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Abstract

In this paper, we are interested in the construction of a bilinear

pseudodifferential calculus. We define some symbolic classes which

contains those of Coifman-Meyer. These new classes allow us to con-

sider operators closely related to the bilinear Hilbert transform. We

give a description of the action of our bilinear operators on Sobolev

spaces. These classes also have a “nice” behavior through the trans-

position and the composition operations that we will present.
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1 Introduction

1.1 The general approach of a bilinear pseudodifferen-

tial calculus.

In the linear theory, the pseudodifferential calculus brings powerful tools to
study Partial Differential Equations. Its construction began with the study
of the ”classical” symbolic classes (Sm

1,0)m∈R. Theses classes produce linear
operators acting on Sobolev spaces. To use these operators, it is useful to
understand a few functional rules, mainly the behavior of the adjointness and
the composition operations on these symbolic classes. These two operations
are described in the linear pseudodifferential calculus by asymptotic formulas
(see [1]). Aiming to generalize, many people have searched to get the largest
symbolic classes, that retain these properties. Certain works treat exotic
classes of linear symbols (for example see the book of R. Coifman and Y.
Meyer [10]).
Nowadays some multilinear estimates appear to study the nonlinear terms
in some P.D.E. (for example in the “I-method”). This motivate us to define
and to build a multilinear pseudodifferential calculus. In addition, we have
shown in [7] continuity in Sobolev spaces for new singular bilinear operators.
That is why in this paper, we are interested to continue the definition and
the study of a bilinear pseudodifferential calculus, which were started in [4, 6]
by A. Bényi, A. Nahmod and R. Torres. Let us first describe the already
known results about bilinear pseudodifferential operators.
We know that to a bilinear operator T , which is continuous from S(R)×S(R)
into S ′(R), we can associate a symbol σ ∈ S(R3)′ such that :

∀f, g ∈ S(R), T (f, g)(x) =

∫
eix(α+β)σ(x, α, β)f̂(α)ĝ(β)dαdβ (1.1)

:= Tσ(f, g)(x).

Our goal is to obtain the largest class of bilinear symbols σ such that the
operators Tσ verify continuities in Lebesgue and Sobolev spaces. In addition,
we would like to understand the behavior of the adjointness and composition
operations on these operators.

Let us recall the first classes of symbols BSm
ρ,δ.

Definition 1.1. For all real m ∈ R and reals 0 ≤ ρ, δ ≤ 1, a function
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σ ∈ C∞(R3) belongs to the class BSm
ρ,δ if :

∀a, b, c ≥ 0,
∣∣∂a

x∂b
α∂c

βσ(x, α, β)
∣∣ . (1 + |α| + |β|)m+δa−ρ(b+c) . (1.2)

The class BS0
1,0 goes back to the work of R. Coifman and Y. Meyer [10] while

for m 6= 0 the classes BSm
1,0 were defined by A. Benyi and R. Torres in [6]

and started to be studied by A. Benyi, A. Nahmod and R. Torres in [4].

The boundedness properties of the class BS0
1,0 are nowadays well understood

and are given by the following result :

Theorem 1.2. Let 0 < p, q, r < ∞ be exponents such that

1

r
=

1

p
+

1

q
and 1 < p, q < ∞.

Then for all symbol σ ∈ BS0
1,0, the operator Tσ is continuous from Lp(R) ×

Lq(R) into Lr(R).

The result was proved by R. Coifman and Y. Meyer for r > 1 in [10], while
for r > 1/2 it was obtained by C. Kenig and E. Stein in [16] and L. Grafakos
and R. Torres in [15] via interpolation and a weak-type end-point estimate
for r = 1/2.

In addition A. Bényi and R.Torres have shown in [6] that the class BS0
1,0

is closed under transposition. A. Bényi have obtained in [2] similar results
for the “more exotic” classes BS0

1,δ with 0 ≤ δ < 1. In fact, all these
symbols generate bilinear Calderón-Zygmund operators and also their study
are closely related to the multilinear Calderón-Zygmund theory.

Nowadays, many people are interested by far more singular operators, which
are completely outside the Calderón-Zygmund theory. The prototype of these
new operators is the bilinear Hilbert transform, which appeared in the work
of A. Calderón ([8, 9] in 60-70’s). His famous conjecture, about the continuity
of this one from L2(R) × L∞(R) into L2(R), was later solved by M. Lacey
and C. Thiele ([18, 19, 20, 21] in 90’s). Then C. Muscalu, T. Tao and C.
Thiele (in [23]) and independently J. Gilbert and A. Nahmod (in [11]) have
extended the proof to study a new class of bilinear operators. We are also
interested to contruct a bilinear pseudodifferential calculus, with symbolic
classes containing this kind of operators. Such a bilinear calculus was already
defined by A. Bényi, A. Nahmod and R. Torres in [4], so we first recall their
definitions.
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Definition 1.3. For all real m ∈ R, all reals 0 ≤ ρ, δ ≤ 1 and all angle
θ ∈] − π/2, π/2[, a function σ ∈ C∞(R3) belongs to the class BSm

ρ,δ;θ if :

∀a, b, c ≥ 0,
∣∣∂a

x∂
b
α∂c

βσ(x, α, β)
∣∣ . (1 + |β − tan(θ)α|)m+δa−ρ(b+c) . (1.3)

Also we have replaced in (1.2) the quantity |α|+|β| = d((α, β), 0) by the lower
quantity β − tan(θ)α = d((α, β), ∆), where ∆ is the line ∆ := {(α, β), β =
tan(θ)α} in the frequency plane. It is obvious that for every angle θ, BS0

1,0 ⊂
BS0

1,0;θ.
The previously mentioned papers [23, 11] deal with the case where the symbol
σ belongs to the class BS0

1,0;θ and is x-independent. Their main result is the
following one :

Theorem 1.4. Let ∆ be an nondegenerate line of the frequency plane. This
means that

∆ := {(α, β), β − tan(θ)α = 0}

with θ ∈] − π/2, π/2[\{−π/4, 0}.
Let p, q be exponents such that

1 < p, q ≤ ∞ and 0 <
1

r
=

1

q
+

1

p
<

3

2
.

Then for all x-independent symbol σ ∈ BS0
1,0;θ, the operator Tσ is continuous

from Lp(R) × Lq(R) in Lr(R).

