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Abstract

This paper takles the problem of the daraderizaion of
robust pole-clustering for descriptor systems using linea
matrix inequalities (LMI). It states a necessary and sufficient
condition for a descriptor system to be impulse free ad to
have its finite poes in a spedfied convex region of the
complex plane. A sufficient condition to guarantee this result
in the presence of norm-bounded uncertainties is establi shed.
Theresults are expressed in terms of strict LMIs, thus they are
numericdly tradable with LMI optimization tools. Numericd
examples are given.

1. Introduction

The descriptor formulation (1-2) is known to be much more
generic than the usual one since it preserves the physicd
meaning of the variables and the model can contain a static
part and an improper part. Thus physicd constraints, static
relations and impulsive behaviors can be modeled.

In this paper, we mnsider a linea time-invariant descriptor
systems defined by

Ex(t)=Ax(t) (continuous-time cae)
Ex(k +1) = Ax(k) (discrete-time cae)

D
2
where xCOR" is the descriptor variable, E and A are known red
constant nxn matrices. The matrix E may be rank deficient
and we denoteitsrank by r = rank(E) <n.

Since[3] and [4] many topics of control have been treaed in
the descriptor system case. Recatly, efforts have been
provided to extend the H,, theory [9],[13] and the LMI-based
approach [11] to descriptor systems. Following [1] it is of
interest to note that the analysis tools of the Heo theory
provide little information about the transient behavior and
other temporal charaderistics that are linked to the location of
the pdes of the system. Thus H,, analysis and pde dustering
are omplementary aspeds that should be taken into
consideration for system analysis and controll er design.

Pole placament for the usual state-space representation is a
classc problem. Combined H,/H./pole dustering objedive is
treded in [1] in which H,, H., and pde dustering objedives
are studied and charaderized in terms of LMIs. In [2] the
robustnessof the pole-clustering control is ensured. Recently,
the charaderizaion of poe dustering via LMI has been
extended to descriptor systemsin [7] and the robustnessisaie
isaddressed in [10].

In fad, the LMI formalism is appeding from the pradicd
point of view since it is efficiently and reliably solved by
convex optimizaion algorithms and LMI toolboxes are
available in popular control software’s [5], [6]. But many
results concerning LMI-based control for descriptor systems
([71, 191, [1Q], [13]) use LMI with equality constraints which
often cause numericd problems in computation: cheding the
equality condition is more tricky becaise of eventual round
off errors[12]. This fad motivates the aithors to exclusively
express the LMI condition for pole dustering of a matrix
pencil in terms of strict LMI (i.e. LMI without any equality
constraint) that are more reliably tradable.

The purpose of this paper is firstly to give anecessary and
sufficient condition for a descriptor system to have dl its
dynamic modes in a spedfied region of the complex plane and
to ensure that no impulsive behavior will occur. Secondly we
give asufficient condition to ched the robustnessof the pole
clustering in the presence of norm-bounded uncertainties. The
main interests of this paper, compared to [7] and [10] isthat a
simple and unique formulation of the LMI condition is valid
for al regions of the complex plane and that the results are
expressed interms of strict LMI.

The paper is organized as follows. Sedion 2 recdls osme
results on descriptor systems, LMI regions and pde
clustering. In sedion 3 the charaderization of pole dustering
in LMI region for descriptor systems is established and a
numericd example is given. In sedion 4, a sufficient
condition for robust pole-clusteringis dated.

2. Preéiminaries

2.1. Basicson descriptor systems

Herein we recdl some useful results concerning descriptor
systems, taken from [4].

The system (1) (respedively (2)) has a unique solution, for
any initial condition, if it is regular i.e. det(sE-A)) z 0
(respedively det(zE-A) # 0). The finite modes correspond to
the finite eigenvalues of the matrix pencil (E, A). The system
iscdled stable if and only if the finite modes are stable, i.e. if
the finite eigenvalues of (E, A) lie in the open left half-plane
(respedively lie in the open untary disk). The infinite
eigenvalues of (E, A) with assciated eigenvedorsv satisfying
E.v = 0 are the static modes. The infinite eigenvalues of (E,
A) with generdlized eigenvedors vy satisfying the relations



Ev;=0 and Ev, = Ay, (k=2) correspond to impulsive modes
(respedively non causdlity). Impulsive modes may cause
impulse terms in the response, even for bounded input, and
thus are highly undesirable. A system has no impulsive mode
and is cdled impulse freeif and only if (3) (respedively (4))
holds

deg(det(SE - A)) =rank(E) ©)

deg(det( zE - A)) =rank(E) 4

A sable aad impulse free descriptor system is cdled
admissble.

