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Abstract. Interval Analysis is a new tool, well known
in Automatic Control, very powerfull for solving estima-
tion problem. This appraoch s especially suited for models
whose outputs is nonlinear in their parameters, a situa-
tion which is the rule for models based on prior physical
knowledge but where most available methods fail to pro-
vide any guarantee as the global validity of the results ob-
tained. It may be useful for Nal detector measurement
system commonly used by the EURATOM safequards sys-
tem. One of the problems encountered during the in-field
measurements of this type is the strong influence of the
thickness and type of the material of container on the
measurement results. We explore some possible solutions
and validate these solutions on the real JRC Ispra PERLA
dataset.

Key words: interval analysis; parameter estima-
tion; nonlinear model; enrichment measurement.

1 Introduction

This paper deals with parameter estimation in an er-
ror bounded context. This new approach based on
interval analysis, is proposed to compute guaranteed
estimates of the parameter vector such that the error
between the experimental data and the model out-
puts belong to some predefined feasible sets.

Ezample 1 (Parameter estimation in y—spectrometry).
Let X € RP be the vector of measurements performed
by measuring e.g. y—rays actiwvity from an uranium
sample for which the enrichment E has to be de-
termined. This vector may correspond to the count-
ings (scalar) X1 and X of the full energy peak at
185,7 keV and 1001 keV, X = (X1, Xs). We assume
that these data are to be described by the output of
a linear model E(X) = po + p1 X1 + p2Xo with un-
known parameter vector p = (po,p1,p2). To deter-
mine the unknown coefficients of dependence pg,p;
and py, many observations are made. For each ob-
servation i = 1,...,n numerical data

E;; X4, Xo; (1)

are recorded. We then try to solve the equations

Ei=po+p1X1i +p2Xoi, i=1,...,n.  (2)
When the number of observations n is greater than
the number of unknowns, the linear system usually
has no solution. Nevertheless, one would like to find
the best possible values of po,p1 and ps for the un-
solvable system (2). Of the many senses in which the
expression the best possible can be defined, the com-
monest is the least square sense: we look for the value

of po, p1 and ps that minimizes the sum of the squares
of differences:

n

o= Z(Ez —po — p1 X1i — p2Xo;)?. (3)
i=1
With the notations
E, 1 X1 Xy X3
E, 1 Xo1 Xoo X3 y4I
E=|. 4= : D= |p2
: B : ) p3
E, 1 Xnt Xn2 Xns

with AT = the transpose of A, ¢ is minimized by a
unique vector p estimated by p = (ATA)TATE (if
det(ATA) #0). (m|

Many other criteria ¢ have also been considered
such as any criteria given by the maximum likelihood
or bayesian approaches under various hypotheses on
the noise (see [8]). In this example where the error is
affine in the parameters, an explicit formula is avail-
able to compute an optimal parameter vector. Most
often, however (e.g. when the model output is non-
linear with respect to the parameters), no explicit
formula can be provided for the best value of the
parameter in the sense of the chosen criterion. A lo-
cal optimization is then usually performed iteratively,
starting from some initial value of the criterion.

Example 2 §Non|inearity). For instance, the enrich-
ment model could be described by the equation
E(X) = Tf(p1X1) + 2,9f(p1X2). Here, f(-) is a
S—shape function defined by f(z)

1
(1+exp(—=))’
which is almost linear around zero. a

However, such optimization of a scalar criterion has
several drawbacks: (7) the choice of the initial value
relies on guess work, (i) no guarantee of convergence
of the global optimum of the criterion can be pro-
vided, (2¢7) if there are several values of the estimated
parameters that correspond to the same value of the
criterion, the algorithm picks one of them, (iv) one is
not interested in the optimal value but would rather
like to characterize the set of all values that are ac-
ceptable in a sense to be specified, (v) no reliable
evaluation is provided of the precision with which the
estimated value of the parameters is obtained.

This is why we shall follow a different route, and look
for the set of models that are acceptable instead of
looking for the model that is optimal in the sense
of a given criterion. Acceptability can be tackled by
listing all the properties that the model should sat-
isfy, e.g. a serie of (possibly nonlinear) equalities to
be satisfied by the parameters.