In [3], the authors have extended this result in a particular case : if the
symbol σ verifies σ(x, α, β) = τ(x, β − tan(θ)α) with a symbol τ satisfying
for all a, b ≥ 0 ∣∣∂a

x∂b
ξτ(x, ξ)

∣∣ . (1 + |ξ|)−b , (1.4)

then the bilinear operator Tσ satisfies the same continuities. All these sym-
bols could be much more singular than those of the class BS0

1,0. The argu-
ments, used in the proof of these continuities, are based on a very nice and
sharp time-frequency analysis.
In [4], the authors ask a question : Is it possible to obtain a result like
Theorem 1.4 for x-dependent symbols ? In addition they particularly study
the special class BS0

1,0;−π/4 and they study the action of the duality on the

operators associated to the class BS0
1,0;θ.
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In this paper, we want to continue the construction of such a bilinear pseu-
dodifferential calculus. In [7], we have positively answered to the previous
question. So the operators associated to the classes BS0

1,0;θ act on Sobolev
spaces. However theses symbolic classes are not invariant by composition
with linear pseudodifferential operators (as explained in Theorem 1.12). We
want also to consider larger symbolic classes closely related to these classes
BSm

1,0;θ, and we would like to decompose the order m in two orders for the
two frequency variables α and β. So we will construct some larger classes
which verify continuities on Sobolev spaces and some functional invariances.

1.2 Notations and our main results.

For notation, we denote the norm in Lp(E) for any measurable set E ⊂ R

by ‖ ‖p,dx,E (or ‖ ‖p,E if there is no confusion for the variable).

In this subsection, we begin to define our new classes of bilinear symbols.
First we recall the classical linear classes.

Definition 1.5. For m ∈ R, we denote Sm
1,0 the classical set of linear pseu-

dodifferential symbol of order m.

Sm
1,0 :=

{
σ ∈ C∞(R2),

∣∣∂a
x∂b

ασ(x, α)
∣∣ . (1 + |α|)m−b

}
.

We use the same idea to define the bilinear classes :

Definition 1.6. For m1, m2 two reals, we define the class of bilinear pseudod-
ifferential symbols of order (m1, m2). Let θ be an angle and σ be a C∞(R3)
function.
We set that σ belongs to the class BS

m1,m2

1,0;θ if and only if for all a, b, c ≥ 0

∣∣∂a
x∂b

α∂c
βσ(x, α, β)

∣∣ . (1 + |α|)m1 (1 + |β|)m2

(1 + min{|α|, |β − tan(θ)α|})−b (1 + min{|β|, |β − tan(θ)α|})−c .

We set that σ belongs to the class BS
m1,m2,1

1,0;θ if and only if for all a, b, c ≥ 0

∣∣∂a
x∂b

α∂c
β−ασ(x, α, β)

∣∣ . (1 + |α + β|)m1 (1 + |β|)m2

(1 + min{|α + β|, |β − tan(θ)α|})−b (1 + min{|β|, |β − tan(θ)α|})−c .
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Finally we set that σ belongs to the class BS
m1,m2,2

1,0;θ if and only if for all
a, b, c ≥ 0
∣∣∂a

x∂
b
α−β∂c

βσ(x, α, β)
∣∣ . (1 + |α|)m1 (1 + |α + β|)m2

(1 + min{|α|, |β − tan(θ)α|})−b (1 + min{|α + β|, |β − tan(θ)α|})−c .

In the three previous definitions, the most important term is the additional
decay obtained when we differentiate the symbol with respect to the fre-
quency variables. With the notations of [4], our class BS

m,m

1,0;θ contains the
class BSm

1,0;θ.

Remark 1.7. For θ ∈] − π/2, π/2[−{0} we have the following equivalence

σ(x, α, β) ∈ BS
m1,m2

1,0,π/4 ⇐⇒ σ(x, tan(θ)α, β) ∈ BS
m1,m2

1,0;θ .

We have the same equivalence for the other classes BS
m1,m2,1

1,0;θ and BS
m1,m2,2

1,0;θ .

Remark 1.8. In the definition of our symbolic classes, the term min{|α|, |β−
tan(θ)α|} corresponds to the distance in the frequency plane d((α, β), Cθ)
between the cone Cθ (composed of the two lines β = tan(θ)α and α =
0) and the point (α, β). In [11, 12] J.Gilbert and A.Nahmod have studied
the case where the cone is nondegenerate (i.e. the two lines of the cone
are nondegenerate). Here the cone Cθ has a degenerate line. However the
difference is that in our definition of the class BS

m1,m2

1,0;θ , the cone is not the
same for the differentiations with respect to α and to β. We have two different
degenerate cones for the two frequency variables. This will allow us to obtain
continuities in Lebesgue and Sobolev spaces for the associated operators.

Definition 1.9. For m a real, we set m+ = (|m| + m)/2. We denote Lp =
Lp(R) for the Lebesgue spaces. The Sobolev space W m,p = W m,p(R) is
defined as the set of distributions f ∈ S ′(R) such that

‖f‖W n,p := ‖Jm(f)‖Lp,

where Jm := (Id − ∆)m/2.

Now we come to our main results. With the same ideas that we used in [7],
we will first study the action of our pseudodifferential operators on Sobolev
spaces and we will prove the following result :
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Theorem 1.10. Let σ be a symbol of order (m1, m2) (in one of the three

classes BS
m1,m2

1,0;θ , BS
m1,m2,1

1,0;θ or BS
m1,m2,2

1,0;θ for θ ∈] − π/2, π/2[\{0,−π/4}).
Let p, q, r be exponents satisfying

0 <
1

r
=

1

p
+

1

q
<

3

2
and 1 < p, q ≤ ∞.

Then for all real s ≥ 0 and ǫ > 0, the operator Tσ is continuous from
W s+ǫ+(m1)+,p × W s+ǫ+(m2)+,q into W s,r.

In the previous Theorem, the ǫ is necessary, due to the assumed Marcinkiewicz’s
conditions on the symbol (see [14]). We will give other continuities, with no
loss of regularity, by using the Modulation spaces and we will give some extra
condition to allow us to get the previous continuities with ǫ = 0.

After this main result, we will describe in Section 3 two rules of the bilinear
pseudodifferential calculus :

Theorem 1.11. For T a bilinear operator, we write T ∗1 and T ∗2 for its two
adjoints ( with respect to the α and to the β variable). Let m1, m2 ∈ R be
reals and θ ∈] − π/2, π/2[−{0,−π/4} be an angle. If σ ∈ BS

m1,m2

1,0;θ then

T ∗1
σ = Tσ∗

1
with σ∗

1 ∈ BS
(m1,m2),1

1,0;θ∗1 and T ∗2
σ = Tσ∗

2
with σ∗

2 ∈ BS
(m1,m2),2

1,0;θ∗2 , where
the two angles θ∗1 and θ∗2 are defined by

cot(θ) + cot(θ∗1) = −1 and tan(θ) + tan(θ∗2) = −1,

and so θ∗1, θ∗2 ∈] − π/2, π/2[−{0,−π/4}. In addition these two symbols σ∗
1

and σ∗
1 satisfy an asymptotic formula. We obtain similar results for the two

classes BS
m1,m2,1

1,0;θ and BS
m1,m2,2

1,0;θ .

