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In 2003, Leonid A. Levin presented the idea of a combinatorial complete one-way function and a sketch of the proof that Tiling represents such a function. In this paper, we present two new one-way functions based on semi-Thue string rewriting systems and a version of the Post Correspondence Problem and prove their completeness. Besides, we present an alternative proof of Levin's result. We also discuss the properties a combinatorial problem should have in order to hold a complete one-way function.

Introduction

In computer science, complete objects play an extremely important role. If a certain class of problems has a complete representative, one can shift the analysis from the whole class (where usually nothing can really be proven) to this certain, well-specified complete problem. Examples include Satisfiability and Graph Coloring for NP (see [START_REF] Garey | Computers and Intractability, A Guide to the Theory of NP-Completeness[END_REF] for a survey) or, which is more closely related to our present work, Post Correspondence and Matrix Transformation problems for DistNP [START_REF] Gurevich | Average case completeness[END_REF][START_REF] Blass | Matrix transformation is complete for the average case[END_REF].

However, there are problems that are undoubtedly complete for their complexity classes but do not actually cause such a nice concept shift because they are too hard to analyze. Such problems usually come from diagonalization procedures and require enumeration of all Turing machines or all problems of a certain complexity class.

Our results lie in the field of cryptography. For a long time, little has been known about complete problems in cryptography. While "conventional" complexity classes got their complete representatives relatively soon, it had taken thirty years since the definition of a public-key cryptosystem [START_REF] Diffie | New directions in cryptography[END_REF] to present a complete problem for the class of all public-key cryptosystems [HKN + 05, GHP06]. However, this complete problem is of the "bad" kind of complete problems, requires enumerating all Turing machines and can hardly be put to any use, be it practical implementation or theoretical complexity analysis.

Before tackling public-key cryptosystems, it is natural to ask about a seemingly simpler object: one-way functions (public-key cryptography is equivalent to the existence of a trapdoor function, a particular case of a one-way function). The first big step towards useful complete one-way functions was taken by Leonid A. Levin who provided a construction of the first known complete one-way function [START_REF] Levin | One-way functions and pseudorandom generators[END_REF] (see also [START_REF] Goldreich | Introduction to Complexity Theory[END_REF]).

The construction uses a universal Turing machine U to compute the following function:

f uni (desc(M ), x) = (desc(M ), M (x)),
where desc(M ) is the description of a Turing machine M . If there are one-way functions among M 's (and it is easy to show that if there are any, there are one-way functions that run in, say, quadratic time), then f uni is a (weak) one-way function.

As the reader has probably already noticed, this complete one-way function is of the "useless" kind we've been talking about. Naturally, Levin asked whether it is possible to find "combinatorial" complete one-way functions, functions that would not depend on enumerating Turing machines or giving their descriptions as input. For 15 years, the problem remained open and then was resolved by Levin himself [START_REF] Levin | The tale of one-way functions[END_REF]. Levin devised a clever trick of having determinism in one direction and indeterminism in the other.

Having showed that a modified Tiling problem is in fact a complete one-way function, Levin asked to find other combinatorial complete one-way functions. In this work, we answer this open question. We take Levin's considerations further to show how a complete one-way function may be derived from string-rewriting problems shown to be average-case complete in [START_REF] Wang | Random instances of bounded string rewriting are hard[END_REF] and a variation of the Post Correspondence Problem. Moreover, we discuss the general properties a combinatorial problem should enjoy in order to contain a complete one-way function by similar arguments.

Distributional Accessibility problem for semi-Thue systems

Consider a finite alphabet A. An ordered pair of strings g, h over A is called a rewriting rule (sometimes also called a production). We write these pairs as g → h because we interpret them as rewriting rules for other strings. Namely, for two strings u, v we write u ⇒ g→h v if u = agb, v = ahb for some a, b ∈ A * . A set of rewriting rules is called a semi-Thue system. For a semi-Thue system R, we write u ⇒ R v if u ⇒ g→h v for some rewriting rule g, h ∈ R. Slightly abusing notation, we extend it and write u ⇒ R v if there exists a finite sequence of rewriting rules g 1 , h 1 , . . . , g m , h m ∈ R such that

u = u 0 ⇒ g 1 →h 1 u 1 ⇒ g 2 →h 2 u 2 ⇒ . . . ⇒ gm→hm u m = v.
For a more detailed discussion of semi-Thue systems we refer the reader to [START_REF] Book | String Rewriting Systems[END_REF].

