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Abstract

This paper tackles the problem of the characterization of
robust pole-clustering for descriptor systems using linear
matrix inequaliti es (LMI). It states a necessary and suff icient
condition for a descriptor system to be impulse free and to
have its finite poles in a specified convex region of the
complex plane. A suff icient condition to guarantee this result
in the presence of norm-bounded uncertainties is established.
The results are expressed in terms of strict LMIs, thus they are
numerically tractable with LMI optimization tools. Numerical
examples are given.

1. Introduction

 The descriptor formulation (1-2) is known to be much more
generic than the usual one since it preserves the physical
meaning of the variables and the model can contain a static
part and an improper part. Thus physical constraints, static
relations and impulsive behaviors can be modeled.
 In this paper, we consider a linear time-invariant descriptor
systems defined by

 )t(Ax)t(xE =
�

   (continuous-time case) (1)
 )k(Ax)1k(Ex =+  (discrete-time case) (2)

 where x∈Rn is the descriptor variable, E and A are known real
constant n×n matrices. The matrix E may be rank deficient
and we denote its rank by r = rank(E) ≤ n.
 Since [3] and [4] many topics of control have been treated in
the descriptor system case. Recently, efforts have been
provided to extend the H∞ theory [9],[13] and the LMI-based
approach [11] to descriptor systems. Following [1] it is of
interest to note that the analysis tools of the H∞ theory
provide littl e information about the transient behavior and
other temporal characteristics that are linked to the location of
the poles of the system. Thus H∞ analysis and pole clustering
are complementary aspects that should be taken into
consideration for system analysis and controller design.
 Pole placement for the usual state-space representation is a
classic problem. Combined H2/H∞/pole clustering objective is
treated in [1] in which H2, H∞ and pole clustering objectives
are studied and characterized in terms of LMIs. In [2] the
robustness of the pole-clustering control is ensured. Recently,
the characterization of pole clustering via LMI has been
extended to descriptor systems in [7] and the robustness issue
is addressed in [10].

In fact, the LMI formalism is appealing from the practical
point of view since it is eff iciently and reliably solved by
convex optimization algorithms and LMI toolboxes are
available in popular control software’s [5], [6]. But many
results concerning LMI-based control for descriptor systems
([7], [9], [10], [13]) use LMI with equality constraints which
often cause numerical problems in computation: checking the
equality condition is more tricky because of eventual round
off errors [12]. This fact motivates the authors to exclusively
express the LMI condition for pole clustering of a matrix
pencil i n terms of strict LMI (i.e. LMI without any equality
constraint) that are more reliably tractable.
 
 The purpose of this paper is firstly to give a necessary and
suff icient condition for a descriptor system to have all it s
dynamic modes in a specified region of the complex plane and
to ensure that no impulsive behavior will occur. Secondly we
give a suff icient condition to check the robustness of the pole
clustering in the presence of norm-bounded uncertainties. The
main interests of this paper, compared to [7] and [10] is that a
simple and unique formulation of the LMI condition is valid
for all regions of the complex plane and that the results are
expressed in terms of strict LMI.
 
 The paper is organized as follows. Section 2 recalls some
results on descriptor systems, LMI regions and pole
clustering. In section 3 the characterization of pole clustering
in LMI region for descriptor systems is established and a
numerical example is given. In section 4, a suff icient
condition for robust pole-clustering is stated.

2. Preliminaries

2.1. Basics on descriptor systems

 Herein we recall some useful results concerning descriptor
systems, taken from [4].
 The system (1) (respectively (2)) has a unique solution, for
any initial condition, if it is regular i.e. det(sE-A)) ≠ 0
(respectively det(zE-A) ≠ 0). The finite modes correspond to
the finite eigenvalues of the matrix pencil (E, A). The system
is called stable if and only if the finite modes are stable, i.e. if
the finite eigenvalues of (E, A) lie in the open left half-plane
(respectively lie in the open unitary disk). The infinite
eigenvalues of (E, A) with associated eigenvectors ν satisfying
E.ν = 0 are the static modes. The infinite eigenvalues of (E,
A) with generalized eigenvectors νk satisfying the relations



Eν1=0 and Eνk = Aνk-1 (k≥2) correspond to impulsive modes
(respectively non causality). Impulsive modes may cause
impulse terms in the response, even for bounded input, and
thus are highly undesirable. A system has no impulsive mode
and is called impulse free if and only if (3) (respectively (4))
holds

 )E(rank))AsEdeg(det( =− (3)

 )E(rank))AzEdeg(det( =− (4)

 A stable and impulse free descriptor system is called
admissible.