Theorem 1.12. Let θ ∈]−π/2, π/2[ and σ ∈ BS
m1,m2

1,0;θ be fixed. Let τ1 ∈ St1
1,0

and τ2 ∈ St2
1,0 be two linear symbols of order t1 and t2. Then the operator

T (f, g) := Tσ (τ1(x, D)f, τ2(x, D)g)

corresponds to the operator Tm with the symbol m ∈ BS
m1+t1,m2+t2
1,0;θ . This new

symbol satisfies an asymptotic formula. We will give a similar result for the

composition “on the left” with the other classes BS
m1,m2,1

1,0;θ and BS
m1,m2,2

1,0;θ .

By following the ideas of [7] and [24], it seems possible to obtain identical
results for a multidimensionnal problem.
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2 Action of bilinear operators on Sobolev spaces.

First, we remember our main result of [7] :

Theorem 2.1. Let θ be a nondegenerate angle : θ ∈]−π/2, π/2[\{0,−π/4}.
Let p, q be exponents such that

0 <
1

r
=

1

q
+

1

p
<

3

2
and 1 < p, q ≤ ∞.

Then for all symbol σ ∈ BS0
1,0;θ, the operator Tσ is continuous from Lp × Lq

into Lr.

This result is a consequence of “off-diagonal” estimates for the x-independent

symbols. The symbolic class BS
0,0

1,0;θ is a shake between the class BS0
1,0;θ

and some Marcinkiewicz condition. We have to study also first the bilinear
Marcinkiewicz multiplier :

Proposition 2.2. Let σ be a bounded function on R
2 such that

∀b, c ≥ 0
∣∣∂b

α∂c
βσ(α, β)

∣∣ . (1 + |α|)−b (1 + |β|)−c . (2.1)

Let 1 < p, q ≤ ∞ exponents such that

0 <
1

r
=

1

q
+

1

p
.

Then for all ǫ > 0 the bilinear operator Tσ is continuous from W ǫ,p × W ǫ,q

to Lr.

Remark 2.3. The condition (2.1) is related to the degenerate lines α = 0 and
β = 0, that is why we lose some regularity. In addition, as we require some
inhomogeneous decay in (2.1), it is possible to have some local estimates to
describe an “off-diagonal” decay. Here we are just interested in global conti-
nuities in Sobolev spaces, so we do not give details about this improvement.
We know that the ǫ > 0 is necessary. In [14], L. Grafakos and N. Kalton
construct a counter-example for the ǫ = 0 result.

Proof : These kind of operators was already studied by L. Grafakos and N.
Kalton in [14].

8



The continuity of Tσ from W ǫ,p × W ǫ,q to Lr is equivalent to the continuity
of Tλ from Lp × Lq to Lr, with the new symbol

λ(α, β) := σ(α, β)
(
1 + |α|2

)−ǫ/2 (
1 + |β|2

)−ǫ/2
.

In fact the new extra weight satisfies : there exists a constant cǫ such that
for all α, β

(
1 + |α|2

)−ǫ/2 (
1 + |β|2

)−ǫ/2
≤ Cǫ

(
1 + log

(
2 +

1 + |β|

1 + |α|

))−2

.

So it is easy to see that λ verifies the following assumptions : for all b, c ≥ 0

∣∣∂b
α∂c

βλ(α, β)
∣∣ . (1 + |α|)−b (1 + |β|)−c

(
1 + log

(
2 +

1 + |β|

1 + |α|

))−2

. (2.2)

Then Theorem 7.4 of [14] gives us the desired continuity of Tλ. ⊓⊔

We now have to prove a similar result for x-dependent symbols.

Theorem 2.4. Let σ be a bounded function on R
3 such that

∀a, b, c ≥ 0
∣∣∂a

x∂
b
α∂c

βσ(x, α, β)
∣∣ . (1 + |α|)−b (1 + |β|)−c . (2.3)

Let 1 < p, q ≤ ∞ exponents satisfying

0 <
1

r
=

1

q
+

1

p
< ∞.

Then for all ǫ > 0 the bilinear operator Tσ is continuous from W ǫ,p × W ǫ,q

to Lr.

Proof : We write in details the proof for 1 ≤ r, which allows us to simplify
the arguments. We explain the modifications to prove the case r < 1 in
Remark 2.5.
The arguments to extend results about x-independent symbols to x-dependent
symbols are nowadays well-known. As for the previous Proposition, we have
to prove the continuity of Tλ from Lp × Lq to Lr with

λ(x, α, β) := σ(x, α, β)
(
1 + |α|2

)−ǫ/2 (
1 + |β|2

)−ǫ/2
.
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First take a smooth function χ supported on [−1, 1] such that :

∑

i∈Z

χ(x − i)2 = 1.

Then we set
T i(f, g)(x) := χ(x − i)2Tλ(f, g)(x).

We can write the previous operator as :

T i(f, g)(x) = U i
x(f, g)(x),

with U i defined by

U i
y(f, g)(x) := χ(x − i)χ(y − i)

∫

R2

eix(α+β)f̂(α)ĝ(β)λ(y, α, β)dαdβ.

Let i be fixed, and denote I = [i−1, i+1]. By using the Sobolev’s embedding
W 1,r(I) →֒ L∞(I) (because r ≥ 1), we get

∣∣T i(f, g)(x)
∣∣ ≤ ‖Uy(f, g)(x)‖∞,y .

1∑

k=0

‖∂k
yU i

y(f, g)(x)‖r,I,dy.

Then by integrating for x ∈ I and using Fubini’s Theorem, we obtain

∥∥T i(f, g)
∥∥

r
.

1∑

k=0

∥∥∥
∥∥∂k

y U i
y(f, g)

∥∥
r

∥∥∥
r,I,dy

.

We can fix k ∈ {0, 1} and y ∈ [i − 1, i + 1]. Then the operator ∂k
y Uy(f, g)

corresponds to the operator Tτ with the x-independent symbol

τ(α, β) := χ(y − i)∂k
y λ(y, α, β).

From the assumptions about σ (as for Proposition 2.2), the symbol τ satis-
fies : for all b, c ≥ 0

∣∣∂b
α∂c

βτ(α, β)
∣∣ . (1 + |α|)−b (1 + |β|)−c

(
1 + log

(
2 +

1 + |β|

1 + |α|

))−2

. (2.4)

So the operator Tτ is bounded on Lebesgue spaces. Let now decompose the
function f by

f := f14I + f1(4I)c := f0 + f∞

10



and the function g by

g := g14I + g1(4I)c := g0 + g∞.