We can now define the distributional accessibility problem for semi-Thue systems:

Instance. A semi-Thue system R = { g 1 , h 1 , . . . , g m , h m }, two binary strings u and v, a positive integer n. The size of the instance is n

+ |u| + |v| + m 1 (|g i | + |h i |). Question. Is u ⇒ n R v? Distribution.
Randomly and independently choose positive integers n and m and binary strings u and v. Then randomly and independently choose binary strings g 1 , h 1 , . . . , g m , h m . Integers and strings are chosen with the default uniform probability distribution, namely the distribution proportional to 1 n 2 for integers and proportional to 2 -|u| |u| 2 for binary strings.

In [START_REF] Wang | On the np-isomorphism problem with respect to random instances[END_REF], this problem was shown to be complete for DistNP. For what follows, we also need another notion of derivation in semi-Thue systems. Namely, for a semi-Thue system R we write u ⇒ * R v if u = agb, v = ahb for some g, h ∈ R and, moreover, there does not exist another rewriting rule g

′ , h ′ ∈ R such that u = a ′ g ′ b ′ and v = a ′ h ′ b ′ for some a ′ , b ′ ∈ A * . Similarly to ⇒ R , we extend ⇒ * R to finite chains of derivations. In other words, u ⇒ * R v if u ⇒ R v,
and on each step of this derivation there was only one applicable rewriting rule. This uniqueness (or, better to say, determinism) is crucial to perform Levin's trick. We also write u ⇒

* ,n R v if u ⇒ * R v in at most n steps.

Post Correspondence Problem

The following problem was proven to be complete for DistNP in [START_REF] Gurevich | Average case completeness[END_REF] (see also Remark 2 in [START_REF] Blass | Matrix transformation is complete for the average case[END_REF]):

Instance. A positive integer m, pairs Γ = { u 1 , v 1 , . . . , u m , v m }, a binary string x, a positive integer n. The size of the instance is n

+ |x| + m 1 (|u i | + |v i |). Question. Is u i 1 • • • u i k = uv i 1 • • • v i k for some k ≤ n?
Distribution. Randomly and independently choose positive integers n and m and binary string x. Then randomly and independently choose binary strings u 1 , v 1 , . . . , u m , v m . Integers and strings are chosen with the default uniform probability distribution.

We need a modification of this problem. Namely, we pose the question as follows: does

u i 1 • • • u i k y = xv i 1 • • • v i k
hold for some y? If we remove the restriction n, this problem is undecidable, but the bounded version is not known to be complete for DistNP.

Given a nonempty list Γ = ( u 1 , v 1 , . . . , u m , v m ) of pairs of strings, it will be convenient to view the function based on modified Post Correspondence Problem as a derivation with pairs from Γ as inference rules. A string x yields a string y in one step if there is a pair u, v in Γ such that uy = xv. The "yield" relation ⊢ Γ is defined as the transitive closure of the "yield-in-one-step" relation.

To perform Levin's trick, we need to get rid of the indeterminism. This time, the description of a deterministic version of ⊢ * is more complicated than in the case of semi-Thue systems. If we simply required it to be deterministic, we would not be able to move the head of the Turing machine to the left. To solve this problem, we have to look ahead by one step: if one of the two branches fails in two steps, we consider the choice deterministic.

Formally speaking, we write x ⊢ * y if there are no more than two pairs p, s , p ′ , s ′ ∈ Γ such that py = xs and p ′ y ′ = xs ′ for some strings y, y ′ (where y = y ′ , but p may equal p ′ : two possible different applications of the same rule are still nondeterministic) and, moreover, we cannot apply any rule in Γ to y ′ . We write u ⊢ * ,n Γ v if u ⊢ * Γ v in not more than n steps.

Complete One-Way Tiling Function

Before presenting our own construction, we recall Levin's complete one-way function from [START_REF] Levin | The tale of one-way functions[END_REF]. In fact, we slightly modify Levin's construction and present an alternative proof based on ideas from [START_REF] Wang | Distributional word problem for groups[END_REF]. The difference with the original Levin's construction is that he considered the tiling function for tiles with marked corners, namely, the corners of tiles, instead of edges, are marked with symbols. In the tiling of an n × n square, symbols on touching corners of adjacent tiles should match.

A tile is a square with a symbol for a finite alphabet A on each size which may not be turned over or rotated. We assume that there exist infinite copies of each tile. By a tiling of an n × n square we mean a set of n 2 tiles covering the square in which the symbols on the common sides of adjacent tiles are the same.

It will be convenient for us to consider Tiling as a string transformation system. Fix a finite set of tiles T . We say that T transforms a string x to y, |x| = |y|, if there is a tiling of an |x| × |x| square with x on the bottom and y on top. We write x -→ T y in this case. By a tiling process we mean the completion of a partially tiled square by one tile at the time. Similarly to semi-Thue systems, we define x -→ * T y if and only if x -→ T y with an additional restriction: we permit the extension of a partially tiled square only if the possible extension is unique.