Ezample 3 (Some acceptability conditions in spec-
trometry). A wvery realistic assumption is provided
by the fact the concentrations are necessarily non-
negative numbers ! O

Once these conditions of acceptability have been
defined, one is interested in characterizing the set S
of all parameter vectors such that the model is ac-
ceptable. Starting from some prior feasible set for the
parameter vector under the form of axis aligned box
in the parameter space, we wish to characterize —in a
guaranteed way— the posterior feasible set for the pa-
rameters, i.e. the set of all values that are consistent
with the conditions of acceptability [5]. This will be
performed with the help of an algorithm described
in section 2. It is, for instance, possible to charac-
terize the set of all parameters that are consistent
with the data in the sense that the error between the
data and the corresponding model outputs fall within
some known prior bound, considered in section 2.2.
Section 3 addresses the problem of 233U enrichment
estimation out of a spectrum obtained with a Nal
detector with different absorbing materials between
sample and detector.

2 Interval computation

2.1 Basic principles

Interval arithmetic treats intervals as a new kind of
numbers, on which classical arithmetical operations
such as +, —, %, /,sin, exp, ... can be performed.

Definition 1 (Interval). An interval [z] is a closed
and connected subset of R. Let define [x] = {z € R |
z <z <7ZT7TE€Rzx R}, where T and z are the
upper and under bounds of [z]*.

Intervals are basic constituents to describe uncer-

tainty, as probability laws are for a statistical de-
scription. A box [z] of RP (or vector of intervals) is a

cartesian product of p intervals, i.e. [x] = [z1,T7] X
e X [2p,Tp] = ([21], -+ -, [2p])". The width w([z]) of
a box [x] is the length of its largest side.

P2 |

Fig. 1. A 2-dimensional box [p].

Example 4. Let x,y and z 3 real variables such that

z = x +y. Suppose that x and y are uniformly dis-
tributed P(x) = ¢ on z € [0,5] and P(y) = § on
y € [1,3]. Then, to compute the P(z) we need the

joint distribution P(z). If © and y are independent,

4 A real number is an interval such that T = z = z.

then the calculus is trivial (the joint distribution is the

product of the marginal ones), but in the usual case,
such calculus is complex. On the contrary, suppose
that the uncertainty associated to x and y 1s given by
an interval, then z € [z] =[0+ 1,5+ 3] =[1,8]. O

Note that the product [z] x [y] is defined as follows
{zxyl|zelzdyecl} =mnlz yz 57 y7-
Y,),max(z - y,2 -, -y, T -7,)].

f

]

(£ / @

Fig. 2. Minimal inclusion function [f] of a function f.

Definition 2 $Inclusi0n function). [f] is an inclu-
sion function of the vector function f it, for any box
[z], [f]([x]) is also a box such that

Vix], f([=]) £ {f(z) | = € [x]} C [fi([=]). (4)
and w([z]) = 0 = w([f]([z])) - 0°. A

The interval function[f]([z]) is thus a box (see Fig.
2) that contains f(x), i.e. the envelopping box of
f([x]). The inclusion function [f] for f is minimal
if for any [z], [f]([z]) is the smallest box that con-
tains f(x). The notion of inclusion function is the
key idea of interval analysis: () it extends the notion
of application to intervals, (i4) and makes possible
uncertainty propagation for a large class of nonlinear
functions.

Ezample 5. For instance, let f : R2 — R, defined
by f(z1,22) = P52, with x1 € [-1,2] and z» €
[3,5]. Then, the inclusion function associated to f is
(1], [2]) = =Rt = (-3, -4 =

[-1.2[+[3,5] —
It is easy to compute for usual elementary functions.

2.2 Constraint satisfaction problem

A constraint satisfaction problem (CSP) is defined by

— a set of real vector variables y4,...,¥y,,DP,

—a set of domains (generaly  boxes)
Y1)+, [Unl, [P] assumed to contain the
variables yq,...,¥,, D,

— and a set of constraints linking all these variables.

The solutions of a CSP are defined as the set of n-

tuple (y17 . 7yn7p) such that Y1 € [gl]a e lYn €
[9,],p € [P] and such that the constraints be satis-
fied [2]. In an bounded error estimation problem, the

5 The last condition is only needed to ensure conver-
gence.



Y;,1 <i < mn, (n is the number of observations) can
be any uncertain variables : a noisy data, a time mea-
surement, an input, a perturbation,.... The domains
[Yi],-- - fyn] can correspond to interval measurement
(or error bars) or any prior knowledge on the vari-
able bounds. The constraints can be the equations
of the models, and/or any identifiability constraints

[9]6. For instance, in the case of an affine model de-
scribed by z = zﬁ + p%w, one can add the condition
p1 > po so that the model be identifiable. In the fol-

lowing, p plays the role of the unknown parameter
vector. The problem is denoted in a short form by

(5)

A value of a variable is consistent with the Eq. (5)
if one can instantiate the other variables in their do-
mains such that the relation y = F(p) is satisfied.
In the present problem estimation, f is given, p play
the role of the unknown parameters and y of the set
of all measurements:

y=F(p),y €lyl,p € [p].

p A4 D1, D2
Y <« T1y,215---3LiyR5y--7Ln,2n

The initial domain of the parameter vector p is
[-00, 0], i.e. no prior information is available on
the parameters. The constraints on the variables are
given by a set of (non)linear equations, e.g.

