
flattened lower envelope is an object D ⊆ R

2 and the family C of cones induces a family of
objects which we will denote by D.

Using the flattened lower envelope instead of the lower envelope avoids degeneracy. The
intersection of an arbitrary cone with the flattened lower envelope is always a collection of
line segments. Furthermore, it makes everything continuous in the sense that if a cone is
moved continuously in R

3 then the intersection of the cone with the flattened lower envelope
moves continuously as well as its image of the projection τ . Note, that τ is injective.

Analogously, we call a set of points S ⊆ R
2 in non-D-degenerate position if every D ∈ D

has at most three points on its boundary. We have the following lemma:

Lemma 1.5. If for every finite point set S ⊆ R
2 in non-D-degenerate position there exists

an epsilon-net with respect to the family of objects D produced by the projection τ of size

s(ǫ) then there exists an epsilon-net with respect to cones of size s(ǫ) for every point set of

lower envelope points P ′ ⊆ R
3 in non-C-degenerate position.

Proof. The proof follows easily from the fact that the image of a cone C under the projection
τ contains exactly those points that are the image of the points that are contained in C.
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We refer to a cone C as the corresponding cone of the object D = τ(C). We will prove
a few useful properties of the so constructed set system (S,D).

Notice, that the intersection of two triangular cones is again a cone. Furthermore,
the intersection of a possibly infinite family of triangular cones is either empty or again a
triangular cone since all cones are closed. The intersection of the boundary of a cone with
the flattened lower envelope is either empty or a set of line segments that form one simple
closed cycle. Hence, the image of a cone under the projection τ is a closed and connected
region whose boundary is a closed and connected cycle.

Figure 5: A set of non-
piercing objects

.

Definition 1.6. Two geometric objects(sets) A ⊆ R
2 and

B ⊆ R
2 that are bounded by Jordan curves are said to be

non-piercing if the boundary of A and B cross at most twice.
A family of geometric objects is called non-piercing if every two
objects from this family are non-piercing. See figure 5 for an
illustration.

Lemma 1.7. The projection τ produces a family D of non-

piercing objects.

Proof. Consider two cones C1 and C2 that intersect each other.
If one is contained in the other, i.e. C1 ⊆ C2 then we are done,
as τ(C1) ⊆ τ(C2) and hence their boundaries cannot cross. So if C1 and C2 intersect and
none is subset of the other then the intersection of their boundaries are two rays emitting
from the same point. Each of these rays intersects the flattened lower envelope exactly once.
Hence, as the projection τ is injective the boundary of the two images of the cones C1 and
C2 under the projection τ intersect exactly twice. Thus, the objects are non-piercing.

1.2. Small Epsilon-Nets for Non-Piercing Objects in R
2

In this subsection we will derive a few properties of the projection that are necessary
to apply the algorithm of Matoušek et al. [14] for finding a small epsilon-net for pseudo-
disks. These properties also hold in general for any family of non-piercing objects with the
additional property that for any three points there always exists an object that has these
three points on its boundary. However the proofs are a bit more involved. Since this does
not lie in the scope of this paper, we omit this here and focus only on the special family of
non-piercing objects that is produced by the projection described above.

Consider the family of all cones that have p and q on its boundary. The intersection of
all these cones is a cone Cpq that has p and q on its boundary. Connect p and q by a Jordan
curve Epq such that it lies entirely in the cone Cpq and on the flattened lower envelope,
for instance part of the boundary of Cpq that intersects the flattened lower envelope. The
image of Epq under the projection τ is a curve τ(Epq) embedded in the plane.

Definition 1.8. Let D be a family of non-piercing objects and let S ⊆ R
2 be a finite set of

points. We call two points p, q ∈ R
2 D-Delaunay neighbors if there exists an object D ∈ D

that has p and q on its boundary and no other point of S in its interior. The D-Delaunay
graph of S, in short D-DT(S), is the graph that is embedded in the plane, has S as its
vertex set and the edges τ(Epq) between all D-Delaunay neighbors p and q.
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Due to the definition of the D-Delaunay edge between two D-Delaunay neighbors p and
q it is guaranteed that whenever a object D ∈ D contains p as well as q then it also must
contain the D-Delaunay edge τ(Epq). In the following we will prove that this D-Delaunay
graph is in fact a triangulation of the vertex set S.

Lemma 1.9. The D-Delaunay graph of the given finite point set S in non-D-degenerate

position is a triangulation.
p

q

r s

Figure 6: Two intersecting D-
Delaunay edges and
their defining objects

.Proof. First, we will prove that D-DT(S) is planar. Sup-
pose otherwise, i.e. two edges τ(Epq) and τ(Ers) inter-
sect each other in the plane. Since the cone Cpq does not
have any point in its interior and Crs also does not have
any point in its interior and since each of these cones has
at most 3 points on its boundary the objects τ(Cpq) and
τ(Crs) would have to pierce each other, see figure 6 for an
illustration. Here, it is actually essential, that the set S is
in non-D-degenerate position. Thus, the graph is planar.