Definition 4.1. The Tiling simulating function (Tiling) is the function f : A * → A * defined as follows:

• if the input has the form (T, x) for a finite set of tiles T and a string x, then:

if x -→ * T y, then f (T, x) = (T, y); -otherwise, f returns its input; • otherwise, f returns its input.

Theorem 4.2. If one-way functions exist, then Tiling is a weakly one-way function.

Proof. Let Q be the set of states of a Turing machine M , s be the initial state of M , hthe halting state, π M -the transition function of M , {0, 1, B} -the tape symbols. By $ we denote the begin marker and by # -the end marker. We also introduce a new symbol for each pair from Q × {0, 1, B}. We now present the construction of a tileset T M .

(1) For each tape symbol a ∈ {0, 1, B} we add The following lemma is now obvious.

a a (h, a) (h, a) (2) For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if π M (q, a) = (p, b, R) we add (q, a) b p c (p, c) p (3) For each a, b, c ∈ {0, 1, B}, q ∈ Q \ {h}, p ∈ Q, if π M (q, a) = (p
Lemma 4.3. For a deterministic Turing machine M that works n 2 steps and its corresponding tiling system T M ,

M (x) = y, |x| = |y|, if and only if $sxB n(n-1) # -→ * T M $hyB n(n-1)
#. The rest of the proof closely follows [START_REF] Goldreich | Introduction to Complexity Theory[END_REF]. Suppose that g is a length-preserving oneway function that, on inputs of length n, works for time not exceeding n 2 . By Lemma 4.3, there exists a finite system of tiles T M such that $sxB n(n-1) # -→ * T M $hyB n(n-1) # is equivalent to g(x) = y. Therefore, with constant probability solving Tiling is equivalent to inverting g.

A complete one-way function based on semi-Thue systems

Our complete one-way function is based upon the distributional accessibility problem for semi-Thue systems. First, we need to make this decision problem a function and then add Levin's trick in order to assure length-preservation.

Definition 5.1. The semi-Thue accessibility function (STAF) is the function f : A * → A * that defined as follows:

• if the input has the form ( g 1 , h 1 , . . . , g m , h m , x), consider the semi-Thue system Γ = ( g 1 , h 1 , . . . , g m , h m ) and:

if x ⇒ * ,t Γ y, t = |x| 2 + 4|x| + 2, there are no rewriting rules in Γ that may be applied to y, and |y| = |x|, f (Γ, x) = (Γ, y); -otherwise, f returns its input;

• otherwise, f returns its input.

Obviously, STAF is easy to compute: one simply needs to use the first part of the input as a semi-Thue system (if that's impossible, return input) and apply its rules until either there are two rules that apply, or we have worked for |x| 2 + 4|x| + 2 steps, or y has been reached and no other rules can be applied. In the first two cases, return input. In the third case, check that |y| = |x| and return (Γ, y) if so and input otherwise.

Theorem 5.2. If one-way functions exist, then STAF is a weakly one-way function.

Proof. This time we need to encode Turing machines into the string-rewriting setting. Following [Gur91, WB95, Wan99], we have the following proposition: Proposition 5.3. For any finite alphabet A with |A| > 2 and any pair of binary strings x and y there exists a dynamic binary coding scheme of A with {0, 1} with the following properties.

(1) All codes (binary codes of symbols of A) have the same length l = 2 log |x| + O(1).

(2) Both strings x and y are distinguishable from every code, that is, no code is a substring of x or y.

(3) If a nonempty suffix z of a code u is a prefix of a code v then z = u = v (one can always distinguish where a code ends and another code begins). (4) Strings x and y can be written as a unique concatenation of binary strings 1, 10, 000, and 100 which are not prefixes of any code. Now let us define the semi-Thue system R M that corresponds to a Turing machine M . The rewriting rules are divided into three parts: R M = R 1 ∪ R 2 ∪ R 3 . Let us denote B = {1, 10, 100, 000} and fix a dynamic binary coding scheme and denote by w the encoding of w in this scheme.

