
HAL Id: hal-00232851
https://hal.science/hal-00232851

Preprint submitted on 2 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A path following algorithm for the graph matching
problem

Mikhail Zaslavskiy, Francis Bach, Jean-Philippe Vert

To cite this version:
Mikhail Zaslavskiy, Francis Bach, Jean-Philippe Vert. A path following algorithm for the graph
matching problem. 2008. �hal-00232851�

https://hal.science/hal-00232851
https://hal.archives-ouvertes.fr

A path following algorithm for the graph matching problem

Mikhail Zaslavskiy, Francis Bach, and Jean-Philippe Vert ∗†‡§

February 2, 2008

Abstract

We propose a convex-concave programming approach for the labeled weighted graph
matching problem. The convex-concave programming formulation is obtained by rewriting
the weighted graph matching problem as a least-square problem on the set of permutation
matrices and relaxing it to two different optimization problems: a quadratic convex and
a quadratic concave optimization problem on the set of doubly stochastic matrices. The
concave relaxation has the same global minimum as the initial graph matching problem,
but the search for its global minimum is also a hard combinatorial problem. We therefore
construct an approximation of the concave problem solution by following a solution path
of a convex-concave problem obtained by linear interpolation of the convex and concave
formulations, starting from the convex relaxation. This method allows to easily integrate
the information on graph label similarities into the optimization problem, and therefore to
perform labeled weighted graph matching. The algorithm is compared with some of the best
performing graph matching methods on four datasets: simulated graphs, QAPLib, retina
vessel images and handwritten chinese characters. In all cases, the results are competitive
with the state-of-the-art.

Keywords: graph matching, graph algorithms, convex programming, gradient methods, machine
learning, classification, image processing

1 Introduction

The graph matching problem is among the most important challenges of graph processing, and
plays a central role in various fields of pattern recognition. Roughly speaking, the problem consists
in finding a correspondence between vertices of two given graphs which is optimal in some sense.
Usually, the optimality refers to the alignment of graph structures and, when available, of vertices
labels, although other criteria are possible as well. A non-exhaustive list of graph matching
applications includes document processing tasks like optical character recognition [LL99,AAI95],
image analysis (2D and 3D) [WH05, BR00, CR02, CC05], or bioinformatics [RJB07, WMFH04,
Tay02].

∗Mikhail Zaslavskiy is with the Centre for Computational Biology and the Centre for Mathematical Morphology;
Jean-Philippe Vert is with the Centre for Computational Biology, École des Mines de Paris, 35 rue Saint-Honoré,
77305 Fontainebleau, France. They are also with the Institut Curie, Section Recherche, and with INSERM U900.

†E-mail: mikhail.zaslavskiy@ensmp.fr, jean-philippe.vert@ensmp.fr
‡Francis Bach is with INRIA-Willow Project, École Normale Supérieure, 45 rue d’Ulm, 75230 Paris, France
§E-mail: francis.bach@mines.org

1

During the last decades, many different algorithms for graph matching have been proposed.
Because of the combinatorial nature of this problem, it is very hard to solve it exactly for large
graphs, however some methods based on incomplete enumeration may be applied to search for an
exact optimal solution in the case of small or sparse graphs. Some examples of such algorithms
may be found in [SD76,Ull76,CFSV91].

Another group of methods includes approximate algorithms which are supposed to be much
more scalable. The price to pay for the scalability is that the solution found is usually only an
approximation of the optimal matching. Approximate methods may be divided into two groups of
algorithms. The first group is composed of methods which use spectral representations of adjacency
matrices, or equivalently embed the vertices into a Euclidean space where linear or nonlinear
matching algorithms can be deployed. This approach was pioneered by Umeyama [Ume88], while
further different methods based on spectral representations were proposed in [SB92,CR02,BR00,
WH05,CK04]. The second group of approximate algorithms is composed of algorithms which work
directly with graph adjacency matrices, and typically involve a relaxation of the complex discrete
optimization problem. The most effective algorithms were proposed in [AS93,SA96,DTC01,CC05].

An interesting instance of the graph matching problem is the matching of labeled graphs. In
that case graph vertices have associated labels, which may be numbers, categorical variables, etc...
The important point is that there is also a similarity measure between these labels. Therefore,
when we search for the optimal correspondence between vertices, we search a correspondence
which matches not only the structures of the graphs but also vertices with similar labels. Some
widely used approaches for this application only use the information about similarities between
graph labels. In vision, one such algorithm is the shape context algorithm proposed in [BMP02],
which involves a very efficient algorithm of node label construction. Another example is the
BLAST-based algorithms in bioinformatics such as the Inparanoid algorithm [KME05], where
correspondence between different protein networks is established on the basis of BLAST scores
between pairs of proteins. The main advantages of all these methods are their speed and simplicity.
However the main drawback of these methods is that they do not take into account information
about the graph structure. Some graph matching methods try to combine information on graph
structures and vertex similarities, examples of such method are presented in [DTC01,RJB07].

In this article we propose an approximate method for labeled weighted graph matching, based
on a convex-concave programming approach which can be applied for matching of large size graphs.
Our method is based on a formulation of the labeled weighted graph matching problem as a
quadratic assignment problem (QAP) over the set of permutation matrices, where the quadratic
term encodes the structural compatibility and the linear term encodes local compatibilities. We
propose two relaxations of this problem, resulting in one quadratic convex and one quadratic
concave optimization problem on the set of doubly stochastic matrices. While the concave relax-
ation has the same global minimum as the initial QAP, solving it is also a hard combinatorial
problem. We find a local minimum of this problem by following a solution path of a family of
convex-concave optimization problems, obtained by linearly interpolating the convex and concave
relaxations. Starting from the convex formulation with a unique local (and global) minimum, the
solution path leads to a local optimum of the concave relaxation. We refer to this procedure as
the PATH algorithm. We perform an extensive comparison of this PATH algorithm with several
state-of-the-art matching methods on small simulated graphs and various QAP benchmarks, and
show that it consistently provides state-of-the-art performances while scaling to graphs of up to
a few thousands vertices on a modern desktop computer. We further illustrate the use of the
algorithm on two applications in image processing, namely the matching of retina images based
on vessel organization, and the matching of handwritten chinese characters.

2

The rest of the paper is organized as follows: Section 2 presents the mathematical formulation
of the graph matching problem. In Section 3 we present our new approach. Then, in Section 4,
we present the comparison of our method with Umeyama’s algorithm and the linear programming
approach on the example of artificially simulated graphs. In Section 5, we test our algorithm on the
QAP benchmark library, and we compare obtained results with the results published in [DTC01]
for the QBP algorithm and graduated assignment algorithms. Finally, in Section 6 we present two
examples of real-world image processing.

2 Problem description

A graph G = (V, E) of size N is defined by a finite set of vertices V = {1, . . . , N} and a set
of edges E ⊂ V × V . We consider only undirected graphs with no self-loop, i.e., such that
(i, j) ∈ E =⇒ (j, i) ∈ E and (i, i) /∈ E for any vertices i, j ∈ V . Each such graph can
be equivalently represented by a symmetric adjacency matrix A of size |V | × |V |, where Aij is
equal to one if there is an edge between vertex i and vertex j, zero otherwise. An interesting
generalization is a weighted graph which is defined by association of real values wij (weights)
to all edges of graph G. Such graphs are represented by real valued adjacency matrices A with
Aij = wij. This generalization is important because in many applications the graphs of interest
have associated weights for all their edges, and taking into account these weights may be crucial
in construction of efficient methods. In the following when we talk about “adjacency matrix” we
mean real-valued “weighted” adjacency matrix.