2.2. Basics on pole clustering in LMI regions

 Many temporal characteristics of the response of a linear
system are linked to the location of its poles. The real part of
the pole gives the decay ratio of the associated mode. In the
particular case of the second order systems, the maximum
overshoot, the frequency of oscill atory modes, the delay time
are fully defined by the modulus and the phase of the poles.
Thus it is of interest to characterize pole location or pole
clustering in prescribed regions of the complex plane. As
shown in [1], most of the simple regions of the complex plane
that are useful in control applications can be characterized in
terms of LMI regions defined below.
 
 Definition 1 [1] A subset D of the complex plane is called an
LMI region if there exist a real symmetric m×m matrix α and
a real m×m matrix β such that

 { }0(z)f:complexzD D <= (5)

 where the characteristic function fD(z) is defined by

 [ ] ml,k1lkklkl

T
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zz(z)f
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++=

ββα
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 Notation: α=[αkl]1≤k,l≤m means that α is an m×m matrix
(respectively block matrix) with generic entry (respectively
block) αkl.
 
 This definition is suff icient to characterize many basic regions
like open left half-plane, vertical strips, disks, horizontal strips
and conic sectors symmetric with respect to the real axis.
Moreover, more complex ones, indeed every convex
polygonal regions symmetric with respect to the real axis, can
be obtained as the intersection of basic ones [1].
 
 The intersection of two LMI regions D1 and D2 is an LMI
region which characteristic function is given by

 )f,diag(ff D2D1D2D1 =∩ (7)

 As an example, consider the region defined by the intersection
of a vertical strip and a conic sector centered on the origin.
The fact that the poles of a given second-order system lie in a
vertical strip guaranties a minimal and a maximal decay ratio
and the location in a conic sector ensures a minimal damping
ratio.
 
 An usual state-space system is called D-stable if and only if its

poles (i.e. the eigenvalues of the matrix A) lie in D, and the
following lemma gives an LMI condition to check the D-
stabilit y of A.
 
 Lemma 1 [1] The matrix A is D-stable if and only if there
exists a symmetric n×n matrix X such that
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D

D
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�
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�
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(8)

 where ⊗ is the Kronecker product defined by
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 Some properties of the Kronecker product used in this paper
are given bellow
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3. Strict LMI characterization of pole-clustering

 In this section, the concept of D-stabilit y is extended to
descriptor systems. In the descriptor case, the basic
requirement of stabilit y -which only concerns the proper part
of the system- is not practically of suff icient interest since it
does not imply that impulse behavior is prevented. Thus we
need to introduce the D-admissibilit y.
 
 Definition 2 A descriptor system (E, A) is D-stable
(respectively, D-admissible) if and only if its finite poles lie in
D (respectively, its finite poles lie in D and it is impulse free).
 
 The following theorem states a necessary and suff icient
condition, in terms of strict LMI, for a system (E, A) to be D-
admissible.
 
 Theorem 1 A descriptor system (E, A) is D-admissible if and
only if there exist a symmetric positive definite n×n matrix P
and a (n-r)×(n-r) matrix S such that

 ( ) 0AVUSAVSU1

...EPA
�

APE
�

EPE�
TTTT

mm

TTTT

<+⊗+
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(9)

where the real n×(n-r) matrices V and U are of full column
rank and composed of bases of Ker(E) and Ker(ET)
respectively
Notation: 1ij denotes the i×j matrix with all entries set to 1.