The graph D-DT(S) itself consists of an outer face
which is defined by cones of the lower envelope that have
at most 2 points on their boundary and all other faces are
triangles defined by the cones of the lower envelope that have exactly three points on its
boundary. Suppose an inner face F is not bounded by a triangle. Then, one can place the
apex of a cone in such a way onto the flattened lower envelope such that its image under
the projection τ is a point which lies inside this face F . By moving the cone upward one
can ensure that the cone will finally have three points on its boundary whose image under
the projection τ are three vertices of the face F but no point in its interior. Hence, the face
F must be bounded by a triangle. Hence, D-DT(S) is a triangulation of the set S.

We call the points of S that lie define the outer face the convex hull of S with respect

to cone C and we denote it by convC(S). It is a generalization of the standard convex hull
and we will make use of it later. For a standard triangulation one requires that the outer
face is determined by the convex hull. Here, we replaced the standard convex hull by the
convex hull with respect to cone C. This is the appropriate generalization that we need.

Lemma 1.10. Let D be an object produced by the projection τ . The subgraph G of D-DT(S)
induced by the points of S that lie in D is connected.

Proof. We prove the connectivity using induction over the number of points that lie in D. If
D contains at most 2 points that it must be connected by definition and the fact that we can
slide down the corresponding cone until both points lie on the boundary. So lets assume
that every object D that contains at most k points from the set S induces a connected
subgraph G. Now consider an object D that contains k + 1 points of S. Consider the cone
that is the intersection of all cones that contain exactly those k + 1 points. This cone has
exactly three points on its boundary. We can move the cone by a small δ in such a way
that each of the three points can be excluded separately. As all of these induced graphs are
connected by induction hypothesis, the whole subgraph induced by D must be connected.

We need two more lemmas. Both lemmas basically rely on the fact that projection τ
is continuous.

Lemma 1.11. Let S be a finite point set.
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(1) For any object D ∈ D, there exists an object D′ ∈ D with S∩D′ = S∩intD′ = S∩D.

(2) For any object D′ ∈ D, there exists an object D ∈ D with S ∩ D′ = S ∩ int D′ =
S ∩ intD.

Proof. Let C be the corresponding cone of D. If we move C upward along the internal ray
r by a small δ then the corresponding object D′ of this cone will satisfy (1). On the other
hand, if we move the cone C downward along the ray r by a small δ then the corresponding
object D′ will satisfy (2).

Lemma 1.12. Let S be a finite point set in non-D-degenerate position, let (p, q) be a D-

Delaunay edge in D-DT(S). Then, there exists an object D with p and q on its boundary

and with S ∩ D = {p, q}.

Proof. Let D be the object that assures that p, q is a D-Delaunay edge, i.e. D has p and q
on its boundary. Since the point set S is in non-D-degenerate position D has at most three
points on its boundary. If D has exactly two points on its boundary we are done. So lets
assume that D has exactly three points on its boundary. Let C be the corresponding cone
of D and let the corresponding points of p and q be p′ ∈ R

3 and q′ ∈ R
3. Neither p′ nor

q′ can lie on the intersection of two of the defining planes of cone C because otherwise the
cone could still be moved in an upward direction such that all three points still lie on the
boundary until the cone hits a fourth point. But this would mean that the point set was in
C-degenerate position. Hence, p′ and q′ lie in the interior of two of the plane segments of
cone C. If we now move the cone C downward by a small δ such that it still touches p′ and
q′ then the corresponding object of this cone will only have p and q on its boundary.

Having these properties, we can basically directly apply the algorithm for finding an
epsilon-net for pseudo-disks from [14]. We will describe the algorithm here and prove its
correctness for our setting.

We are given a finite point set S in non-D-degenerate position and we want to find a
subset N ⊆ S of size O(1/ǫ) that stabs any object D that contains at least ǫn points of S.

Let δ = ǫ/6. First, let S1, . . . , Sj be pairwise disjoint subsets of S with the following
properties: Each Si contains δn points, their union contains the convex hull of S with
respect to cone C, i.e. convC(S) ⊆

⋃

1≤i≤j Si and each Si is representable by S ∩ τ(Ci) for
an appropriate cone Ci. Such sets can be easily constructed by repeatedly biting off points
from convC(S) with a suitable cone Ci. Notice, that all these objects Di = τ(Ci) belong to
the collection D.