With the boundedness of Tτ , we get

‖Tτ (f0, g0)‖r . ‖f0‖p‖g0‖q . ‖f‖p,4I‖g‖q,4I . (2.5)

We now study the term Tτ (f0, g∞) and the two other ones can been studied
with the same reasoning. We study the decay of the bilinear kernel of Tτ . So
the kernel Kτ (x, y, z) is defined by

Kτ (x, y, z) :=

∫
eiα(x−y)+iβ(x−z)τ(α, β)dαdβ

in a distributionnal sense. So with integrations by parts, we get that for any
integer M ≥ 0

(x − z)2MKτ (x, y, z) :=

∫
eiα(x−y)+iβ(x−z)∂2M

β τ(α, β)dαdβ = K∂2M
β

τ (x, y, z).

However we have assume some inhomogeneous decay for the symbol σ and
so for the symbol τ . We also obtain that the symbol ∂2M

β τ satisfies (2.4) too.
Therefore the operator associated to this symbol satisfies some boundedness
on Lebesgue spaces. We write for x ∈ I

|Tτ (f0, g∞)(x)| =

∣∣∣∣
∫

Kτ (x, y, z)f0(y)g∞(z)dydz

∣∣∣∣

=

∣∣∣∣
∫

K∂2M
β

τ (x, y, z)f0(y)(x− z)−2Mg∞(z)dydz

∣∣∣∣

=

∥∥∥∥
∫

K∂2M
β

τ (x, y, z)f0(y)(w − z)−2Mg∞(z)dydz

∥∥∥∥
∞,ω∈I

.

Then by using a Sobolev’s embedding and the boundedness of T∂2M
β

τ , we get

‖Tτ (f0, g∞)(x)‖r,I . ‖f0‖p

∥∥∥
∥∥(w − .)−2Mg∞

∥∥
q

∥∥∥
r,I,dw

,

with an exponent N as large as we want. However by definition g∞ is sup-
ported on (4I)c, so we can estimate the last norm by

∥∥∥
∥∥(w − .)−2Mg∞

∥∥
q

∥∥∥
r,I,dw

.
∥∥(1 + (i − .)2)−Mg

∥∥
q

.

(
∑

k≥0

2−kN‖g‖p,2kI

)
,

11



where N is an other integer. The first integer M being as large as we want, so
the second integer N is too. We compute the same arguments for Tτ (f∞, g0)
and Tτ (f∞, g∞) and we obtain also

∥∥T i(f, g)
∥∥

r
.

(
∑

k≥0

2−kN‖f‖p,2kI

)(
∑

k≥0

2−kN‖g‖q,2kI

)
.

These we can sum over the index i. It is easy to see (as in [7]) that we finally
obtain

‖Tλ(f, g)‖r .
∑

i

∥∥T i(f, g)
∥∥

r
. ‖f‖p‖g‖q,

which is equivalent to the desired continuity. ⊓⊔

Remark 2.5. In Proposition 2.2 for the Marcinkiewicz multipliers, the ex-
ponent r may be lower than 1. In Theorem 2.4, we have used a Sobolev’s
embedding and so the fact that r ≥ 1. But as we have described in [7],
by using the concept of “restricted weak type”, we can go around this dif-
ficulty and obtain the Theorem 2.4 for all r. The “restricted weak type”
for the Marcinkiewicz multipliers (associated to x-independent symbols) can
be proved by the arguments of M. Lacey in [17] or those of C. Muscalu, J.
Pipher, T. Tao and C. Thiele in [22].

We are now able to have the general result :

Theorem 2.6. Let θ be a angle with θ ∈] − π/2, π/2[\{0,−π/4}. Let 1 <
p, q ≤ ∞ be exponents such that

0 <
1

r
=

1

q
+

1

p
<

3

2
.

Let σ be a symbol in the class BS
(0,0)

1,0;θ, BS
(0,0),1

1,0;θ or BS
(0,0),2

1,0;θ . Then for all
ǫ > 0, the operator Tσ is continuous from W ǫ,p × W ǫ,q into Lr.

Proof : We prove only the first case. The other cases are obtained by the
same arguments or by using duality (see Subsection 3.1). In addition for
convenience, we deal only with the case θ = π/4.

So let σ ∈ BS
(0,0)

1,0;π/4. We use a smooth partition of the frequency plane in
order to restrict the symbol on the three domains {|α| ≃ |β|}, {|α| << |β|}
and {|α| >> |β|}. In the first place, the minimums min{|α|, |α − β|} and
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min{|β|, |α−β|} are equivalent to |α−β|. So when the symbol is supported
in this region, the result is a consequence of Theorem 2.1 (in this region we
can have continuity in Lebesgue spaces : with ǫ = 0). In the two other
regions, the minimums are respectively equivalent to |α| and |β|. So in these
two cases, the result is a consequence of Theorem 2.4. ⊓⊔

Remark 2.7. In fact, we can show that the operator Tσ satisfies some “off-
diagonal” estimates. By using the definition in [7], we can proved that the
operator a symbol σ of order (0, 0), the operator Tλ satisfies “off-diagonal”
estimates at the scale 1 for any order δ ≥ 1 : Tλ ∈ O1,δ(L

p × Lq, Lr), with
the modified symbol

λ(x, α, β) := σ(x, α, β)
(
1 + |α|2

)−ǫ/2 (
1 + |α|2

)−ǫ/2
.

We have also continuities in weighted spaces too, see Theorem 4.4 of [7].

We have obtained the main result for bilinear pseudodifferential operators of
order (0, 0). Before to generalize it for operators of any order, we want to
describe other continuity results.

Remark 2.8. Let us describe in this remark, an other continuity result using
the Modulation spaces. For 0 ≤ p, t ≤ ∞, man define the Modulation spaces
Mp,t (see for example [5]). We recall the construction of these spaces. Let
φ ∈ S(R) be a non-zero smooth real function. We set the short-time Fourier
transform Vφ(f), given by : for all (x, ξ) ∈ R

2

Vφ(f)(x, ξ) :=

∫

R

e−itξf(t)φ(t − x)dt.

Then the space Mp,t is the closure of the Schwartz space for the following
norm

‖f‖Mp,t :=
∥∥∥‖Vφ(f)(x, ξ)‖p,dx

∥∥∥
t,dξ

.

It is well known that these spaces do not depend on the function φ. For
p = t = 2, the space M2,2 exactly corresponds to the space L2.
With the assumptions of Theorem 2.6, the operator Tσ is continuous from
Mp,t1 ×Mq,t2 into Mr,t3 for all exponents t1, t2, t3 satisfying

1 +
1

t3
=

1

t1
+

1

t2
and 1 ≤ t1, t2, t3 ≤ ∞.

13



We also get (for p = q = t1 = t2 = 2) the continuity from L2 × L2 into the
Modulation space M1,∞, which contains the Lebesgue space L1.
This result about Modulation spaces comes from Theorem 1 of [5], proved
by A. Benyi and K. Okoudjou. The use of these spaces allows us to not lose
regularity.