R 1 consists of the following rules for each u ∈ B:

su → $us 1 , s 1 u → us 1 , us 1 $ → s 2 u$, us 2 → s 2 u, $s 2 → $s.
These rules are needed to rewrite the initial string sx$ into $sx$. Since x can be uniquely written as u 1 . . . u m for some u i ∈ B, this transformation can be carried out in 2m + 1 ≤ 2|x| + 1 steps. R 2 consists of rewriting rules corresponding to Turing machine instructions. By h we denote the halting state, by s -the initial state, by B -the blank symbol, by Q M -the set of states of M , by π M -the transition function of M , and by $ the begin/end marker. Then R 2 consists of the following pairs:

(1) For each state

q ∈ Q M \ {h}, p ∈ Q, a, b, c ∈ {0, 1, B}: π M (q, a) = (p, b, R) ⇒ qac → bpc, qa$ → bpB$ ∈ R 2 .
(2) For each state

q ∈ Q M \ {h}, p ∈ Q, a, b, d ∈ {0, 1, B} and c ∈ {0, 1, $}, π M (q, a) = (p, b, L) ⇒ dqac → pdbc, dqB$ → pdbB$ ∈ R 2
for a = B, c = $, or b = B. R 1 and R 2 are completely similar to the construction presented in [START_REF] Wang | Distributional word problem for groups[END_REF]. The third part of his construction is supposed to reduce the result from $sy$, where y is the result of the Turing machine computation, to the protocol of the Turing machine that is needed to prove that non-deterministic semi-Thue systems are DistNP-hard.

This time we have to deviate from [START_REF] Wang | Distributional word problem for groups[END_REF]: we need a different set of rules because we actually need the output of the machine, and not the protocol. Thus, our version of R 3 looks like the following:

$hu → $us 5 , s 5 u → us 5 , s 5 u$ → us 6 $, us 6 → s 6 u, $s 6 → h. This transformation can be carried out in at most 2|y| + 1 steps.

These rules simply translate y back into the original y and add h in front of the output, thus achieving the actual output configuration of the original Turing machine M .

The following lemma is now obvious.

Lemma 5.4. For a deterministic Turing machine M and its corresponding semi-Thue system R M , M (x) = y if and only if sx$ ⇒ * ,t R M hy$, where t = T + 2|x| + 2|y| + 2, T being the running time of M on x.

Again, the rest of the proof follows the lines of [START_REF] Goldreich | Introduction to Complexity Theory[END_REF]. There is a constant probability (for the uniform distribution, it is proportional to 1 |R| 2 2 |R| ) that any given semi-Thue system appears as the first part of the input. Suppose that g is a length-preserving one-way function. By [START_REF] Goldreich | Introduction to Complexity Theory[END_REF], we can safely assume that there is a Turing machine M g that computes g and runs in quadratic time. By Lemma 5.4, there exists a semi-Thue system R M such that sx$ ⇒ * ,t R M hy$ is equivalent to g(x) = y. Therefore, with constant probability solving STAF is equivalent to inverting g.

A complete one-way function based on Post Correspondence

In this section, we describe a one-way function based on the Post Correspondence Problem and prove that it is complete. The function is defined as follows.

Definition 6.1. The Post Transformation function (PTF) is the function f : A * → A * defined as follows:

• if the input has the form ( g 1 , h 1 , . . . , g m , h m , x), considers the derivation system Γ = ( g 1 , h 1 , . . . , g m , h m ) and:

if x ⊢ * ,n 4 Γ y, there are no rewriting rules in Γ that may be applied to y, and |y| = |x|, then f (Γ, x) = (Γ, y); -otherwise, f returns its input; • otherwise, f returns its input. Now, we reduce the computation of a universal Turing machine to Post Correspondence in the way described in [START_REF] Gurevich | Average case completeness[END_REF]. Theorem 6.2. If one-way functions exist, then PTF is a weakly one-way function.

Proof. As usual, let Q be the set of states of a Turing machine M , s be the initial state of M , h -the halting state, π M -the transition function of M , 0, 1, B -the tape symbols. For all symbols we use the dynamic binary coding scheme described in Section 5.

We now present the construction of a derivation set Γ M .

(1) For every tape symbol x: x, x .

(2) For each state q ∈ Q M \ {h}, p ∈ Q, a, b ∈ {0, 1} and rule π M (q, a) = (p, b, R): qa, bp .

(3) For each state q ∈ Q M \ {h}, p ∈ Q, a ∈ {0, 1} and rule π M (q, B) = (p, a, R): qB, bpB .

(4) For each state q ∈ Q M \ {h}, p ∈ Q, a, b, c ∈ {0, 1} and rule π M (q, a) = (p, b, L): cqa, pcb .

(5) For each state q ∈ Q M \ {h}, p ∈ Q, a ∈ {0, 1} and rule π M (q, B) = (p, a, L): cqB, pcbB .