Y1 = f(mlap)
: (6)
Yn = [(Tn,p)

which computes all outputs from the chosen model f.
Consistency methods (also called constraint propaga-
tion) based on intervals have been proposed (seeCIIB
to reduce efficiently the variable domains of a CS
without loosing any solution. Among all the proposed
methods, the simplest one consists to decomposed the
set of constraints in primitive constraints and to con-
tract whenever it is possible by removing values in
the domains that are inconsistent with the other do-
mains.

Let us illustrate the method on the problem given in
the introduction.

Ezample 6 (Consistency estimation in y—spect.). Each
of the constraint z; = po + p1T1 + P2x2 is decomposed
in & elementary operations (such that only one oper-
ator is involved at each statement) by adding inter-
mediate variables (forward propagation):

a; = P1T14

{ b; = pawa; (7)
2z =po+a;+b

where a;,b; are intermediate variables. We get now

n x 3 primitive constraints. Reading Eq. (7) from the

end to the beginning (backward propagation), we iso-

late each variables of the right hand side and write the

6 For instance, stability requirement were cast in the
framework of set inversion for blind source separation
in Vigneron et al. [9].

corresponding statement in Eq. (8)

(Gi = P11

n =45
T1i = or

b; = P2

p2 = &

g (8)

mzz—p—2

e; =po+a;+b
a; =e;—po—b;
bi =ei—po—a;
\Po =€ —0; —a;

Equations (7) and (8) should be rewritten by replac-
ing each variable and each operator or function by
their interval counterpart. At each iteration, the in-
terval domain computed has to be intersected with its
previous value using interval arythmetic. For our ex-
ample, we get in merging the intervalized forward and
backward equations:

[ai] := [a:] N [p1][z14] 9)
1] = ] N % (10)
1 s [a;]
[wli] — [ 11] N [pl] (11)
[b:] == [b3] 1 [pa][z2d] (12)
)= 0 ) (13)

[4]
[p2]
[ei] = [e,] N [po] + [a,] + [bz] 15

(14)
(15)
[ai] := [a;] N [ei] — [bi] — [po] (16)
(17)
(18)
(19)

[ZUQ,'] = [SL'Q,] n

[bi] == [bs] N [e:] — [a:] — [po] 17
[po] := [po] N [ei] — [a;] — [bi] 18
19

These equatons are called solution equations. We
have 10 x n solution equations in our problem. The
final algorithm is obtained by repeating several times
the merged algorithm for aoll the data set while the
contraction is sgnificant: The first equation (9) guar-
antee that if the [a;] domain is replaced by [a;] N
[p1][x1:], then no solution is lost. By applying this
type of contraction for each of the 10 X n solution
equations, one obtain at the end an equilibrium. O

In summary the contraction algorithm alternates a
forward propagation step and a backward propagation
step.

Example 7 {Constraint propagation on intervals). Con-
sider the following interval problem :

xYy =z, 2z € [—00,00], (20)

z? =z z €[-10,10] et y € [1, 3].
Backward propagation of the intervals [z] and [y] on
the Eq. (20) gives

[-10,10] x [1,3] = [-30,30] = [2]

[-10,107  =1[0,100] = [z]} = 2 € [0,30].



ALGORITHM CONTRACT
INpuTs: - po], [pa], [p2], [oi], [2ai] il i = 1, ..., m
INIT: o] = [p1] = |p2] = [~10000, 10000]
REPEAT
ForRi=1TO n
1 [ai] = [a:] N [p1][z14]
2 [p1] =[] N E[ai]
A %
4 [bi] = [5:] N [po][eai]
5 [p2] = [p2] N ECQ]J
6 [£2:] := [w2i] N {2}
7 [es] = [ei] N [po] + [a:] + [b:]
g [gi] = [(C;”]]r? [ei]] —[[bz% = [po]
1 = 7 Ci| — (@] — 0
10 o] = [PO] ﬂ[lei] - [ai] —[ﬁz]
ENDFOR
‘WHILE THE CONTRACTION IS SIGNIFICANT
OUTPUT: [p]

Forward propagation of the interval [z] on the Eq.
(20) gives

|I
'BH-

\/0 30] = [5.5,5.5]
e = [0, 10]

[w]

while the contraction is significant. 0O

and so on...