Remark 2.9. To be able to have the ǫ = 0 result in Theorem 2.6, we have
to put an extra assumption about the symbol. We will use a weight (as
appeared in [14]) :

Ω(α, β) := log

(
2 +

∣∣∣∣log

(
1 +

1 + |β|

1 + |α|

)∣∣∣∣
)

. (2.6)

For example if we assume that the symbol σ satisfies for all a, b, c ≥ 0

∣∣∂a
x∂b

α∂c
βσ(x, α, β)

∣∣ .

max

{
Ω(α, β)

1 + |α|
,

1

1 + |β − tan(θ)α|

}b

max

{
Ω(α, β)

1 + |β|
,

1

1 + |β − tan(θ)α|

}c

,

then we can take ǫ = 0 in Theorem 2.6. This result is due to the fact that
the additional decay allows us to have ǫ = 0 in Proposition 2.2 (see [14]).

Now we can study bilinear operators of any order :

Theorem 2.10. Let σ be a bilinear symbol of order (m1, m2) : σ ∈ BS
m1,m2

1,0;θ

with θ ∈] − π/2, π/2[\{0,−π/4}. Then for all ǫ > 0, the bilinear operator
Tσ is continuous from W ǫ+(m1)+,p ×W ǫ+(m2)+,q in Lr for all exponents p, q, r
satisfying

0 <
1

r
=

1

p
+

1

q
<

3

2

and 1 < p, q < ∞. We have the same result for the classes BS
(m1,m2),1

1,0;θ and

BS
(m1,m2),2

1,0;θ .

Proof :

As for the previous theorem, we will deal only with the first case and we will
assume θ = π/4 for convenience.
Let Φ be a smooth function on R such that

|x| ≤ 1 =⇒ Φ(x) = 1 and supp(Φ) ⊂ B(0, 2).
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We have the frequential decomposition

1 = Φ(α − β)Φ(α)Φ(β) + Rest(α, β).

We set the first symbol

σ1(x, α, β) := σ(x, α, β)Φ(α − β)Φ(α)Φ(β)

and the second one

σ2(x, α, β) := σ(x, α, β)Rest(α, β).

∗ - The study of σ1.
The function Φ permits to localize the three quantities |α|, |β| and |α − β|.
The symbol σ being of order (m1, m2), the restriction σ1 is also a bilinear
symbol of order (0, 0) (due to the inhomogeneous assumptions). By applying
the previous theorem, we get the desired estimate

‖Tσ1(f, g)‖r . ‖f‖W ǫ,p‖g‖W ǫ,q . ‖f‖W ǫ+(m1)+,p‖g‖W ǫ+(m2)+,q .

∗ - The case of σ2.
The symbol Rest(α, β) is composed of 7 terms. Each term is a factor of
at least one of these quantities 1 − Φ(α), 1 − Φ(β) or 1 − Φ(α − β). All
these terms can be studied by the same arguments, so we deal with the most
”extremal”

Rest(α, β) = [1 − Φ(α)][1 − Φ(β)][1 − Φ(α − β)].

As Φ′ is supported in a corona around 0, we have :

|∂αRest(α, β)| . |Φ′(α)| + |Φ′(α − β)|

. 1|α|≃1 + 1|α−β|≃1 . 1min{|α|,|α−β|}≃1

. (1 + min{|α|, |α − β|})−1 . (2.7)

We set the symbol

τ(x, α, β) := Rest(α, β)σ(x, α, β)
(
1 + |α|2

)−(m1)+/2 (
1 + |β|2

)−(m2)+/2
.

The symbol σ is of order (m1, m2), we get also that τ is a bilinear symbol
of order (0, 0) with the following estimates (similarly obtained as (2.7)) : for
all b, c ≥ 0
∣∣∂b

α∂c
βRest(α, β)

∣∣ . (1 + min{|α|, |α − β|})−b (1 + min{|α|, |α − β|})−c .
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We use the new symbol τ , by writing

Tσ2(f, g)(x) =∫

R2

eix(α+β)f̂(α)ĝ(β)
(
1 + |α|2

)(m1)+/2 (
1 + |β|2

)(m2)+/2
τ(x, α, β)dαdβ.

By applying the previous theorem to the symbol τ , we obtain

‖Tσ2(f, g)‖r .
∥∥(I − ∆)(m1)+/2f

∥∥
W ǫ,p

∥∥(I − ∆)(m2)+/2g
∥∥

W ǫ,q

. ‖f‖W ǫ+(m1)+,p‖g‖W ǫ+(m2)+,q .

With the same arguments, we can study all the terms due to the decompo-
sition and also we finish the proof. ⊓⊔

Remark 2.11. It is interesting to note that we lose some regularity when
the orders are negative. We have the same phenomenon with the Hölder’s
inequality in Sobolev spaces :

‖fg‖W m,r . ‖f‖W m+,p‖g‖W m+,q ,

which is optimal.

Now we can prove the following complete result :

Theorem 2.12. Let σ ∈ BS
m1,m2

1,0;θ (or BS
(m1,m2),1

1,0;θ , BS
(m1,m2),2

1,0;θ ) be a bilinear
symbol of order (m1, m2) with θ ∈] − π/2, π/2[\{0,−π/4}. Let 1 < p, q < ∞
be exponents satisfying

0 <
1

r
=

1

p
+

1

q
<

3

2
.

Then for all ǫ > 0, for all integer n > 0 and for all functions f, g ∈ S(R) :

∥∥D(n)Tσ(f, g)
∥∥

r
.

∑

0≤i,j≤n
i+j≤n

‖D(i)f‖W ǫ+(m1)+,p‖D(j)g‖W ǫ+(m2)+,q . (2.8)

Here we set D(i) for the derivation operator of order i. Consequently for all
s ≥ 0, we get that Tσ is continuous from W s+ǫ+(m1)+,p×W s+ǫ+(m2)+,q in W s,r.

Proof : The link between Theorem 2.10 and Theorem 2.12 is already proved
in Proposition 4.7 of [7]. So we do not repeat it and we have also proved
Theorem 1.10. ⊓⊔

By using Sobolev’s embedding, there exists an other possible homogeneity in
the Lebesgue exponents, which is described in Proposition 3 of [4].
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Corollary 2.13. Let σ ∈ BS
m1,m2

1,0;θ (or BS
(m1,m2),1

1,0;θ , BS
(m1,m2),2

1,0;θ ) be a bilinear
symbol of order (m1, m2) with θ ∈] − π/2, π/2[\{0,−π/4}. Then for all
exponents 1 < p, q < ∞, all ǫ > 0 and for all reals s, t ≥ 0 satisfying

0 <
1

rt
=

1

p
+

1

q
− t <

3

2
and 0 ≤ t ≤

1

p
,
1

q
≤ 1,

the operator Tσ is continuous from W s+t+ǫ+(m1)+,p×W s+t+ǫ+(m2)+,q in W s+t,rt.