Given two graphs G and H with the same number of vertices N , the problem of matching G
and H consists in finding a correspondence between vertices of G and vertices of H which aligns
G and H in some optimal way. We will consider in Section 3.8 an extension of the problem to
graphs of different sizes. For graphs with the same size N , the correspondence between vertices is
a permutation of N vertices, which can be defined by a permutation matrix P , i.e., a {0, 1}-valued
N × N matrix with exactly one entry 1 in each column and each row. The matrix P entirely
defines the mapping between vertices of G and vertices of H , Pij being equal to 1 if the i-th vertex
of G is matched to the j-th vertex of H , and 0 otherwise. After applying the permutation defined
by P to the vertices of H we obtain a new graph isomorphic to H which we denote by P (H).
The adjacency matrix of the permuted graph, AP (H), is simply obtained from AH by the equality
AP (H) = PAHP T .

In order to assess whether a permutation P defines a good matching between the vertices of G
and those of H , a quality criterion must be defined. Although other choices are possible, we focus
in this paper on measuring the discrepancy between the graphs after matching, by the number of
edges (in the case of weighted graphs, it will be the total weight of edges) which are present in
one graph and not in the other. In terms of adjacency matrices, this number can be computed as:

F0(P) = ||AG − AP (H)||
2
F = ||AG − PAHP T ||2F , (1)

where ||.||F is the Frobenius matrix norm defined by ‖A‖2F = trATA = (
∑

i

∑
j A

2
ij). A popular

alternative to the Frobenius norm formulation (1) is the 1-norm formulation obtained by replacing
the Frobenius norm by the 1-norm ‖A‖1 =

∑
i

∑
j |Aij |, which is equal to the Frobenius norm

when comparing {0, 1}-valued matrices, but may differ in the case of general matrices.
Therefore, the problem of graph matching can be reformulated as the problem of minimizing

F0(P) over the set of permutation matrices. This problem has a combinatorial nature and there

3

is no known polynomial algorithm to solve it [GM79]. It is therefore very hard to solve it in the
case of large graphs, and numerous approximate methods have been developed.

An interesting generalization of the graph matching problem is the problem of labeled graph
matching. Here each graph has associated labels to all its vertices and the objective is to find an
alignment that fits well graph labels and graph structures at the same time. If we let Cij denote
the cost of fitness between the i-th vertex of G and the j-th vertex of H then the matching problem
based only on label comparison can be formulated as follows:

min
P∈P

tr(CT P) =

N∑

i=1

N∑

j=1

CijPij =

N∑

i=1

Ci,P (i), (2)

where P denotes the set of permutation matrices. A natural way of unifying of (2) and (1) to
match both the graph structure and the vertice’s labales is then to minimize a convex combination
[DTC01]:

min
P∈P

(1− α)F0(P) + αtr(CT P), (3)

that makes explicit, through the parameter α ∈ [0, 1], the trade-off between cost of individual
matchings and faithfulness to the graph structure. A small α value emphasizes the matching of
structures, while a large α value gives more importance to the matching of labels.

2.1 Permutation matrices

Before describing how we propose to solve (1) and (3), we first introduce some notations and
bring to notice some important characteristics of these optimization problems. They are defined
on the set of permutation matrices, which we denoted by P. The set P is a set of extreme points
of the set of doubly stochastic matrices D = {A : A1N = 1N , AT 1N = 1N , A ≥ 0}, where 1N

denotes the N -dimensional vector of all ones [BL00]. This shows that when a linear function is
minimized over the set of doubly stochastic matrices D, a solution can always be found in the set of
permutation matrices. Consequently, minimizing a linear function over P is in fact equivalent to a
linear program and can thus be solved in polynomial time by, e.g., interior point methods [BV03].
In fact, one of the most efficient methods to solve this problem is the Hungarian algorithm, which
uses another strategy to solve this problem in O(N3).

At the same time P may be considered as a subset of orthonormal matrices O = {A : AT A = I}
of D and in fact P = D ∩O. An (idealized) illustration of these sets is presented in Figure 1.

2.2 Approximate methods: existing works

A good review of graph matching algorithms may be found in [DPCM04]. Here we only present a
brief description of some approximate methods which illustrate well ideas behind two subgroups
of these algorithms. As mentioned in the introduction, one popular approach to find approximate
solutions to the graph matching problem is based on the spectral decomposition of the adjacency
matrices of the graphs to be matched. In this approach, the singular value decompositions of the
graph adjacency matrices are used:

AG = UGΛGUT
G , AH = UHΛHUT

H , (4)

where the columns of the orthogonal matrices UG and UH consist of eigenvectors of AG and AH

respectively, and ΛG and ΛH are diagonal matrices of eigenvalues.

4

Figure 1: Relation between three matrix sets. O—set of orthogonal matrices, D — set of doubly
stochastic matrices, P = D ∩ O—set of permutation matrices.

If we consider the rows of eigenvector matrices UG and UH as graph node coordinates in
eigenspaces, then we can match the vertices with similar coordinates through a variety of meth-
ods [Ume88, CR02, CK04]. These methods suffer from the fact that the spectral embedding of
graph vertices is not uniquely defined. First, the unit norm eigenvectors are at most defined up to
a sign flip and we have to choose their signs synchronously. Although it is possible to use some nor-
malization convention, such as choosing the sign of each eigenvector in such a way that the biggest
component is always positive, this usually does not guarantee a perfect sign synchronization, in
particular in the presence of noise. Second, if the adjacency matrix has multiple eigenvalues, then
the choice of eigenvectors becomes arbitrary within the corresponding eigen-subspace, as they are
defined only up to rotations [GL96].

One of the first spectral approximate algorithms was presented by Umeyama [Ume88]. To
avoid the ambiguity of eigenvector selection, Umeyama proposed to consider the absolute values
of eigenvectors. According to this approach, the correspondence between graph nodes is estab-
lished by matching the rows of |UG| and |UH | (which are defined as matrices of absolute values).
The criterion of optimal matching is the total distance between matched rows, leading to the
optimization problem:

min
P∈P

‖ |UG| − P |UH | ‖F ,

or equivalently:
max
P∈P

tr(|UH||UG|
TP) . (5)

The optimization problem (5) is a linear program on the set of permutation matrices which can
be solved by the Hungarian algorithm in O(N3) [McG83,Kuh55].

The second group of approximate methods consists of algorithms which work directly with
the objective function in (1), and typically involve various relaxations to optimizations problems
that can be efficiently solved. An example of such an approach is the linear programming method

5

proposed by Almohamad and Duffuaa in [AS93]. They considered the 1-norm as the matching
criterion for a permutation matrix P ∈ P:

F ′
0(P) = ||AG − PAHP T ||1 = ||AGP − PAH ||1. (6)

The linear program relaxation is obtained by optimizing F ′
0(P) on the set of doubly stochastic

matrices D instead of P:
min
P∈D

F ′
0(P) , (7)

where the 1-norm of a matrix is defined as the sum of the absolute values of all the elements of a
matrix. A priori the solution of (7) is an arbitrary doubly stochastic matrix X ∈ D, so the final
step is a projection of X on the set of permutation matrices (we let denote ΠPX the projection
of X onto P) :

P ∗ = ΠPX = arg min
P∈P

||P −X||2F ,

or equivalently:
P ∗ = arg max

P∈P
XT P . (8)

The projection (8) can be performed with the Hungarian algorithm, with a complexity cubic in the
dimension of the problem. The main disadvantage of this method is that the dimensionality (i.e.,
number of variables and number of constraints) of the linear program (8) is O(N2), and therefore
it is quite hard to process graphs of size more than one hundred nodes.