 Proof of theorem 1 :
 Sufficiency : let v be any left eigenvector associated with a
finite eigenvalue λ, pre- and post-multiplying Equation (9) by
(Im⊗v) and (Im⊗v*) we have
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 Since *T*T vAvEvA,vE == �λ , we have
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 P>0 and v is associated with a finite eigenvalue thus it
ensures vE≠0, implying that λ lie in D and consequently (E,A)
is D-stable.
 Let us prove that Equation (9) implies that the system is
impulse free. Computing a singular value decomposition there
exist unitary matrices M and N such that
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 where D=DT, W1 and W2 non singular matrices. Assuming that
Equation (9) holds, this implies

 
[ ]

[ ] .0M
AA

AA
NNI0WSW

I

0

PN
00

0D
MMI0SWW

I

0
N

00

0D
PNN

AA

AA
M

M
00

0D
PNN

00

0D
M

mlk,1
T
22

T
12

T
21

T
111-T

1
T

2

1
lk

1T
21

kl
1

2221

12111

11
kl

<






























+














+













+






















+
























≤≤

−−

−−

−−

�

�

�

 With

 ( ) 







==

3
T
2

21T1-1-

PP

PP
PNNPNN ,

 it becomes

 

.0M
AA

AA
WSW0

00

00

DP
�

DP
�

SWW0

00

0DP
�

0DP
�

AA

AA

00

0DDP�
M

mk,l1

T
22

T
12

T
21

T
11

T
1

T
2

2lk1lk
T
21

T
2kl

1kl

2221

1211
T

1klT

<




































+














+













+






















+

























≤≤

 Since M is non singular we have

 0
ml,k1klkl

klkl <








≤≤ΣΨ
ΘΦ

 with

 
)ADPA(DP

�
D)PADP(A

�
DDP�

T
122

T
111lk

T
212111kl

T
1klkl

++
++=Φ

 )ADPA(DP
�

SWWA T
222

T
211lk

T
2112kl ++=Θ

 D)PADP(A
�

AWSW T
222121kl

T
12

T
1

T
2kl ++=Ψ

 T
22

TT
21

T
2122kl A)SW(W)SW(WA +=Σ .

 Thus the diagonal blocks and in particular the Σkk are negative
definite implying that A22 is of full rank or equivalently that
(E, A) is impulse free. This achieves the proof of the
suff iciency part.

 Necessity : if (E, A) is impulse free, then there exist M and N,
two non singular matrices such that MEN=diag(I, 0) and
MAN=diag(J,I). Moreover if (E,A) is D-stable then the
eigenvalues of J lie in D and from lemma1 there exists a
symmetric positive definite P1 such that
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 Then for a suff iciently small ν > 0 there exists a symmetric
positive definite matrix P1 such that
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 that can be developed into
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 Decomposing N and M by N=[N1 N2] and M=[M1
T M2

T]T, we
have M2E=0, EN2=0 and U=M2

TWM
T and V=N2WN.

 
[

] .0MANW)��W(WMM

MM)W��W(WMAN

MMEPA
�

MMAPE
�

MMEPE�

mk,l1
TTT

2
T
N

T
N

T
M

T
M

T
2

T
2M

1
M

1
NN2

TT
lk

TT
kl

TT
kl

<−+
−+

++

≤≤
−−

−−

 With T1 N
I0

0P
NP 








= , 1

M
1

N W��S −−−=  and since M is non

singular it becomes

 
[

] .0AVUSAVSU

EPA
�

APE
�

EPE�

mk,l1
TTTT

T
lk

T
kl

T
kl

<++
++

≤≤

 Since P is positive definite, that completes the proof. �

 
 Remark : contrarily to [7] only strict LMI are requested to be
solved and thus improves numerical tractabilit y and a unique
formulation embraces all LMI regions.
 
 Using the fact that the class of LMI region is invariant under
intersection, this theorem generalizes the result of [1] to
descriptor systems (let E=In, then V and U are null and we
obtain lemma 1). The D-admissibilit y can be checked for all
convex region of the complex plane provided it is symmetric
with respect to the real axis.
 
 Theorem 1 is valid both in the discrete-time case and
continuous-time case provided the specified LMI region D is
a stabilit y region in the considered case. Thus we can derive
the following corollaries characterizing the admissibilit y.