Proof : The case t = 0 corresponds to Theorem 2.12. The proof for the
other cases (as an application of Theorem 2.12) is written in [4]. ⊓⊔

Having obtained a good description of the action of our bilinear operators in
Sobolev spaces, we will in the next section study some rules of the symbolic
bilinear calculus.

3 Study of the symbolic calculus for linear

and bilinear pseudodifferential operators.

In this section, we will study two rules of symbolic calculus. For a function
σ := (x, ξ, η) → σ(x, ξ, η) ∈ C∞(R3), we will always denote ∂ξ and ∂η the two
differentiations with respect to the first and the second frequency variable.
In addition we write ∂η−ξ for the differential operator ∂η − ∂ξ.

3.1 The action of duality.

Definition 3.1. Let T be a bilinear operator acting from S(R) × S(R) in
S ′(R). We denote its two adjoints T ∗1 and T ∗2 defined by

∀f, g, h ∈ S(Rd) 〈T (f, g), h〉 = 〈T ∗1(h, g), f〉 = 〈T ∗2(f, h), g〉.

We recall the duality result for linear pseudodifferential operator (see [1]) :

Proposition 3.2. Let τ ∈ St
1,0 be a linear symbol, we define the associated

operator

∀f ∈ S(R), τ(x, D)(f)(x) :=

∫

R

eixξf̂(ξ)τ(x, ξ)dξ.
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Then this operator admits an adjoint and τ(x, D)∗ = τ ∗(x, D) with

τ ∗(x, ξ) = (2π)−1

∫∫
e−iyητ (x − y, ξ − η)dydη.

We have the asymptotic formula : for all integer N ,

τ ∗(x, ξ) −

N−1∑

k=0

ik

k!
∂k

ξ ∂k
xτ(x, ξ) ∈ St1−N .

In the bilinear case, we have the following result ·

Theorem 3.3. Let m1, m2 ∈ R be reals and θ ∈] − π/2, π/2[−{0,−π/4} be

a fixed parameter. If σ ∈ BS
m1,m2

1,0;θ then T ∗1
σ = Tσ∗

1
with σ∗

1 ∈ BS
(m1,m2),1

1,0;θ∗1 and

T ∗2
σ = Tσ∗

2
with σ∗

2 ∈ BS
(m1,m2),2

1,0;θ∗2 , where the two angles θ∗1 and θ∗2 are defined
by

cot(θ) + cot(θ∗1) = −1 and tan(θ) + tan(θ∗2) = −1.

So θ∗1, θ∗2 ∈] − π/2, π/2[−{0,−π/4}. In addition we have

σ∗
1(x, ξ, η) = (2π)−1

∫∫

R2

σ(y,−α − η, η)e−i(z−ξ)(x−y)dydα

σ∗
2(x, ξ, η) = (2π)−1

∫∫

R2

σ(y, ξ,−α − ξ)e−i(α−η)(x−y)dydα.

For these new symbols, we have the asymptotic formulas

∀N ≥ 0, σ∗
1(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

x∂k
ξ σ(x,−ξ − η, η) ∈ BS

(m1−N,m2),1

1,0;θ∗1

and

∀N ≥ 0, σ∗
2(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

x∂k
ησ(x, ξ,−η − ξ) ∈ BS

(m1,m2−N),2

1,0;θ∗2 .

Proof : In Theorem 4 of [4], it was shown that T ∗1 and T ∗2 are associated
to the symbols σ∗

1 and σ∗
2 given by

σ∗
1(x, ξ, η) = (2π)−1

∫∫

R2

σ(y,−α − η, η)e−i(α−ξ)(x−y)dydα

σ∗
2(x, ξ, η) = (2π)−1

∫∫

R2

σ(y, ξ,−α − ξ)e−i(α−η)(x−y)dydα.

18



By symmetry, we will only study the first symbol.

1−) Proof of σ∗
1 ∈ BS

(m1,m2),1

1,0;θ∗1 .
The symbol σ∗

1 is given by an oscillating integral, so we recall the main lemma
about these integrals (see [1]).

Lemma 3.4. For all exponents m ∈ R, there exists a constant C = C(m)
such that ∣∣∣∣

∫∫

R2

eiαya(y, α)dydα

∣∣∣∣ ≤ C ‖a‖
Am

with the following norm

‖a‖
Am := sup

0≤j,l
sup

(y,α)∈R2

(1 + |y| + |α|)−m
∣∣∂j

y∂
l
αa(y, α)

∣∣ .

By a change of variables, we obtain

σ∗
1(x, ξ, η) =

∫∫

R2

σ(x − y, α − ξ − η, η)eiαydydα.

In addition, it is well known (see [1]) that we can formally differentiate the
oscillating integrals, hence the following estimate
∣∣∂a

x∂b
ξ∂

c
η−ξσ

∗
1(x, ξ, η)

∣∣ .
∥∥∂a

x∂b
ξ∂

c
η−ξσ(x − y, α − ξ − η, η)

∥∥
(y,α),A|m1|+|m2|+b+c .

By the properties of the symbol σ, we have
∥∥∂a

x∂b
ξ∂

c
η−ξσ(x − y, α − ξ − η, η)

∥∥
(y,α),A|m1|+|m2|+b+c

:= sup
0≤j,l

sup
(y,α)∈R2

(1 + |y| + |α|)−(|m1|+|m2|+b+c)
∣∣∂a

x∂b
ξ∂

c
η−ξ∂

j
y∂

l
ασ(x − y, α − ξ − η, η)

∣∣

. sup
0≤j,l

sup
(y,α)∈R2

(1 + |y| + |α|)−|m1|−|m2|−b−c (1 + |α − ξ − η|)m1 (1 + |η|)m2

(1 + min{|α − ξ − η|, |η − tan(θ)(α − ξ − η)|})−b

(1 + min{|η|, |η − tan(θ)(α − ξ − η)|})−c

. (1 + |ξ + η|)m1 (1 + |η|)m2 (1 + min{|ξ + η|, |η − tan(θ)(−ξ − η)|})−b

(1 + min{|η|, |η − tan(θ)(−ξ − η)|})−c

. (1 + |ξ + η|)m1 (1 + |η|)m2

(
1 + min{|ξ + η|, |η −

tan(θ)

1 + tan(θ
ξ|}

)−b

(
1 + min{|η|, |η +

tan(θ)

1 + tan(θ)
ξ)|}

)−c

.

19



Here we have used the Peetre’s inequality :

∀s ∈ R, ∀u, v ∈ R (1 + |u − v|)s ≤ (1 + |u|)|s| (1 + |v|)s . (3.1)

With the definition of θ∗1, we also get
∣∣∂a

x∂b
ξ∂

c
η−ξσ

∗
1(x, ξ, η)

∣∣ . (1 + |ξ + η|)m1 (1 + |η|)m2

(
1 + min{|ξ + η|, |η − tan(θ∗1)ξ|}

)−b (
1 + min{|η|, |η − tan(θ∗1)ξ)|}

)−c
.