Other convex relaxations of (1) can be found in [DTC01] and [SA96]. In the next section we
describe our new algorithm which is based on the technique of convex-concave relaxations of the
initial problems (1) and (3).

3 Convex-concave relaxation

Let us start the description of our algorithm for unlabeled weighted graphs. The generalization
to labeled weighted graphs is presented in Section 3.7. The criterion of graph matching problem
we consider for unlabeled graphs is the square of the Frobenius norm of the difference between
adjacency matrices (1). Since permutation matrices are also orthogonal matrices (i.e., PP T = I
and P TP = I), we can rewrite F0(P) on P as follows:

F0(P) = ‖AG − PAHP T‖2F = ‖(AG − PAHP T)P‖2F = ‖AGP − PAH‖
2
F . (9)

The graph matching problem is then the problem of minimizing F0(P) over P, which we call GM:

GM: min
P∈P

F0(P) . (10)

3.1 Convex relaxation

A first relaxation of GM is obtained by expanding the convex quadratic function F0(P) on the
set of doubly stochastic matrices D:

QCV: min
P∈D

F0(P) . (11)

The QCV problem is a convex quadratic program that can be solved in polynomial time, e.g., by
the Frank-Wolfe algorithm [FW56] (see Section 3.5 for more details). However, the optimal value

6

is usually not an extreme points of D, and therefore not a permutation matrix. If we want to use
only QCV for the graph matching problem, we therefore have to project its solution on the set
of permutation matrices, and to make, e.g., the following approximation:

arg min
P

F0(P) ≈ ΠP arg min
D

F0(P) . (12)

Although the projection ΠP can be made efficiently in O(N3) by the Hungarian algorithm, the
difficulty with this approach is that if arg minD F0(P) is far from P then the quality of the
approximation (12) may be poor: in other words, the work performed to optimize F0(P) is partly
lost by the projection step which is independent of the cost function. The PATH algorithm that
we present later can be thought of as a improved projection step that takes into account the cost
function in the projection.

3.2 Concave relaxation

We now present a second relaxation of GM, which results in a concave minimization problem.
For that purpose, let us introduce the diagonal degree matrix D of an adjacency matrix A, which
is the diagonal matrix with entries Dii = d(i) =

∑N

i=1 Aij for i = 1, . . . , N , as well as the Laplacian
matrix L = D−A. A having only nonnegative entries, it is well-known that the Laplacian matrix
is positive semidefinite [Chu97]. We can now rewrite F0(P) as follows:

F0(P) = ||AGP − PAH ||
2
F

= ||(DGP − PDH)− (LGP − PLH)||2F

= ||DGP − PDH||
2
F − 2tr[(DGP− PDH)T(LGP− PLH)] + ||LGP− PLH||

2
F .

(13)

Let us now consider more precisely the second term in this last expression:

tr[(DGP− PDH)T(LGP− PLH)] = trPPTDT
GLG︸ ︷︷ ︸

−
P

d2
G

(i)

+ trLHDT
HPTP︸ ︷︷ ︸

−
P

d2
G

(i)

− trPTDT
GPLH︸ ︷︷ ︸

−
P

dG(i)dH (i)

− trDT
HPTLGP︸ ︷︷ ︸

−
P

dH(i)dG(i)

= −
∑

(dG(i)− dH(i))2

= ‖DG −DH‖
2
F

= ‖DGP − PDH‖
2
F .

(14)

Plugging (14) into (13) we obtain

F0(P) = ‖DGP − PDH‖
2
F − 2‖DGP − PDH‖

2
F + ‖LGP − PLH‖

2
F

= −‖DGP − PDH‖
2
F + ‖LGP − PLH‖

2
F

= −
∑

i,j

Pij(DG(i)−DH(j))2 + tr(PP T

︸ ︷︷ ︸
I

LT
GLG) + tr(LT

H P T P︸ ︷︷ ︸
I

LH)− 2 tr(PTLT
GPLH)︸ ︷︷ ︸

vec(P)T(LH⊗LG)vec(P)

= −tr(∆P) + tr(L2
G) + tr(L2

H)− 2vec(P)T(LH ⊗ LG)vec(P) ,

(15)

where we introduced the matrix ∆i,j = (DH(j, j) − DG(i, i))2 and we used ⊗ to denote the
Kronecker product of two matrices1.

1Definition of the Kronecker product and some important properties may be found in the appendix B.

7

Let us denote F1(P) the part of (15) which depends on P :

F1(P) = −tr(∆P)− 2vec(P)T(LH ⊗ LG)vec(P). (16)

From (15) we see that the permutation matrix which minimizes F1 over P is the solution of the
graph matching problem. Now, minimizing F1(P) over D gives us a relaxation of (10) on the
set of doubly stochastic matrices. Since graph Laplacian matrices are positive semi-definite, the
matrix LH ⊗ LG is also positive semidefinite as a Kronecker product of two symmetric positive
semi-definite matrices [GL96]. Therefore the function F1(P) is concave on D, and we obtain a
concave relaxation of the graph matching problem:

QCC: min
P∈D

F1(P). (17)

Interestingly, the global minimum of a concave function is necessarily located at a boundary of
the convex set where it is minimized [Roc70], so the minimium of F1(P) on D is in fact in P.

At this point, we have obtained two relaxations of GM as optimization problems on D: the
first one is the convex minimization problem QCV (11), which can be solved efficiently but leads
to a solution in D that must then be projected onto P, and the other is the concave minimization
problem QCC (17) which does not have an efficient (polynomial) optimization algorithm but has
the same solution as the initial problem GM. We note that these convex and concave relaxation of
the graph matching problem can be more generally derived for any quadratic assignment problems
[AB01].

3.3 PATH algorithm

We propose to approximatively solve QCC by tracking a path of local minima over D of a series
of functions that linearly interpolate between F0(P) and F1(P), namely:

Fλ(P) = (1− λ)F0(P) + λF1(P) ,

for 0 ≤ λ ≤ 1. For all λ ∈ [0, 1], Fλ is a quadratic function (which is in general neither convex
nor concave for λ away from zero or one). We recover the convex function F0 for λ = 0, and the
concave function F1 for λ = 1. Our method searches sequentially local minima of Fλ, where λ
moves from 0 to 1. More precisely, we start at λ = 0, and find the unique local minimum of F0

(which is in this case its unique global minimum) by any classical QP solver. Then, iteratively, we
find a local minimum of Fλ+dλ given a local minimum of Fλ by performing a local optimization
of Fλ+dλ starting from the local minimum of Fλ, using for example the Frank-Wolfe algorithm.
Repeating this iterative process for dλ small enough we obtain a path of solutions P ∗(λ), where
P ∗(0) = arg minP∈D F0(P) and P ∗(λ) is a local minimum of Fλ for all λ ∈ [0, 1]. Noting that
any local minimum of the convex function F1 on D is in P, we finally output P ∗(1) ∈ P as an
approximate solution of GM.