This contraction is very fast but, most of the time,
all inconsistent values have not been removed, i.e. the
contraction is not optimal.

2.3 Subpaving in the solution space and bissection

In this section, we show how it is possible to control
the precision of the contraction. When the fixed point
is reached, domains still contains large parts of incon-
sistent values. Bissections (procedure BISECT) should
then be performed to eliminate them. The strategy
to follow, proposed by Jaulin and Walter [4] consists

to split the box of interest [p](*) (at iteration k) into
smaller boxes in order to eliminate inconsistent val-
ues whenever needed until the width of the considered
box becomes smaller than some required parameter
p- In other words, the analysis of the space of inter-
est is performed by building sets of non-overlapping
boxes as represented on figure 3.

Let P be the set of solution to characterize. We
shall say that the box [p](*) is feasible if F([p*)]) C
[y] = [pP)] € P and unfeasible if F([p*]) N [y] =
@ = [p®]NP = 2. In all other cases, [p(*)] is said
undeterminate. Note that Figure 3 plots 2 type of sub-
pavings (computed iteratively by our algorithm): p
which contains all (dark grey) boxes that are proved
feasible, p* containing all indeterminate (grey) boxes.
From the subpavings it is easy to bracket p™ U p~
guaranteed to contain the portion of S of interest.
Interval computational methods are used to bracket

the set of interest. Let p*) be the box considered at
the iteration k, p the required accuracy. A stack is
used to store the boxes under consideration during
the processing. A stack is dynammical structure on
which the only 3 operations are possible.

05 00

01

Fig. 3. Feasibility of boxes.

Ezample 8 (Solution characterization by bisection).
Consider again the example 6. The resulting algo-
rithm Sis (for Set Inversion Spectra) is the following:

ALGORITHM SIS

INPUTS™: o], [p1] [P2], [#1:], [®2:], [Zi], e =1,...,n

INIT: po] = [1] = [B2] = 10000, 10000]

REPEAT

CO%STRACT([])UC)] [#],[%],i=1,...,n)

ORi=1,...

1 )+ ) + [p““)mwzi] C [#], append
[p]® to subpaving p~. Go to step 4

2 If [p(()k)]+[pgk)][[.')“:1]+[pgk)][a“:g]ﬂ[éi] = @, discard
[p](k). Go to step 4

3 If w([p]®)) < p, then append [p]* to subpaving

*+ else Bisect [p]™® into [p'] and [p”] and
stack the two resulting boxes

4 Sis([p'], [z1:], [23:], [2]);
Sis([p"], [#14], [22], [#]) -
ENDFOR

WHILE THE CONTRACTION IS SIGNIFICANT

output: [ﬁ]: [ili]a [i‘%]’ [él]a 1<i<n

® The symbol © intrval after

contraction.

defines prior intervals and *

After completion, the union of all [p(*)]’s provide an
estimation for the set P = F~ ([‘ y])N[p]. From the list
of consistent boxes, it is possible to get an accurate
approximation of he smallest domains for the p’s and
the x;, z;’s that are consistent with the prior domains
[p] and the constraints.

3 Test case: uranium enrichment

3.1 Physics recall

In Nuclear Materials Management and Control, in
Safeguards and Waste Management, Non Destruc-
tive Assay (NDA) of fissile and fertile material is
widely used to evaluate 233U enrichment. The ba-
sic metrological parameters of the measurement pro-
cess involves the use of several X — and y—ray peaks
identified in the 60 to 200 keV region. The remaining



part of the gamma spectrum is not introduced in the
data analysis. This part of the spectrum can contain,
however, important information concerning the pa-
rameter of interest. Recently active neutron interro-
gation techniques have been upgraded by measuring
in parallel the interrogating neutrons, after passing
through the sample to be assayed, (transmission) and
the fission neutrons resulting from neutron induced
fission (emission) [3]. For measurement methods re-
sulting in one measured signal for the determination
of the parameter of interest, the calibration proce-
dure is quiet obvious. The measurement results, how-
ever, are sometimes no satisfactory. This is mainly
due to the fact that the basic metrological parame-
ters of the process are difficult to identify and hence
should be interpreted by multiparametric calibration
curves. Examples of such measurement techniques are
the determination of the Uranium enrichment based
on the detection of the 185,6 keV line emitted during
the decay of 23°U and active neutron interrogation
for the determination of the 233U mass in Uranium
bearing sample.