The configuration of M after t steps of computation is represented by a string xqy, where q is the current state of M , x is the tape before the head, and y is the tape from the head to the first blank symbol. The simulation of a step of M from a configuration xqy consists of at most |x| applications of the rule 1, followed by one application of one of the rules 2-5, followed by |y| -1 applications of rule 1. Note that before an application of a rule that moves head to the left one could also apply rule 1. If the Turing Machine M is deterministic, then this "wrong" application leads to a situation where no rule from Γ M is applicable. Thus, we have the following lemma. Lemma 6.3. For a deterministic Turing machine M with running time at most n 2 and its corresponding Post Transformation system Γ M , M (x) = y if and only if sxB ⊢ * ,n 4 Γ M hyB. As usual, the rest of the proof closely follows [START_REF] Goldreich | Introduction to Complexity Theory[END_REF]. Suppose that g is a lengthpreserving one-way function that works for time not exceeding n 2 . By Lemma 6.3, there exists a finite system of pair Γ M such that sxB ⊢ * ,n 4 R M hyB is equivalent to g(x) = y. Therefore, with constant probability solving PTF is equivalent to inverting g. Remark 6.4. Note the slight change in distributions on inputs and outputs: PTF accepts as input x and outputs y, while the emulated machine g accepts x and outputs y. Such "tiny details" often hold the devil of average-case reasoning. Fortunately, distributions on x and x can be transformed from one to another by a polynomial algorithm, so PTF is still a weak one-way function (see [START_REF] Goldreich | Introduction to Complexity Theory[END_REF] for details).

Complete one-way functions and DistNP-hard combinatorial problems

Both our constructions of a complete one-way function look very similar to the construction on the Tiling complete one-way function. This naturally leads to the question: in what other combinatorial settings can one apply the same reasoning to find a complete one-way function?

The whole point of this proof is to keep the function both length-preserving and easily computable. Obvious functions fall into one of two classes.

(1) Easily computable, but not length-preserving. For any DistNP-hard problem, one can construct a hard-to-invert function f that transfers protocols of this problem into its results. This function is hard to invert on average, but it does not preserve length, and thus it is impossible to translate a uniform distribution on outputs of f into a reasonable distribution on its inputs. The reader is welcome to think of a reasonably uniform distribution on proper tilings that would result in a reasonably uniform distribution on their upper rows; we believe that to construct such a distribution is either impossible or requires a major new insight. (2) Length-preserving, but hard to compute. Take a DistNP-hard problem and consider the function that sends its input into its output (e.g. the lowest row of the tiling into its uppermost row). This function is hard to invert and length-preserving, but it is also hard to compute, because to compute it one needs to solve Tiling. Following Levin, we get around these obstacles by having a deterministic version of a DistNP-hard problem. This time, a Tiling problem produces nontrivial results only if there always is only one proper tile to attach. Similarly, in Section 5 we demanded that there is only one rewriting rule that applicable on each step (we introduced ⇒ * for this very purpose). In Section 6 we slightly generalized this idea of determinism, allowing fixed length deterministic backtrack. However, if for all z ∈ f -1 (y) we can do this deterministic procedure, then we can easily invert f . So we need that for most z an indeterminism appears and the procedure return z.

A combinatorial problem should have two properties in order to hold a complete oneway function.

(1) It should have a deterministic restricted version, like Tiling, string rewriting and modified Post Correspondence.

(2) Its deterministic version should be powerful enough to simulate a deterministic Turing machine. For example, natural deterministic Post Correspondence (without any backtrack) is, of course, easy to formulate, but does not seem to be powerful enough. Keeping in mind these properties, one is welcome to look for other combinatorial settings with combinatorial complete one-way functions.

Discussion and further work

We have shown a new complete one-way function and discussed possibilities of other combinatorial settings to hold complete one-way functions. These functions are combinatorial in nature and represent a step towards the easy-to-analyze complete cryptographic objects, much like SAT is a perfect complete problem for NP.

However, we are still not quite there. Basically, we sample a Turing machine at random and hope to find precisely the hard one. This distinction is very important for practical implications of our constructions. We believe that constructing a complete cryptographic problem that has properties completely analogous to SAT requires a major new insight, and such a construction represents one of the most important challenges in modern cryptography.

Another direction would be to find other similar combinatorial problems that can hold a complete one-way function. By looking at our one-way functions and Levin's Tiling, one could imagine that every DistNP-complete problem readily yields a complete one-way function. However, there is also this subtle requirement that the problem (or its appropriate restriction) should be deterministic (compare ⇒ * R and ⇒ R ). It would be interesting to restate this requirement as a formal restriction on the problem setting. This would require some new definitions and, perhaps, a more general and unified approach to combinatorial problems.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.
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