The pseudo-code for this PATH algorithm is presented in Figure 2. The rationale behind it is
that among the local minima of F1(P) on D, we expect the one connected to the global minimum
of F0 through path of local minima to be a good approximation of the global minima. Such a
situation is for example shown in Figure 3, where in 1 dimension the global minimum of a concave
quadratic function on an interval (among two candidate points) can be found by following the
path of local minima connected to the unique global minimum of a convex function.

More precisely, and although we do not have any formal result about the optimality of the
PATH optimization method, we can mention a few interesting properties of this method:

8

1. Initialization:

(a) λ := 0

(b) P ∗(0) = arg min F0 — convex optimization problem, global minimum is found by Frank-
Wolfe algorithm.

2. Cycle over λ:
do

(a) λnew := λ + dλ

(b) if |Fλnew
(P ∗(λ))− Fλnew

(P ∗(λ))| < ǫ then
λ = λnew

else
P ∗(λnew) = arg min Fλnew

is found by Frank-Wolfe starting from P ∗(λ)
λ = λnew

endif

while λ < 1

3. Output: P out := P ∗(1)

Figure 2: Schema of the PATH algorithm

• We know from (15) that for P ∈ P, F1(P) = F0(P) − κ, where κ = tr(L2
G) + tr(L2

H) is a
constant independent of P . As a result, it holds for all λ ∈ [0, 1] that, for P ∈ P:

Fλ(P) = F0(P)− λκ .

This shows that if for some λ the global minimum of Fλ(P) over D lies in P, then this
minimum is also the global minimum of F0(P) over P and therefore the optimal solution of
the initial problem. Hence, if for example the global minimum of Fλ is found on P by the
PATH algorithm (for instance, if Fλ is still convex), then the PATH algorithm leads to the
global optimum of F . This situation can be seen in the toy example in Figure 3 where, for
λ = 0.3, Fλ has its unique minimum at the boundary of the domain.

• The sub-optimality of the PATH algorithm comes from the fact that, when λ increases, the
number of local minima of Fλ may increase and the sequence of local minima tracked by
PATH may not be global minima. However we can expect the local minima followed by the
PATH algorithm to be interesting approximations for the following reason. First observe
that if P1 and P2 are two local minima of Fλ for some λ ∈ [0, 1], then the restriction of
Fλ to (P1, P2) being a quadratic function it has to be concave and P1 and P2 must be on
the boundary of D. Now, let λ1 be the smallest λ such that Fλ has several local minima
on D. If P1 denotes the local minima followed by the PATH algorithm, and P2 denotes
the “new” local minimum of Fλ1

, then necessarily the restriction of Fλ1
to (P1, P2) must be

concave and have a vanishing derivative in P2 (otherwise, by continuity of Fλ in λ, there
would be a local minimum of Fλ near P2 for λ slightly smaller than λ1). Consequently we
necessarily have Fλ1

(P1) < Fλ1
(P2). This situation is illustrated in Figure 3 where, when the

second local minimum appears for λ = 0.75, it is worse than the one tracked by the PATH

9

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

λ=1

λ=0.75
λ=0.3

λ=0.2
λ=0.1

λ=0

Figure 3: Illustration for path optimization approach. F0 (λ = 0) — initial convex function,
F1 (λ = 1) — initial concave function, bold black line — path of function minima P ∗(λ) (λ =
0 . . . 0.1 . . . 0.2 . . . 0.3 . . . 0.75 . . . 1)

algorithm. More generally, when “new” local minima appears, they are strictly worse than
the one tracked by the PATH algorithm. Of course, they may become better than the PATH
solution when λ continues to increase.

Of course, in spite of these justifications the PATH algorithm only gives an approximation of
the global minimum in the general case. In Appendix A, we give two simple examples when the
PATH algorithm respectively succeeds and fails to find the global minimum of the graph matching
problem.

3.4 Numerical continuation method interpretation

Our path following algorithm may be considered as a particular case of numerical continuation
methods (sometimes called path following methods) [AK90]. These allow to estimate curves given
in the following implicit form:

T (u) = 0 where T is a mapping T : RK+1 → RK . (18)

In fact, our PATH algorithm corresponds to a particular implementation of the so-called Generic
Predictor Corrector Approach [AK90] widely used in numerical continuation methods.

In our case, we have a set of problems minP∈D (1− λ)F0(P) + λF1(P) parametrized by λ ∈
[0, 1]. In other words for each λ we have to solve the following system of Karush-Kuhn-Tucker
(KKT) equations:

(1− λ)∇P F0(P) + λ∇PF1(P) + BT ν + µS = 0 ,

BP− 12N = 0 ,

PS = 0 ,

where S is a set of active constraints, i.e., of pairs of indices (i, j) that satisfy Pij = 0, BP−12N = 0
codes the conditions

∑
j Pij = 1 ∀i and

∑
i Pij = 1 ∀j, ν and µS are dual variables. We have to

10

solve this system for all possible sets of active constraints S on the open set of matrices P that
satisfy Pi,j > 0 for (i, j) /∈ S, in order to define the set of stationary points of the functions Fλ.
Now if we let T (P, ν, µ, λ) denote the left-hand part of the KKT equation system then we have
exactly (18) with K = N2 + 2N + #S. From the implicit function theorem [Mil69], we know that
for each set of constraints S,

WS = {(P, ν, µS, λ) : T (P, ν, µS, λ) = 0 and T ′(P, ν, µS, λ) has the maximal possible rank} (19)

is a smooth 1-dimensional curve or the empty set and can be parametrized by λ. In term of
the objective function Fλ(P), the condition on T ′(P, ν, µS, λ) may be interpreted as a prohibition
for the projection of Fλ(P) on any feasible direction to be a constant. Therefore the whole set
of stationary points of Fλ(P) when λ is varying from 0 to 1 may be represented as a union
W (λ) = ∪SWS(λ) where each WS(λ) is homotopic to a 1-dimensional segment. The set W (λ)
may have quite complicated form. Some of WS(λ) may intersect each other, in this case we observe
a bifurcation point, some of WS(λ) may connect each other, in this case we have a transformation
point of one path into another, some of WS(λ) may appear only for λ > 0 and/or disappear before
λ reaches 1. At the beginning the PATH algorithm starts from W∅(0), then it follows W∅(λ) until
the border of D (or a bifurcation point). If such an event occurs before λ = 1 then PATH moves
to another segment of solutions corresponding to different constraints S, and keeps moving along
segments and sometimes jumping between segments until λ = 1. As we said in the previous section
one of the interesting properties of PATH algorithm is the fact that if W ∗

S(λ) appears only when
λ = λ1 and W ∗

S(λ1) is a local minimum then the value of the objective function Fλ1
in W ∗

S(λ1) is
greater than in the point traced by the PATH algorithm.

3.5 Some implementation details

In this section we provide a few details relevant for the efficient implementation of the PATH
algorithms.

Frank-Wolfe Among the different optimization techniques for the optimization of Fλ(P) start-
ing from the current local minimum tracked by the PATH algorithm, we use in our experiments
the Frank-Wolfe algorithm which is particularly suited to optimization over doubly stochastic ma-
trices [D.B99]. The idea of the this algorithm is to sequentially minimize linear approximations of
F0(P). Each step includes three operations:

1. estimation of the gradient ∇Fλ(Pn),

2. resolution of the linear program P ∗
n = arg minP∈D〈∇Fλ(Pn), P 〉,

3. line search: finding the minimum of Fλ(P) on the segment [Pn P ∗
n].