The basic measurement apparatus is a collimated ~-
ray detector. Measurements on a set of UsOg and
UQO5 samples were performed with a standard mea-
surement system consisting of a Teledyne 3" 23/4 Nal
detector, and a conventional spectroscopic measure-
ment chain. The spectra were accumulated in a 1K
memory covering an energy region from 10 keV to
1100 keV. A 20 mm thick Pb collimator with a 20 mm
collimating hole in it was used. The resolution was
11,7 % at 185,7 keV and 6,4 % at 1001,0 keV. This
region includes the uranium KX —rays and y—lines
from U and its daughters up to the 1001 keV line.
The uranum enrichment FE is proportional to the net
186 keV count rate R which is given by R = X; — f X5,
where X; and X are two energy regions (this equa-
tion represents the substraction of a background from
the gross rate in the chosen 186 keV peak energy re-
gion), hence we have

E = aRF exp(ucpctc) = aexp(pcpcte)(X1—fXa),

e, po are the linear photon absorption coefficient of
the sample container at the essay energy, tc the sin-
gle wall thickness of the sample container. The factor
I reflects the matrix effects. For a fixed geometry
ficed spacer the count rate should be linear with en-
richemnt only up to 20%. The enrichment can then be
written £ = aX; + 8X5, where the calibration con-
stant a and 8 now include the container attenuation
and the matrix factor contains all the geometric fac-
tor.by measurements of n It has been shown in [10
that the gain problem, the dead-time problem an
additional spacers have a strong impact on statistical
uncertainties of o and .

3.2 Experimental data

As an illustration of SIS combined with forward-
backward propagation, consider the 2-parameters
problem of example 6. The PERLA dataset contains
1500 spectra, taken over a period of about one year,
measured with a planar detector EG& G type, using
the standard NIM electronics [7]. The spectra were
taken in various experimental conditions. The spectra
cover a wide range of isotopic composition, chemical
form, actinide concentration and plutonium/uranium

mass.
The quality of the recorded spectra, with respect to
stability and resolution are demonstrated in Figure

0.91

09+ (@ ]

0.89 | R

0.87 - R

0.86 - R

Gain [channel/keV]

0.85 | R

0.84 - R

0.83 . . . . . .
0 20 40 60 80 100 120
Measurement number

140

Fig. 4. Dependance of the gain [channel/kev] of the sys-
tem with the measurement number.

The table 1 is a selection of 56 U—samples of the
dataset. The value of interest is the 238U concentra-
tion (z; in %), the measured values are 2 the peak ar-
eas T, %2, 1<1<56at 185,6keV and 1001 keV.
The uncertainties are almost only based on counting
statistics, supposed to be poisonian. This is a highly

[316901;317272]
[429135;429425]
[418386;418684|

[z mf;] |
113829;144075
129991158562
131751;161789

2
94.80%
94.89%
94.89%

64,60%)|[191945;275871]| [507324;508268]
64,60%|[224105;327653] | [577138; 578305]

Table 1. Enrichment with respect to the 2 peak areas at
185,6 keV and 1001 keV.

favourable problem for using interval analysis.
The isotopic compsition of the samples is summer-
ized in Table 2. The prior boxes for the parameters

|254U|265U|256U| 258U|
0,13]35,00]0,2764,60
PERLA HEU 450,34 45,55 0,18 |53,93
PERLA LEU 5.0/0,05 | 5,03 |0,04 94,89

Table 2. Uranium isotopic coposition

| Sample
PERLA HEU 35

po,p1 and ps may be arbitrarily large, by example
[po] = [p1] = [p2L= [—~1000; 1000]? 4.e. mo prior infor-
mation is available on the parameter. The algorithm
SIS given in section 2.3 can be used to characterize
the solution domain [p] such that the whole set of
constraints z; = po + p121; — P222;, 1 < i < 56 be
satisfied.
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Fig. 5. PERLA Spectra with 61% Pu (File PU61528.ASC).
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Fig. 6. Contracted domains of the parameters (po,p1) in
performing SIS algorithm.

Results After completion, the contracted intervals in
the figure 6 include ALL the values of the parameters.
A large number of bisections have to be performed,
but the computing time is about 0,5 seconds in this
case. There is 4 distinct solution domains for which
the parameters are consistent with respect to the con-
straints (see equations 9-18).

4 Conclusion

For the first time, this paper studies the applica-
tion of interval analysis to parameter estimation in
spectrometry problems. The so-called Sis algorithm
is capable to enclose efficiently all consistent values
for the unknown parameter vector inside a box in a
error bounded context. An illustrative example has
shown the efficiency of the approach. The size of the
dataset was forced to be small to compare with clas-
sical learning algorithms.
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