Corollary 1 The continuous-time descriptor system (1) is
admissible if and only if there exist a symmetric positive
definite (n×n) matrix P and a (n-r)×(n-r) matrix S such that

 0A)VUSEP()VSUPE(A TTTTT <+++ (10)

Proof of corollary 1 :
Using definition 1, the system (1) is admissible if and only if
it is D-admissible where D is the open left half-plane which is
the LMI region characterized by α=0 and β=1. Applying
theorem 1, it is equivalent to Equation (10). �

Corollary 2 The discrete-time descriptor system (2) is
admissible if and only if there exist a symmetric positive
definite (n×n) matrix P and a (n-r)×(n-r) matrix S such that
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Proof of corollary 2:
Using definition 1, the system (2) is admissible if and only if
it is D-admissible where D is the open unitary disk centered at
the origin
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then, applying theorem 1, Equation (11) follows. �

Remark : The admissibilit y of a continuous-time and discrete-
time descriptor system are characterized in terms of strict
LMIs in [12] and [14] respectively, but the results were not
generalized to all LMI regions .

Numerical example

 let us check that the finite poles λk=ak+ibk of a given system
(E, A) lie in an LMI region defined by the intersection of two
basic LMI regions, respectively a vertical strip and a conic
sector. The first one ensures a minimal and a maximal decay
ratio h1 and h2 and the second one ensures a minimal damping
ratio ξ=cos(θ). The vertical strip is defined by D1={ z=x+iy :
h1<x<h2 } and
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the conic sector is defined by D2={ z=x+iy : x.tanθ<|y|} and
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According to the definition (7) the intersection of the two
LMI regions is defined by
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For h1=-5, h2=-1 and θ=π/4 and the following impulse free
matrix pencil (E, A)
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which finite poles are σf ={-3-2i, -3+2i, -4}, the LMI is
solvable and using the LMI toolbox [5] we obtain the
following result
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Let h2=-4, the pole of the matrix pencil (E, A) no longer lie in
D and as a result the corresponding LMI is not feasible and
Matlab returns no solution for P and S.

4. Strict LMI characterization of robust pole-clustering

In this section, we are looking for an LMI characterization of
the robustness of the D-admissibilit y. Consider an uncertain
descriptor system given by the following LTI descriptor
system (the control input is not mentioned since the study
focuses on the dynamics)
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and the norm-bounded uncertainties
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the closed-loop system is defined by
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Thus hereafter, we consider the family of descriptor systems
described by the uncertain pencil matrix (E,A(∆)) for all
admissible ∆ (i.e. satisfying Equation (14)). The case ∆=0 is
the nominal case and the parameter γ corresponds to a level of
uncertainty. The main issue of robust D-admissibilit y is to
know if, for a given γ, the descriptor system family (E,A(∆))
remains admissible and if its finite poles remain in the LMI
region D. As discussed in [2] this formalism is still valid for
time-varying uncertainties.

Definition 3 The uncertain descriptor system family (E,A(∆))
is robustly D-stable (respectively robustly D-admissible) if the
finite eigenvalues of (E,A(∆)) lie in D (respectively if the finite
eigenvalues of (E,A(∆)) lie in D and (E,A(∆)) is impulse free)
for all admissible ∆.



Robust D-admissibilit y is generally diff icult to prove, thus a
more practical notion is frequently used : the quadratic D-
admissibilit y, defined bellow

Definition 4 [10] The uncertain descriptor system family
(E,A(∆)) is quadratically D-admissible if there exists a real
symmetric (n×n) matrix P>0 and a real (n-r)×(n-r) matrix S
such that, for all admissible ∆ the following LMI holds
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Obviously, quadratic D-admissibilit y implies robust D-
admissibilit y. The quadratic D-stabilit y is more conservative
since a single pair (P, S) should satisfy the LMI for all
admissible ∆’s, while robust D-admissibilit y implies that pairs
(P(∆), S(∆)) exist for each admissible ∆. As discussed in [2]
for usual systems, the assumption P and S real is not
restrictive while much more practical from the computational
point of view.