An important property of this method is that the second operation can be done efficiently by the
Hungarian algorithm, in O(N3).

Efficient gradient computations Another essential point is that we do not need to store
matrices of size N2 × N2 for the computation of ∇Fλ(P), because the product in ∇Fλ(P) =
−vec(∆T) − 2(LH ⊗ LG)vec(P) can be expressed in terms of N × N matrices and Kronecker
products:

∇F1(P) = −vec(∆T)− 2(LH ⊗ LG)vec(P) = −vec(∆T)− 2vec((LGPLT
H)).

11

Initialization The proposed algorithm can be accelerated by the application of Newton algo-
rithm as the first step of QCV (minimization of F0(P)). First, let us rewrite the QCV problem
as follows:

min
P∈D

‖AGP − PAH‖
2
F ⇔

min
P∈D

‖(I ⊗ AG − AT
H ⊗ I)vec(P)‖2F ⇔

min
P∈D

vec(P)T (I ⊗AG −AT
H ⊗ I)T (I ⊗ AG − AT

H ⊗ I)︸ ︷︷ ︸
Q

vec(P)⇔

min
P∈D

vec(P)TQvec(P)⇔





minP vec(P)T Qvec(P) such that
Bvec(P) = 12N

vec(P) ≥ 0N2

(20)

where B is the matrix which codes the conditions
∑

j

Pi,j = 1 and
∑

i

Pi,j = 1. The Lagrangian

has the following form

L(P, ν, λ) = vec(P)TQvec(P) + νT (Bvec(P)− 12N) + µT vec(P), (21)

where ν and µ are Lagrange multipliers. Now we would like to use Newton method for constrained
optimization [D.B99] to solve (20). Let µa denote the set of variables associated to the set of active
constraints vec(P) = 0 at the current points, then the Newton step consist in solving the following
system of equations:




2Q BT Ia

B 0 0
Ia 0 0







vec(P)
ν
µa


 =




0
1
0




N2 elements,
2N elements,
number of active inequality constraints.

(22)

More precisely we have to solve (22) for P . The problem is that in general situations this problem
is computationally demanding because it involves the inversion of matrices of size O(N2)×O(N2).
In some particular cases, however, the Newton step becomes feasible. Typically, if none of the
constraints vecP ≥ 0 are active, then (22) takes the following form2:

[
2Q BT

B 0

] [
vec(P)
ν

]
=

[
0
1

]
N2 elements ,
2N elements .

(23)

The solution is then obtained as follows:

vec(P)KKT =
1

2
Q−1BT (BQ−1BT)−112N . (24)

Because of the particular form of matrices Q and B, the expression (24) may be computed very
simply with the help of Kronecker product properties in O(N3) instead of O(N6). More precisely,
the first step is the calculation of M = BQ−1BT where Q = (I ⊗BG−BH ⊗ I)2. The matrix Q−1

may be represented as follows:

Q−1 = (UH ⊗ UG)(I ⊗ ΛG − ΛH ⊗ I)−2(UH ⊗ UG)T . (25)

2It is true if we start our algorithm, for example, from the constant matrix P0 = 1

N
1N1T

N
.

12

Therefore the (i, j)-th element of M is the following product:

BiQ
−1BT

j = vec(UT
HB̃i

T
UG)T)(ΛG − ΛH)−2vec(UT

GB̃j

T
UH) , (26)

where Bi is the i-th row of B and B̃i is Bi reshaped into a N ×N matrix. The second step is an
inversion of the 2N × 2N matrix M , and a sum over columns Ms = M−112N . The last step is a
multiplication of Q−1 by BT Ms, which can be done with the same tricks as the first step. The
result is the value of matrix PKKT . We then have two possible scenarios:

1. If PKKT ∈ D, then we have found the solution of (20).

2. Otherwise we take the point of intersection of the line (P0, PKKT) and the border ∂D as
the next point and we continue with Frank-Wolfe algorithm. Unfortunately we can do
the Newton step only once, then some of P ≥ 0 constraints become active and efficient
calculations are not feasible anymore. But even in this case the Newton step is generally
very useful because it decreases a lot the value of the objective function.

3.6 Algorithm complexity

Here we present the complexity of the algorithms discussed in the paper.

• Umeyama’s algorithm has three components: matrix multiplication, calculation of eigenvec-
tors and application of the Hungarian algorithm for (5). Complexity of each component is
equal to O(N3). Thus Umeyama’s algorithm has complexity O(N3).

• LP approach (7) has complexity O(N7) (worst case) because it may be rewritten as an linear
optimization problem with 3N2 variables [BV03].

• Each step of the path algorithm has complexity O(N3): multiplication of N ×N matrices,
eigendecompostion problem and Hungarian algorithm. In addition the complexity of path
algorithm depends on the number of iterations, this number is a function of the stopping
criterion (for instance, value of the gradient).

3.7 Vertex pairwise similarities

If we match two labeled graphs, then we may increase the performance of our method by using
information on pairwise similarities between their nodes. In fact one method of image matching
uses only this type of information, namely shape context matching [BMP02]. To integrate the
information on vertex similarities we use the approach proposed in (3), but in our case we use
Fλ(P) instead of F0(P)

min
P

F α
λ (P) = min

P
(1− α)Fλ(P) + αtr(CT P), . (27)

The advantage of the last formulation is that F α
λ (P) is just Fλ(P) with an additional linear term.

Therefore we can use the same algorithm for the minimization of F α
λ (P) as the one we presented

for the minimization of Fλ(P).

13

3.8 Matching graphs of different sizes

Often in practice we have to match graphs of different sizes NG and NH (suppose, for example,
that NG > NH). In this case we have to match all vertices of graph H to a subset of vertices of
graph G. In the usual case when NG = NH the error (1) corresponds to the number of mismatched
edges (edges which exist in one graph and do not exist in the other one). When we match graphs
of different sizes the situation is a bit more complicated. Let V +

G ⊂ VG denote the set of vertices
of graph G that are selected for matching to vertices of graph H , let V −

G = VG \ V +
G denote all the

rest. Therefore all edges of the graph G are divided into four parts EG = E++
G ∪E+−

G ∪E−+
G ∪E−−

G ,
where E++

G are edges between vertices from V +
G , E−−

G are edges between vertices from V −
G , E+−

G

and E+−
G are edges from V +

G to V −
G and from V −

G to V +
G respectively. For undirected graphs the

sets E+−
G and E+−

G are the same (but, for directed graphs we do not consider, they would be
different). The edges from E−−

G , E+−
G and E−+

G are always mismatched and a question is whether
we have to take them into account in the objective function or not. According to the answer we
have three types of matching error (four for directed graphs) with interesting interpretation.

1. We count only the number of mismatched edges between H and the chosen subgraph G+ ⊂
G. It corresponds to the case when the matrix P from (1) is a matrix of size NG ×NH and
NG −NH rows of P contain only zeros.

2. We count the number of mismatched edges between H and chosen subgraph G+ ⊂ G. And
we also count all edges from E−−

G , E+−
G and E−+

G . In this case P from (1) is a matrix of size
NG × NG. And we transform matrix AH into a matrix of size of size NG × NG by adding
NG−NH zero rows and zero columns. It means that we add dummy isolated vertices to the
smallest graph, and then we match graphs of the same size.