Next, find a maximal pairwise disjoint collection Sj+1, . . . , Sk of subsets of the remaining
points S \

⋃

1≤i≤j Si satisfying Si = S ∩ Di for some object Di and each subset containing

δn points. Obviously, there are at most 1/δ+1 many subsets Si in total. For an illustration
we refer to figure 7. We assign all points in Si the color i and call all other points colorless.
Let S̄ be the set of all colored points. Note, that if an object contains only colorless points
then it contains less that δn points, since the collection of subsets Si was maximal.

Let G be the D-Delaunay graph of the set of colored points S̄, i.e. G = DT(S̄). G is
indeed a triangulation (cf. lemma 1.9). In this graph we call a triangle uni-colored, bi-colored

or tri-colored depending upon the number of colors its vertices have. In a similar way we call
edges uni-colored or bi-colored. We call a maximal connected chain of bi-colored triangles
in G sharing bi-colored edges a corridor (cf. figure 8). Since the graph G is planar and each
of the induced subgraphs G∩Di is connected according to lemma 1.10 the number of such
corridors is at most 3k − 6 ([14]). All colorless points are contained in the corridors and
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Figure 7: The sets Si and the convex hull
convC(S) with respect to cone C.
The D-Delaunay triangulation is
drawn dotted.

R

Figure 8: The corridor R which is split
into two sub-corridors and two tri-
colored triangles. The corners of
the sub-corridors are marked by
crosses.

the tri-colored triangles because any uni-colored triangle is contained it its color-defining
object. We break each corridor R into a minimum number of sub-corridors, i.e. sub-chains
of the chain that forms R, so that each sub-corridor contains at most δn colorless points.
Since there are less than n colorless points and since the total number of corridors is 3k− 6
the total number of sub-corridors is O(1/δ).

Each sub-corridor is bounded by two chains of uni-colored edges which we call sides

and by two bi-colored edges which we call ends of the sub-corridor. The endpoints of the
sides are called corners. Let N ⊆ S be the set of all corners of all sub-corridors. Since each
sub-corridor has at most 4 corners the size of N is O(1/ǫ). The set N is an epsilon-net for
the set of non-piercing objects D.

The proof that N is indeed an epsilon-net relies in principle on the fact that the collec-
tion D are non-piercing objects and follows along the lines of [14].

Proof. Let D be an object that has no points of S on its boundary (cf. lemma 1.11) and
assume that D does not contain any points from N . The theorem is proven when we can
show that D then contains less than ǫn points of S. If D contains no colored point then
we are done, because the sets Si were a maximal. Hence, D must contain at least one
colored point. If it contains two colored points, lets say z1 of color 1 and z2 of color 2, we
can draw the following picture: Let D1 be the color defining object of color 1 and D2 the
color defining object of color 2. Then D intersects D1 and D2 but cannot pierce them. The
area between D1 and D2 is a sub-corridor whose ends we denote by (a1, a2) and (b1, b2).
Lemma 1.12 assures that there is an object Da that has a1 and a2 on its boundary and
there is an object Db that has b1 and b2 on its boundary. Since D also does not contain any
point from N which are the corners of the sub-corridors, i.e. it does not contain a1, a2, b1

or b2 and since D and Da as well as D and Db are non-piercing it must lie between two
ends of one sub-corridor. See figure 9 for an illustration. Now, as all objects D1, D2, Da

and Db contain at most δn points and the sub-corridor also contains at most δn points D
can contain at most 5 · δn = 5/6ǫn < ǫn points of S.

The case where D only contains points of one color and colorless points is very similar.
There is basically only one setup and it is depicted in figure 10. Arguing as above it easy
to see in this case that D cannot contain more than 4 · δn < ǫn points from S.

Hence, we have the following theorem
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D

D1

D2

Da Db

a1

a2

b1

b2

Figure 9: The case where D contains col-
ored points of at least two col-
ors.

D

D1

D2

Da Db

a1

a2

b1

b2

Figure 10: The case where D contains
colored points of exactly one
color.

Theorem 1.13. Let D be the set of non-piercing objects in R
2, that is produced by the

projection τ . For every finite point set in non-D-degenerate position there exists an epsilon-

net of size O(1/ǫ).

Together with lemma 1.3 and lemma 1.5 this immediately implies our main theorem

Theorem 1.14. Given a finite point set P ⊆ R
3 and a polytope T ⊆ R

3. The set system

(P,T ) induced by a set of translates of polytope T admits an epsilon-net of size O(1/ǫ).