The following theorem characterizes the quadratic D-
admissibilit y in terms of strict LMIs and thus generalizes the
result obtained in [2] for usual systems. Contrarily to [10] the
condition is a strict LMI. The system (12) is a continuous-
time system but the result is still valid while considering a
discrete time system, provided the LMI region D is a stabilit y
region.

Theorem 2 The uncertain descriptor system family (E, A(∆))
is quadratically D-admissible if there exist real symmetric
positive definite matrices P and P1 (respectively (n×n) and
(k×k)), a positive real number P2 and a (n-r)×(n-r) matrix S
such that

 0
22

T
12

1211 <







ΘΘ
ΘΘ

(16)

with

 

( )
( )

( )
( )






−

⊗−
=



















⊗
⊗⊗

=



















−⊗
⊗−⊗

⊗⊗
=

d2

d1
22

T
2

T
1

T
21m

T
1

T
2

12

d2
TTT

m1

d1
T

1

T
1m

TT
1D

11

IP0

0IP

and

DP0

0DP

CP1CP

IP0VUSB1

0IPPEB

BVSU1PBE)S,P,A,E(M

γ
γ

Θ

β
Θ

γ
γβ

β
Θ

where β1 and β2 are full column rank (k×m) matrices such that β = β1
Tβ2

Proof of theorem 2:
the proof follows the one of [2], with no loss of generality we
assume γ=1. Since P2 is positive, Equation (16) implies
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thus by Schur complement it is easily seen that σmax(D)<1 and

hence σmax(∆D)<1 for all admissible ∆.
By definition, quadratic D-admissibilit y holds if and only if
P>0 and S exist such that, for all σmax(∆)≤1
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Equivalently, for any nonzero vector h and any admissible ∆
the following inequality should hold
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or equivalently
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For fixed nonzero h, this result amounts to requiring
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are respectively the unique solution of the following equations
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an equivalent and simpler characterization of S1h and S2h is
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for any (k×k) matrix P1>0 and any P2>0,
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Consequently a suff icient condition for the quadratic D-
admissibilit y is that

 
( )

( ) ( )( ) 0pBVSU1h2

pPBEh2h)S,P,A,E(Mh

2
T

1m
H

1
TT

1
H

D
H

<⊗+
⊗+ β

whenever

 
( ) ( )
( ) ( ) 0pIPpqIPq

0pIPpqIPq

2d2
H
22d2

H
2

1d1
H
11d1

H
1

≥⊗−⊗
≥⊗−⊗

Or equivalently if
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Using an S-procedure argument [8], M+N1+N2<0 implies that
sTMs<0 for all s such that sTN1s≥0 and sTN2s≥0, a suff icient
condition for quadratic D-admissibilit y is
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Finally by Schur complement and pre- and post-multiplying
by diag(Imn, Ikd, Id, P1, P2) the proof is completed. �

This result generalizes the result of [2], for usual state-space
systems. Let E=In, V=0 and V=0 by deleting the third and
fifth rows and columns then theorem 3.3 of [2] follows.

A suff icient condition for robust admissibilit y in continuous-
time case is derived from theorem 2.

Corollary 3 The continuous-time uncertain descriptor system
family (E, A(∆)) is robustly admissible if there exist a
symmetric positive definite n×n matrix P, real positive
numbers P1 and P2 and a (n-r)× (n-r) matrix S such that
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Proof of corollary 3:
Let D be the open left half-plane, applying theorem 2,
corollary 3 follows. �

Remark: applying theorem 2, with D defined by the unitary
disk centered at the origin, a similar result can be established
for discrete-time descriptor systems.

5. Conclusion

In this paper we have studied the D-admissibilit y of a pencil
matrix which can be envisaged as the extension of the concept
of D-stabilit y to the descriptor systems. A necessary and
suff icient LMI condition to test the D-admissibilit y has been
established. The robustness of the D-admissibilit y faced to
norm-bounded uncertainties is envisaged. A suff icient LMI
condition for robust D-admissibilit y has been established. For
the sake of numerical tractabilit y, the results are exclusively
given in terms of strict LMIs, i.e. without any equality
constraint.
Further works are to be done to derive controllers achieving
(robust) pole-clustering of the controlled system.
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