3. We count the number of mismatched edges between H and chosen subgraph G+ ⊂ G. And
we also count all edges from E+−

G (or E−+
G). It means that we count matching error between

H and G+ and we count also the number of edges which connect G+ and G−. In other words
we are looking for subgraph G+ which is similar to H and which is maximally isolated in
the graph G.

Each type of error may be useful according to context and interpretation, but a priori, it seems
that the best choice is the second one where we add dummy nodes to the smallest graph. The main
reason is the following. Suppose that graph H is quite sparse, and suppose that graph G has two
candidate subgraphs G+

s (also quite sparse) and G+
d (dense). The upper bound for the matching

error between H and G+
s is #VH+#VG+

s
, the lower bound for the matching error between H and

G+
d is #VG+

d

-#VH . So if #VH + #VG+
s

< #VG+

d

−#VH then we will always choose the graph G+
s

with the first strategy, even if it is not similar at all to the graph H . The main explanation of this
effect lies in the fact that the algorithm tries to minimize the number of mismatched edges, and
not to maximize the number of well matched edges. In contrast, when we use dummy nodes, we
do not have this problem because if we take a very sparse subgraph G+ it increases the number of
edges in G−(the common number of edges in G+ and G− is constant and is equal to the number
of edges in G) and finally it decreases the quality of matching.

14

4 Simulations

4.1 Synthetic examples

In this section we compare the proposed algorithm with some classical methods on artificially
generated graphs. Our choice of random graph types is based on [NSW01] where authors discuss
different types of random graphs which are the most frequently observed in various real world
applications (world wide web, collaborations networks, social networks, etc...). Each type of
random graphs is defined by the distribution function of node degree Prob(node degree = k) =
V D(k). The vector of node degrees of each graph is supposed to be an i.i.d sample from V D(k).
In our experiments we have used the following types of random graphs:

Binomial law Geometric law Power law

V D(k) = Ck
Npk(1− p)1−k V D(k) = (1− e−µ)eµk V D(k) = Cτk

−τ

The schema of graph generation is the following

1. generate a sample d = (d1, . . . , dN) from V D(k)

2. if
∑

i di is odd then goto step 1

3. while
∑

i di > 0

(a) choose randomly two non-zero elements from d: dn1 and dn2

(b) add edge (n1, n2) to the graph

(c) dn1 ← dn1 − 1i dn2 ← dn2 − 1

If we are interested in isomorphic graph matching then we compare just the initial graph and
its randomly permuted copy. To test the matching of non-isomorphic graphs, we add randomly
σnNE edges to the initial graph and to its permitted copy, where NE is the number of edges in
the original graph, and σn is the noise level.

4.2 Results

The first series of experiments are experiments on small size graphs (N=8), here we are interested
in comparison of the PATH algorithm (see figure 2), the QCV approach (11), Umeyama spectral
algorithm (5), the linear programming approach (7) and exhaustive search which is feasible for
the small size graphs. The algorithms were tested on the three types of random graphs (binomial,
exponential and power). The results are presented in Figure 4. The same experiment was repeated
for middle-sized graphs (N = 20, Figure 5) and for large graphs (N = 100, Figure 6).

In all cases, the PATH algorithm works much better than all other approximate algorithms.
There are some important things to note here. First, the choice of norm in (1) is not very
important — results of QCV and LP are about the same. Second, following the solution paths
is very useful compared to just minimizing the convex relaxation and projecting the solution
on the set of permutation matrices (PATH algorithms works much better than QCV). Another
noteworthy observation is that the performance of PATH is very close to the optimal solution
when the later can be evaluated.

We note that sometimes the matching error decreases as the noise level increases (e.g., in
Figures 6c,5c). The explanation is the following. The matching error is upper bounded by the

15

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH
OPT

(a) bin

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH
OPT

(b) exp

0 0.5 1
0

2

4

6

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH
OPT

(c) pow

Figure 4: Matching error (mean value over sample of size 100) as a function of noise. Graph
size N=8. U — Umeyama’s algorithm, LP — linear programming algorithm, QCV — convex
optimization, PATH — path minimization algorithm,OPT — an exhaustive search (the global
minimum). The range of error bars is the standard deviation of matching errors

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH

(a) bin

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH

(b) exp

0 0.5 1
0

10

20

30

40

noise level

m
at

ch
in

g
er

ro
r

U
LP
QCV
PATH

(c) pow

Figure 5: Matching error (mean value over sample of size 100) as a noise function. Graph size
N=20. U — Umeyama’s algorithm, LP — linear programming algorithm, QCV — convex opti-
mization, PATH — path minimization algorithm.

0 0.5 1
0

100

200

300

400

noise level

m
at

ch
in

g
er

ro
r

U
QCV
PATH

(a) bin

0 0.5 1
0

200

400

600

800

noise level

m
at

ch
in

g
er

ro
r

U
QCV
PATH

(b) exp

0 0.5 1
0

500

1000

noise level

m
at

ch
in

g
er

ro
r

U
QCV
PATH

(c) pow

Figure 6: Matching error (mean value over sample of size 100) as a noise function. Graph size
N=100. U — Umeyama’s algorithm, QCV — convex optimization, PATH — path minimization
algorithm.

16

minimum of the total number of zeros in the adjacency matrices AG and AH . So when graphs are
dense and noise level increases, it makes graphs even more dense. And therefore the upper bound
of matching error decreases.

Another important aspect to compare the different algorithms is their run-time complexity.
Figure 7 shows the time needed to obtain the matching between two graphs as a function of the
number of vertices N , for the different methods. These curves are coherent with theoretical values
of algorithm complexities summarized in Section 3.6. In particular we observe that Umeyama’s
algorithm is the fastest method, but that QCV and PATH have the same complexity in N . The
LP method is competitive with QCV and PATH for small graphs, but has a worse complexity in
N .

1 1.5 2
−4

−2

0

2

log(N)

lo
g(

se
c)

LP
QCV
PATH
U

(a) bin

1 1.5 2
−4

−2

0

2

log(N)

lo
g(

se
c)

LP
QCV
PATH
U

(b) exp

1 1.5 2
−4

−2

0

2

4

log(N)

lo
g(

se
c)

LP
QCV
PATH
U

(c) pow

Figure 7: Timing of U,LP,QCV and PATH algorithms as a function of graph size, for the different
random graph models. LP slope ≈ 6.7, U, QCV and PATH slope ≈ 3.4

17

5 QAP benchmark library

The problem of graph matching may be considered as a particular case of the quadratic assignment
problem (QAP). The minimization of the loss function (1) is equivalent to the minimization of the
following function:

min
P

tr(PTAT
GPAH) . (28)

Therefore it is interesting to compare our method with other approximate methods proposed for
QAP. [DTC01] proposed the QPB algorithm for that purpose and tested it on matrices from
the QAP benchmark library [Cel07], QPB results were compared to the results of graduated
assignment algorithm GRAD [SA96] and Umeyama’s algorithm. Results of PATH application to
the same matrices are presented in Table 1, scores for QPB and graduated assignment algorithm
are taken directly from the publication [DTC01]. We observe that on 14 out of 16 benchmark,
PATH is the best optimization method among the methods tested.