2.2. Basicson poleclustering in LMI regions

Many tempora charaderistics of the response of a linea
system are linked to the locaion of its poles. The red part of
the pole gives the decg ratio of the asciated mode. In the
particular case of the second order systems, the maximum
overshoat, the frequency of oscill atory modes, the delay time
are fully defined by the modulus and the phase of the padles.
Thus it is of interest to charaderize poe locaion or poe
clustering in prescribed regions of the complex plane. As
shown in [1], most of the simple regions of the complex plane
that are useful in control applications cen be charaderized in
terms of LMI regions defined below.

Definition 1 [1] A subset D of the complex planeis called an
LMI region if there exist a real symmetric mxm matrix a and
areal mxmmatrix 8 such that

D= {z complex: fp(2) < 0} (5)

where the characteristic function fy(2) is defined by

fo@=a+zB+2zB"
=lay + Bu 2+ B z]Jsk,lsm

(6)

Notation: o=[0]i<kj<m Means that a is an mxm matrix
(respedively block matrix) with generic entry (respedively
bl OCk) Q.

This definition is aufficient to charaderize many basic regions
like open left half-plane, verticd strips, disks, horizontal strips
and conic sedors ymmetric with resped to the red axis.
Moreover, more mplex ones, indeed every convex
polygonal regions ymmetric with resped to the red axis, can
be obtained as the intersedion of basic ones[1].

The intersedion of two LMI regions D; and D, is an LMI
region which charaderistic function is given by

fo1n D2 = diag(fpy, fp2) (7)

As an example, consider the region defined by the intersedion
of a verticd strip and a @nic sedor centered on the origin.
The fad that the pdles of a given second-order system liein a
verticd strip guaranties a minimal and a maximal decay ratio
and the locdion in a mnic sedor ensures a minimal damping
ratio.

An wual state-spacesystemis cdled D-stable if and only if its

poles (i.e. the eigenvalues of the matrix A) lie in D, and the
following lemma gives an LMI condition to ched the D-
stability of A.

Lemma 1 [1] The matrix A is D-stable if and only if there
exists a symmetric nxn matrix X such that

Mp(AX)<0, X >0
with Mp(AX)=a O X +0AX +4" O(AX)

where [7 isthe Kronecker product defined by
ADB=|A;B|

®)

]
Some properties of the Kronedker product used in this paper
are given bellow
a O A=aA, for a scalar
(A+B)OC=AOC+BOC
(AOB)(COD)=ACOBD
(AOB) =A"OB'
(AOB)t=AtgB™?

3. Strict LMI characterization of pole-clustering

In this sdion, the oncept of D-stahility is extended to
descriptor systems. In the descriptor case, the basic
requirement of stability -which only concerns the proper part
of the system- is not pradicdly of sufficient interest since it
does not imply that impulse behavior is prevented. Thus we
nee to introduce the D-admisshility.

Definition 2 A descriptor system (E, A) is D-stable
(respectively, D-admissible) if and only if its finite polesliein
D (respectively, itsfinite polesliein D and it isimpul se free).

The following theorem states a necessry and sufficient
condition, in terms of strict LMI, for a system (E, A) to be D-
admissble.

Theorem 1 A descriptor system (E, A) is D-admissible if and
only if there exist a symmetric positive definite nxn matrix P

and a (n-r)x(n-r) matrix S such that
aOEPE" + 0 APE" + 8T D EPA' ... ©
+1m O \AVSUT +USTVTAT |<0

where the real nx(n-r) matrices V and U are of full column
rank and composed of bases of Ker(E) and Ker(E")
respectively

Notation: 1; denotes the ix] matrix with all entries st to 1.