This means exactly that σ∗
1 ∈ BS

(m1,m2),1

1,0;θ∗1 .
2−) Asymptotic formula.
As for the proof of Proposition 3.2, we can show that

σ∗
1(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

x∂k
ξ σ(x,−ξ − η, η)

corresponds to a bilinear symbol of order (m1 − N, m2) which has the same
properties than the previous one, and so belongs to the desired class. We let
the details to the reader. ⊓⊔

From a functional point of view, we have shown that the dual classes of

BS
m1,m2

1,0;θ are exactly BS
(m1,m2),1

1,0;θ∗1 and BS
(m1,m2),2
1,0;θ∗2 . By the same proof, we

have the following result :

Theorem 3.5. Let m1, m2 ∈ R be reals and θ ∈] − π/2, π/2[−{0,−π/4} be

fixed. If σ ∈ BS
m1,m2,1

1,θ then T ∗1
σ = Tσ∗

1
with σ∗

1 ∈ BS
m1,m2

1,0;θ∗1 and T ∗2
σ = Tσ∗

2

with σ∗
2 ∈ BS

(m1,m2),1

1,0;θ∗2 where the two angles θ∗1 and θ∗2 are defined by

cot(θ) + cot(θ∗1) = −1 and tan(θ) + tan(θ∗2) = −1,

and so θ∗1, θ∗2 ∈] − π/2, π/2[−{0,−π/4}. We have the exact formulas

σ∗
1(x, ξ, η) = (2π)−1

∫∫

R2

σ(y,−α − η, η)e−i(z−ξ)(x−y)dydα

σ∗
2(x, ξ, η) = (2π)−1

∫∫

R2

σ(y, ξ,−α − ξ)e−i(α−η)(x−y)dydα.

For each symbol, we have the asymptotic formulas

∀N ≥ 0, σ∗
1(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

x∂k
ξ σ(x,−ξ − η, η) ∈ BS

m1−N,m2

1,0;θ∗1
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and

∀N ≥ 0, σ∗
2(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

x∂k
ησ(x, ξ,−η − ξ) ∈ BS

m1,m2−N

1,0;θ∗2 .

We can abstract these correspondences by duality

(
BS

m1,m2

1,0;θ

)∗1
= BS

(m1,m2),1

1,0;θ∗1

(
BS

m1,m2

1,0;θ

)∗2
= BS

(m1,m2),2

1,0;θ∗2(
BS

(m1,m2),1

1,0;θ

)∗1
= BS

m1,m2

1,0;θ∗1

(
BS

(m1,m2),1

1,0;θ

)∗2
= BS

(m1,m2),1

1,0;θ∗2

(
BS

(m1,m2),2

1,0;θ

)∗1
= BS

(m1,m2),2

1,0;θ∗1

(
BS

(m1,m2),2

1,0;θ

)∗2
= BS

m1,m2

1,0;θ∗2 .

3.2 The action of composition.

We first remember the rule of composition in the linear case (see [1]) :

Proposition 3.6. Let τ1 ∈ St1
1,0 and τ2 ∈ St2

1,0 be two linear symbols. Then the

operator τ1(x, D)◦τ2(x, D) corresponds to σ(x, D) with the symbol σ ∈ St1+t2
1,0

given by

σ(x, ξ) = (2π)−1

∫∫

R2

e−iyητ1(x, ξ − η)τ2(x − y, ξ)dydη.

We have the following asymptotic formula : for all integer N ,

σ(x, ξ) −

N−1∑

α=0

iα

α!
∂α

ξ τ1(x, ξ)∂α
x τ2(x, ξ) ∈ St1+t2−N

1,0

We now come to the main result of this subsection.

Theorem 3.7. Let θ ∈] − π/2, π/2[ and σ be a symbol of BS
m1,m2

1,0;θ . Let

τ1 ∈ St1
1,0 and τ2 ∈ St2

1,0 be two linear operators of order t1 and t2. Then the
operator

T (f, g) := Tσ(τ1(x, D)f, τ2(x, D)g)
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corresponds to the operator Tm with the symbol m ∈ BS
m1+t1,m2+t2
1,0;θ given by

m(x, ξ, η) :=

(2π)−2

∫∫∫∫

R4

ei(x−y)(α−ξ)+i(x−z)(β−eta)σ(x, α, β)τ1(y, ξ)τ2(z, η)dηdzdξdy.

This symbol satisfies the following asymptotic formula : for all P, N ≥ 0

m(x, ξ, η) −

N∑

k=0

P∑

j=0

ik

k!

ij

j!
∂k

xτ1(x, ξ)∂j
xτ2(x, η)∂k

ξ ∂j
ησ(x, ξ, η)

is belonging to the class BS
m1+t1−N,m2+t2−P

1,0;θ .

Proof : Just by convenience, we will only deal with the case θ = π/4. By
definition, for l ∈ {1, 2} :

τl(x, D)(f)(x) :=

∫

R

eixξf̂(ξ)τl(x, ξ)dξ

and

Tσ(f, g)(x) :=

∫∫

R2

eix(α+β)f̂(α)ĝ(β)σ(x, α, β)dαdβ.

It is easy to check that we obtain

T (f, g)(x) = (2π)−2

∫∫

R2

eix(ξ+η)m(x, ξ, η)f̂(ξ)ĝ(η) dξdη,

with the new symbol m defined by

m(x, ξ, η) :=

(2π)−2

∫∫∫∫

R4

ei(x−y)(α−ξ)+i(x−z)(β−η)σ(x, α, β)τ1(y, ξ)τ2(z, η)dαdzdβdy.

We use a change of variables to write

m(x, ξ, η) :=

(2π)−2

∫

R4

eiyα+izβσ(x, ξ − α, η − β)τ1(x − y, ξ)τ2(x − z, η)dβdzdαdy.
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We recognize oscillating integrals :

m(x, ξ, η) = (2π)−1

∫

R2

eiyατ1(x − y, ξ)λx,η(α)dydα,

with

λx,η(α) := (2π)−1

∫

R2

eizβσ(x, ξ − α, η − β)τ2(x − z, η)dzdβ.

1−) Estimates for λ.

We have to study λx,η. By using Lemma 3.4 and by formally differentiating,
we get for a ≥ 0

|∂a
α∂λx,η(α)| . ‖∂a

ασ(x, ξ − α, η − β)τ2(x − z, η)‖(z,β),A|m2|+|m1|+a .

This norm corresponds to

‖∂a
ασ(x, ξ − α, η − β)τ2(x − z, η)‖(z,β),A|m2|+|m1|+a =

sup
0≤j,l

sup
(z,β)∈R2

(1 + |z| + |β|)−|m2|−|m1|−a
∣∣∂a

α∂j
z∂

l
βσ(x, ξ − α, η − β)τ2(x − z, η)

∣∣ .