Table 1: Experiment results for QAPLIB benchmark datasets.
QAP MIN PATH QPB GRAD U

chr12c 11156 18048 20306 19014 40370
chr15a 9896 19086 26132 30370 60986
chr15c 9504 16206 29862 23686 76318
chr20b 2298 5560 6674 6290 10022
chr22b 6194 8500 9942 9658 13118
esc16b 292 300 296 298 306
rou12 235528 256320 278834 273438 295752
rou15 354210 391270 381016 457908 480352
rou20 725522 778284 804676 840120 905246
tai10a 135028 152534 165364 168096 189852
tai15a 388214 419224 455778 451164 483596
tai17a 491812 530978 550852 589814 620964
tai20a 703482 753712 799790 871480 915144
tai30a 1818146 1903872 1996442 2077958 2213846
tai35a 2422002 2555110 2720986 2803456 2925390
tai40a 3139370 3281830 3529402 3668044 3727478

18

6 Image processing

In this section, we present two applications in image processing. The first one (Section 6.1)
illustrates how taking into account information on graph structure may increase image alignment
quality. The second one (Section 6.2) shows that the structure of contour graphs may be very
important in classification tasks. In both examples we compare the performance of our method
with the shape context approach [BMP02], a state-of-the-art method for image matching.

6.1 Alignment of vessel images

The first example is dedicated to the problem of image alignment. We consider two photos of
vessels in human eyes. The original photos and the images of extracted vessel contours (obtained
from the method of [WKME03]) are presented in Figure 8. To align the vessel images, the shape
context algorithm uses the context radial histograms of contour points (see [BMP02]). In other
words, according to the shape context algorithm one aligns points which have similar context
histograms. The PATH algorithm uses also information about the graph structure. When we use
the PATH algorithm we have to tune the parameter α (27), we tested several possible values and
we took the one which produced the best result. To construct graph we use all points of vessel
contours as graph nodes and we connect all nodes within a circle of radius r3. Finally, to each
edge (i, j) we associate the weight wi,j = exp(−|xi − yj|).

Figure 8: Eye photos (top) and vessel contour extraction (bottom).

A graph matching algorithm produces an alignment of image contours, then to align two images
we have to expand this alignment to the rest of image. For this purpose, we use a smooth spline-
based transformation [Boo89]. In other words, we estimate parameters of the spline transformation

3in our case we use r = 50.

19

from the known alignment of contour points and then we apply this transformation to the whole
image. Results of image matching based on shape context algorithm and on PATH algorithm
are presented in Figure 9, where black lines designate connections between associated points. We
observe that the context shape method creates many unwanted matching, while PATH produces
a matching that visually corresponds to a correct alignment of the structure of vessels. The main

Figure 9: Comparison of alignment based on shape context (top) and alignment based on the
PATH optimization algorithm (bottom). For each algorithm we present two alignments: image
’1’ on image ’2’ and the inverse. Each alignment is a spline-based transformation (see text).

reason why graph matching works better than shape context matching is the fact that shape
context does not take into account the relational positions of matched points and may lead to
totally incoherent graph structures. In contrast, graph matching tries to match pairs of nearest
points in one image to pairs of nearest points in another one.

20

character 1 character 2 character 3

Figure 10: Chinese characters from the ETL9B dataset.

6.2 Recognition of handwritten chinese characters

Another example that we consider in this paper is the problem of chinese character recognition
from the ETL9B dataset [SYY85]. The main idea is to use a score of optimal matching as a
similarity measure between two images of characters. This similarity measure can be used then in
machine learning algorithms, K-nearest neighbors (KNN) for instance, for character classification.
Here we compare the performance of four methods: linear support vector machine (SVM), SVM
with gaussian kernel, KNN based on score of shape context matching and KNN based on scores
from graph matching which combines structural and shape context information. As a score, we
use just the value of the objective function (27) at the (locally) optimal point. We have selected
three chinese characters known to be difficult to distinguish by automatic methods. Examples
of these characters as well as examples of extracted graphs (obtained by thinning and uniformly
subsampling the images) are presented in Figure 10. For SVM based algorithms, we use directly
the values of image pixels (so each image is represented by a binary vector), in graph matching
algorithm we use binary adjacency matrices of extracted graphs and shape context matrices (see
[BMP02]).

Our data set consist of 50 exemples (images) of each class. Each image is represented by 63 ×
64 binary matrix. To compare different methods we use the cross validation error (five folds).
The dependency of classification error from two algorithm parameters (α — coefficient of linear
combination (27) and k — number of nearest neighbors used in KNN)) is shown in Figure 11.

Two extreme choices α = 1 and α = 0 correspond respectively to pure shape context matching,
i.e., when only node labels information is used, and pure unlabeled graph matching. It is worth
observing here that KNN based just on the score of unlabeled graph matching does not work very
well, the classification error being about 60%. An explanation of this phenomenon is the fact that
learning patterns have very unstable graph structure within one class. The pure shape context
method has a classification error of about 39%. The combination of shape context and graph
structure informations allows to decrease the classification error down to 25%. Complete results
can be found in Table 2.

21

0 0.5 1
0.2

0.4

0.6

α

cl
as

si
fic

at
io

n
er

ro
r k=3

k=4
k=9

(a)

2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

k

cl
as

si
fic

at
io

n
er

ro
r α=0

λ=0.1
α=0.3
α=0.8
α=1

(b)

Figure 11: (a) Classification error as a function of α. (b) Classification error as a function of k.
Classification error is estimated as cross validation error (five folds, 50 repetition), the range of
the error bars is the standard deviation of test error over one fold (not averaged over folds and
repetition)

Table 2: Classification of chinese characters. (CV , STD)—mean and standard deviation of test
error over cross-validation runs (five folds, 50 repetitions)

Method CV STD

Linear SVM 0.377 ± 0.090
SVM with gaussian kernel 0.359 ± 0.076
KNN (λ=1): shape context 0.399 ± 0.081
KNN (λ=0.4) 0.248 ± 0.075
KNN (λ=0): pure graph matching 0.607 ± 0.072

22

7 Conclusion

We have presented the PATH algorithm, a new technique for graph matching based on convex-
concave relaxations of the initial integer programming problem. PATH allows to integrate the
alignment of graph structural elements with the matching of vertices with similar labels. Its results
are competitive with state-of-the-art methods in several graph matching and QAP benchmark
experiments. Moreover, PATH has a theoretical and empirical complexity competitive with the
fastest available graph matching algorithms.

Two points can be mentioned as interesting directions for further research. First, the quality
of the convex-concave approximation is defined by the choice of convex and concave relaxation
functions. Better performances may be achieved by more appropriate choices of these functions.
Second, another interesting point concerns the construction of a good concave relaxation for the
problem of directed graph matching, i.e., for asymmetric adjacency matrix. Such generalizations
would be interesting also as possible polynomial-time approximate solutions for the general QAP
problem.

A A toy example

The goal of this subsection is to emphasize that the PATH algorithm gives only an approximate
solution in general, and that there are situations when it fails to locate the global minimum. More
precisely, we provide simple examples to highlight the fact that the set of local optima tracked
by PATH may not lead to the global minimum of the concave function, because the the global
optimum may “jump” from one segment of local minima to another when λ increases.

More precisely, we consider two simple graphs with the following adjacency matrices:

G =




0 1 1
1 0 0
1 0 0


 and H =




0 1 0
1 0 0
0 0 0


.

Let C denote the cost matrix of vertex association

C =




0.1691 0.0364 1.0509
0.6288 0.5879 0.8231
0.8826 0.5483 0.6100


 .