2. From Epsilon-Nets to Hitting Sets

In this section we will describe a constant factor approximation algorithm to the hitting
set problem using the epsilon-net of size O(1/ǫ) from the previous section. Recall that in
the hitting set problem we are given a set of points P ∈ R

3 and a set polytopes that are
all translates of the same polytope and we would like to select a subset H ⊆ P of the
input points of minimal cardinality such that every polytope is stabbed by a point in H.
We denote the corresponding set system by (P,T ). The fractional hitting set problem is a
relaxation of the original hitting set problem and is defined by the following linear program:

min
∑

p∈P x(p) (2.1)

s. t. ∀T ∈ T
∑

p∈T

x(p) ≥ 1 (2.2)

∀p ∈ P x(p) ≥ 0 (2.3)

Let OPT denote the optimal size of the hitting set and OPT∗ the optimal value of
the fractional hitting set problem. It is known that the integrality gap is constant for set
systems that admit an epsilon-net of size O(1/ǫ) [15].

Let w : P → R≥0 be a weight function for the set P . We define the weight w(A) of a
subset A ⊆ P to be the sum of the weights of the elements of A. The weighted version of
an epsilon-net is as follows:

Definition 2.1. Consider a set system (P,T ) and a weight function w : P → R≥0. A set
H ⊆ P is called an epsilon-net with respect to w if H ∩ R 6= ∅ for every subset T ∈ T for
which w(T ) ≥ ǫ · w(S).

There are algorithms that compute a hitting set provided one has an epsilon-net finder.
The core idea to all these algorithms is to find a weight function w : P → R≥0 that assigns
weights to the elements of P and finds an appropriate ǫ such that every set in T has weight



GEOMETRIC SET COVER AND HITTING SETS FOR POLYTOPES IN R
3 489

at least ǫ ·w(S). Once such weights are found it is then obvious that an epsilon-net to this
set system is automatically a hitting set.

The algorithm given by Brönnimann and Godrich [3] computes these weights iteratively.
Initially, all elements have weight 1. Then, in each iteration an epsilon-net is computed and
then checked whether it is also a proper hitting set. If not, i.e. there is a set which is not
hit, then the weights of its elements are doubled. This is done until a hitting set is found.
This algorithm can be seen as a deterministic analogue of the randomized natural selection
technique used for instance by Clarkson [4].

Another algorithm is by Even et al. [7]. Here, the weights of the elements and ǫ are
directly found by the following linear program:

max ǫ (2.4)

s. t. ∀T ∈ T w(T ) ≥ ǫ (2.5)
∑

p∈P

w(p) = 1 (2.6)

∀p ∈ P w(p) ≥ 0 (2.7)

It suffices to approximate the solution to this linear problem. There are numerous algo-
rithms that find an approximate solution to such a covering linear program efficiently [18, 8].

One can reduce the problem of finding a weighted epsilon-net to the unweighted case.
One just makes multiple copies of a point according to its assigned weight and it can be
shown that the cardinality of this multiset can be bounded by 2n [5]. Hence, an ǫ

2
-net for

this set system gives a hitting set for the original hitting set problem. Hence, we have

Theorem 2.2. There exists a polynomial time algorithm that computes a constant-factor

approximation to the hitting set problem for translates of polytopes in R
3.

3. From Hitting Set to Set Cover

Definition 3.1. The dual set system of a set system (P,T ) is the set system (T , P ∗) where
P ∗ = {Tp : p ∈ P} and Tp consists of all subsets of T that contain p.

Obviously, a set cover for the primal set system is a hitting set for the dual set system.
Hence, in order to solve the set cover problem for a set system it suffices to solve the hitting
set problem for the dual set system. For arbitrary set systems, the dual set system can be
of quite different structure. In general it is only known that the VC-dimension of the dual
set system is less than 2d+1, where d is the VC-dimension of the primal set system [1].

However, we observe that if the set system is induced by translates of a polytope, then
the dual is again induced by translates of a polytope. To see this, let (P,T ) be the primal
set system. One just reduces each polytope T ∈ T to a point, for instance each to its lowest
vertex. Let this be the set P ′. Then, replace each point of P by a translate of the polytope
T ′ which is the inversion of T in a point. One easily verifies that the so constructed set
system (P ′,T ′) of points P ′ and collection of translates of polytope T ′ is indeed equivalent
to the dual (T , P ∗). This holds in fact for all R

d. Hence, we can find a constant-factor
approximation to the set cover problem for translates of a polytope in R

3 in polynomial
time. This brings us to our final theorem

Theorem 3.2. There exists a polynomial time algorithm that computes a constant-factor

approximation to the set cover problem for translates of polytopes in R
3.
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4. Conclusions and Open Problems

In this paper we have given the first constant-factor approximation algorithm for finding
a set cover for a set of points in R

3 by a given collection of translates of a polytope as well as
the first constant-factor approximation algorithm for the corresponding hitting set problem.
We achieved this result by providing an epsilon-net of size O(1

ǫ
) for the corresponding set

system which is optimal up to a multiplicative constant. Eventhough we can approximate
a unit ball in R

3 up to any given precision by a polytope, the corresponding question,
whether there exists a constant-factor approximation algorithm for unit balls in R

3 still
remains open.
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