We can deduce from the properties of σ that
∣∣∂a

α∂l
βσ(x, ξ − α, η − β)

∣∣
. (1 + |ξ − α|)m1(1 + |η − β|)m2 (1 + min{|ξ − α|, |ξ − α − η + β|})−a

(1 + min{|η − β|, |ξ − α − η + β|})−l

. (1 + |ξ − α|)m1 (1 + |η − β|)m2 (1 + min{|ξ − α|, |ξ − α − η + β|})−a ,

and similarly ∣∣∂j
z∂

l
βτ2(x − z, η)

∣∣ . (1 + |η|)t2 .

Therefore, we get

‖∂a
ασ(x, ξ − α, η − β)τ2(x − z, η)‖(z,β),A|m2|+|m1|+a

. sup
0≤j,l

sup
(z,β)∈R2

(1 + |z| + |β|)−|m2|−|m1|−a (1 + |ξ − α|)m1

(1 + |η − β|)m2 (1 + min{|ξ − α|, |ξ − α − η + β|})−a (1 + |η|)t2

. (1 + |η|)t2 (1 + min{|ξ − α|, |ξ − α − η|})−a

(1 + |ξ − α|)m1 (1 + |η|)m2 .
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We have used Peetre’s inequality (3.1). Finally, we obtain

|∂a
αλx,η(α)| . (1 + min{|ξ − α|, |ξ − α − η|})−a

(1 + |η|)t2 (1 + |ξ − α|)m1 (1 + |η|)m2 . (3.2)

Now, we can estimate the symbol m.
2−) Study of m.

We recall that m is given by

m(x, ξ, η) :=

∫∫

R2

eiyατ1(x − y, ξ)λx,η(α)dydα.

By the same arguments using Lemma 3.4, we get

|m(x, ξ, η)| . ‖τ1(x − y, ξ)λx,η(α)‖(y,α),A|m1|+|m2|
.

This norm is estimated by

‖τ1(x − y, ξ)λx,η(α)‖(y,α),A|m1|+|m2|
=

sup
0≤j,l

sup
(y,α)∈R2

(1 + |y|+ |α|)−|m1|−|m2|
∣∣∂j

y∂
l
ατ1(x − y, ξ)λx,η(α)

∣∣ .

By using (3.2) and Peetre’s inequality as previously, we obtain

‖τ1(x − y, ξ)λx,η(α)‖(y,α),A|m1|
. (1 + |ξ|)t1 (1 + |η|)t2 (1 + |ξ|)m1 (1 + |η|)m2 .

So we have the desired estimate

|m(x, ξ, η)| . (1 + |ξ|)t1+m1 (1 + |η|)m2+t2 .

We now have to control the action of differentiations on m. It is obvious that
the spatial differentiation have no importance. For each differentiation of m
with respect to ξ, we have an additional weight (1 + min{|ξ − α|, |ξ − α − η + β|})−1.
The variables α and β are controlled with an appropriate norm ‖ ‖A and so
we obtain (1 + min{|ξ|, |ξ − η|})−1. We use the same arguments for the dif-
ferentiations of m with respect to η. We finally obtain

∣∣∂a
x∂b

ξ∂
c
ηm(x, ξ, η)

∣∣ . (1 + |ξ|)t1+m1 (1 + |η|)m2+t2

(1 + min{|ξ|, |ξ − η|})−b (1 + min{|η|, |ξ − η|})−c .
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This means exactly that m ∈ BS
m1+t1,m2+t2
1,0,π/4 .

3−) The asymptotic formula.

For the intermediate symbol λx,η, by the same arguments as in the linear
case, we obtain

λx,η(α) ≃
∑

k

ik

k!
∂k

ησ(x, ξ − α, η)∂k
xτ2(x, η).

This means that for all integer N

γN(α) := λx,η(α) −
N−1∑

k=0

ik

k!
∂k

ησ(x, ξ − α, η)∂k
xτ2(x, η)

satisfies that for all p ≥ 0

|∂p
αγN | . (1 + |η|)t2−N

(1 + min{|ξ − α|, |ξ − α − η|})−p (1 + |ξ − α|)m1 (1 + |η|)m2 .

In computing the same proof for the other variable, we obtain the bilinear
asymptotic formula. We let the details to the reader. ⊓⊔

We have studied the composition from the right of the bilinear operator, by
duality we can obtain the following result for the composition from the left :

Theorem 3.8. Let θ ∈]−π/2, π/2[ and σ ∈ BS
(m1,m2),1
1,0;θ be fixed. Let τ ∈ St

1,0

be a linear pseudo-differential operator of order t. Then the operator

T (f, g) := τ(x, D)Tσ (f, g)

corresponds to Tm with the bilinear symbol m ∈ BS
(m1+t,m2),1

1,0;θ given by

m(x, ξ, η) := (2π)−1

∫

R2

ei(x−y)(ξ+η−α)σ(x, ξ, η)τ(x, α)dzdα.

This symbol satisfies the asymptotic formula : for all N ≥ 0

m(x, ξ, η) −

N−1∑

k=0

ik

k!
∂k

ξ τ(x, ξ + η)∂k
xσ(x, ξ, η) ∈ BS

(m1+t−N,m2−N),1

1,0;θ .

We have similar results for the class BS
(m1,m2),2

1,0;θ .
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Proof : The proof is identical to the previous one. We can deduce this result
too by duality with the previous Theorem and Theorem 3.3. ⊓⊔

Remark 3.9. This result improve Theorem 3 of [4], which deals only the
particular case θ = −π/4. Here we can have a result for all θ due to our
definition of symbolic classes. Their our larger than the BS1,0;θ, which are
considered in [4].

Remark 3.10. The two compositions (from the left and from the right of a
bilinear operator) seem to operate differently. We did not succeed in defining
a ”good” class of bilinear symbol, which would be invariant by these two
compositions.
There is also a new phenomenom that did not appear in the linear case : the
“principal symbol” is not invariant by changes of variable. Let us explain
what this expression means. Let κ be a smooth and nice diffeomorphism of
R (which allows us to change the frequency variable), we have also the x
independent symbol κ(ξ). Then for all x-independent bilinear symbol σ, we
are interested in the operator

T̃σ(f, g) := κ(x, D)−1Tσ(κ(x, D)(f), κ(x, D)(g)).

In the theory of the linear pseudodifferential calculus, it is well-know that
such a transformation does not change the principal symbol. By using the
previous asymptotic expansion, we see that T̃σ = Tm with

m(x, ξ, η) ≃
κ(ξ)κ(η)

κ(ξ + η)
σ(x, ξ, η)

Here the symbol “≃” has not really a sense because we have not found a
symbolic class which is invariant by the two different compositions. However
we can note that the new symbol m has not exactly the same behavior than
the initial one σ.
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