Let us suppose that we have fixed the tradeoff α = 0.5, and that our objective is then to find the
global minimum of the following function:

F0(P) = 0.5||GP − PH||2F + 0.5tr(C′P), P ∈ P. (29)

As we said before, the main idea underlying the PATH algorithm is to try to follow the path
of global minima of F α

λ (P) (27). It may be possible, if all global minima P ∗
λ form a continuous

path. But that is not always true. In the case of small graphs we are able to find the exact global
minimum of F α

λ (P) for all λ. The trace of global minima as functions of λ is presented in Figure
Aa (i.e., we plot the values of the nine parameters of the doubly stochastic matrix, which are, as
expected, all equal to zero or one when λ = 1). When λ is near 0.2 there is a jump of global
minimum from one face to another. However if we change the linear term C to

C′ =




0.4376 0.3827 0.1798
0.3979 0.3520 0.2500
0.1645 0.2653 0.5702


 ,

23

then the trace becomes smooth (see Figure Ab) and the PATH algorithm then finds the globally
optimum point. Characterizing cases where the path is indeed smooth is the subject of ongoing
research.

0 0.5 1
0

0.5

1

λ
(a)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

λ
(b)

Figure 12: Nine coordinates of global minimum of F α
λ as a function of λ

B Kronecker product

The Kronecker product of two matrices A⊗ is defined as follows:

A⊗ B =




Ba11 · · · Ba1n

...
. . .

...
Bam1 · · · Bamn


 . (30)

Two important properties of Kronecker product that we use in this paper are:

(AT ⊗ B)vec(X) = vec(BXA), where vec(X) =




x11
...

xm1
...

xmn




, (31)

and:
tr(XTATXB) = vec(X)T(B⊗A)vec(X) . (32)

References

[AAI95] A.Filatov, A.Gitis, and I.Kil. Graph-based handwritten digit string recognition. Third
International Conference on Document Analysis and Recognition (ICDAR’95), pages
845–848, 1995.

[AB01] K. M. Anstreicher and N. W. Brixius. A new bound for the quadratic assignment prob-
lem based on convex quadratic programming. Mathematical Programming, 89(3):341–
357, 2001.

24

[AK90] E.L. Allgower and K.Georg. Numerical continuation methods. Springer, 1990.

[AS93] H.A. Almohamad and S.O.Duffuaa. A linear programming approach for the weighted
graph matching problem. Transaction on pattern analysis and machine intelligence,
15, 1993.

[BL00] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization.
Springer-Verlag, New York, 2000.

[BMP02] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching and object recogni-
tion using shape contexts. Transaction on pattern analysis and machine intelligence,
24, 2002.

[Boo89] F.L. Bookstein. Principal warps: thin-plate splines and the decomposition of de-
formations. Transaction on pattern analysis and machine intelligence, 11:567–585,
1989.

[BR00] B.Luo and Edwin R.Hancock. Alignment and correspondence using sigular value
decomposition. Lecture notes in computer science, 1876:226–235, 2000.

[BV03] S. Boyd and L. Vandenberghe. Convex Optimization. Camb. Univ. Press, 2003.

[CC05] C.Schellewald and C.Schnor. Probabilistic subgraph matching based on convex relax-
ation. Lecture notes in computer science, pages 171–186, 2005.

[Cel07] Eranda Cela. Qaudratuc assignment problem library. www.opt.math.tu-
graz.ac.at/qaplib/, 2007.

[CFSV91] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. Performance evaluation of the
vf graph matching algorithm. Proc. of the 10th ICIAP, 2:1038–1041, 1991.

[Chu97] Fan R. K. Chung. Spectral Graph Theory. Americal Mathematical Society, 1997.

[CK04] Terry Caelli and Serhiy Kosinov. An eigenspace projection clustering method for
inexact graph matching. Transaction on pattern analysis and machine intelligence,
24, 2004.

[CR02] Marco Carcassoni and Edwin R.Hancock. Spectral correspondance for point pattern
matching. Pattern Recognition, 36:193–204, 2002.

[D.B99] D.Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[DPCM04] D.Conte, P.Foggia, C.Sansone, and M.Vento. Thirty years of graph matching in pat-
tern recognition. International journal of pattern recognition and artificial intelligence,
18:265–298, 2004.

[DTC01] D.Cremers, T.Kohlberger, and C.Schnor. Evaluation of convex optimization tech-
niques for the weighted graph-matching problem in computer vision. Patter Recogni-
tion, 2191, 2001.

[FW56] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3:95–110, 1956.

25

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[GM79] Johnson D.S. Garey M.R. Computer and intractability: A guide to the theory of
NP-completeness. San Francisco, CA: W. H. Freeman, 1979.

[KME05] K.Brein, M.Remm, and E.Sonnhammer. Inparanoid: a comprehensive database of
eukaryothic orthologs. Nucleic acids research, 33, 2005.

[Kuh55] H.W. Kuhn. The hungarian method for the assignment problem. Naval Research,
2:83–97, 1955.

[LL99] Raymond S . T. Lee and James N. K. Liu. An oscillatory elastic graph matching
model for recognition of offline handwritten chinese characters. Third International
Conference on Knowledge-Based Intelligent Information Engineeing Systems, pages
284–287, 1999.

[McG83] Leon F. McGinnis. Implementation and testing of a primal-dual algorithm for the
assignment problem. Operations Research, 31:277–291, 1983.

[Mil69] J.W. Milnor. Topology from the Differentiable Viewpoint. Univ. Press of Virginia,
1969.

[NSW01] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs with arbitrary
degree distributions and their applications. PHYSICAL REVIEW, 64, 2001.

[RJB07] R.Singh, J.Xu, and B.Berger. Pairwise global alignment of protein interaction net-
works by matching neighborhood topology. Fill in, 0, 2007.

[Roc70] R. Rockafeller. Convex Analysis. Princeton Univ. Press, 1970.

[SA96] S.Gold and A.Rangarajan. A graduated assignment algorithm for graph matching.
Transaction on pattern analysis and machine intelligence, 18, 1996.

[SB92] L.S. Shapiro and J.M. Brady. Feature-based correspondance: an eigenvector approach.
Image and vision computing, 10:283–288, 1992.

[SD76] D. C. Schmidt and L. E. Druffel. A fast backtracking algorithm for test directed graphs
for isomorphism. Journal of the Assoc. for Computing Machinery, 23:433–445, 1976.

[SYY85] T. Saito, H. Yamada, and K. Yamamoto. On the data base etl9b of handprinted
characters in jis chinese characters and its analysis. IEICE Trans, 1985.

[Tay02] William R. Taylor. Protein structure comparison using bipartite graph matching and
its application to protein structure classification. Molecular and Cellular Proteomics,
pages 334–339, 2002.

[Ull76] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the Assoc. for
Computing Machinery, 23:433–445, 1976.

[Ume88] Shinji Umeyama. An eigendecomposition approach to weighted graph matching prob-
lems. Transaction on pattern analysis and machine intelligence, 10, 1988.

26

[WH05] Hong Fang Wang and Edwin R. Hancock. Correspondence matching using kernel
principal components analysis and label consistency constraints. Pattern Recognition,
2005.

[WKME03] T. Walter, J.-C. Klein, P. Massin, and A. Erignay. Detection of the median axis of
vessels in retinal images. European Journal of Ophthalmology, 13(2), 2003.

[WMFH04] Yuhang Wang, Fillia Makedon, James Ford, and Heng Huang. A bipartite graph
matching framework for finding correspondences between structural elements in two
proteins. Proceedings of the 26th Annual International Conference of the IEEE EMBS,
pages 2972–2975, 2004.

27