Proof of theorem 1 :
Sufficiency : let v be any left eigenvedor associated with a
finite eigenvalue A, pre- and post-multi plying Equation (9) by
(Im2v) and (Imv*) we have
[ak,vEPETv* +VA(BPET +vay T v
+(BVEP +VUSTVT ATV |y <O.

Since AVE=vA, AE'V = ATV, we have



(VEPY2 )(ag + B + Ay PY2ETY )|y <O

<k|<m
P>0 and v is asociated with a finite eigenvalue thus it
ensures VEZO, implyingthat A liein D and consequently (E,A)
isD-stable.

Let us prove that Equation (9) implies that the system is
impulse free Computing a singuar value decompositi on there
exist unitary matrices M and N such that

D%l A&zu
D“\zl AzzD

V=NH§’v1andU:MTB§’V2

oo
MEN = g gand MAN =

where D=D", W; and W, non singuar matrices. Asauming that
Equation (9) holds, thisimplies

D \-1P og\l 1PNEp 0
0

1D°\11 Ao b oo
PN
oy Azzg\l Em o

+ NHEMSNzT[O']E/‘ +M 1%&5 B\‘_lp
U
T AT O
E/vzs WlT[0|]N'1§1%“}rl A?rlgvm <0.
H B2 A2 Heklem
With
nten = (nten ] = o PR
( y 2TP3E
it becomes

DDEI:I

THéDPDT OB Ay Aiz%fm PD OB
0 0f o1 Apy FFH P3 D 0
|kDP1 .5||<DF’2D
%)Wls/\/z
T
+ 0 A O <
W, sTwT L AL %A
%) 2= T 2 A HskJsm
SinceM isnon singuar we have
@y OO
K 2K Qekj<m

[y

<0

with
@y =oqDRD’ + Bg(A D + AoP; D)
+ Ai(DPAl; + DRAL)
Ou = AW, SW; + B (DP Ay +DP,A,)
Wy =WoSTWA' AT, + fig(AxPLD + AgyP; D)
2 = Apo(WiSWS ) + (Wi SWS )T A, .

Thus the diagonal blocks and in particular the 2 are negative
definite implying that A, is of full rank or equivalently that

(E, A) is impulse free This achieves the proof of the
sufficiency part.

Necessity : if (E, A) isimpulse free then there exist M and N,
two non singdar matrices such that MEN=diag(l, 0) and
MAN=diag(J,I). Moreover if (E,A) is D-stable then the
eigenvalues of J lie in D and from lemmal there eists a
symmetric pasitive definite P, such that

[am P1+.5k|JP1+ﬂ|kP1~]T]15k|sm <0.
Then for a sufficiently small v > 0 there exists a symmetric
positi ve definite matrix P; such that
Fkl P+ B IR+ BRI

+2M1M2(M2M2) 1M2|\/|TD <0.

<k,|l<m
By Schur complement thisimplies

%kl PL+ By IR+ ﬁ|k PJ
] —vM,M{

_VMlM-zr E

T <0,
~2MoM2 Gy e

that can be developed into
O 0 OP, 00 00
5ot 1 oo
[J OCTP, 011 0O 0 oaP, 0 0D

+.5kIEJ %) %)OD 'k%)o%)lggo 15
+H§A2(—VD[MI M}]+ %A;Q—VDMHO']D

<0.
<kl<m

Decomposing N and M by N=[N; N;] and M=[M," M,']", we
have M,E=0, EN,=0 and U=M,"Wy," and V=N,W.

|_ak| MEPE'MT + g4MAPE'MT + 8, MEPATM T
+ MAN W ( —Wig v 7yt )Wy MM T
+ MM W (=W Ty T W Ny ATM T <0.

<kl<m

. 0 . .
W|thP=N§1IS\IT, S=—vwWyWyt and since M is non
O

singuar it beaomes

|_ak| EPE' + By APET + B EPAT

+AVSUT +USTVTAT |y o <O.

SinceP is pasitive definite, that completes the proof. [

Remark : contrarily to [7] only strict LMI are requested to be
solved and thus improves numericd tradability and a unique
formulation embraces al LMI regions.

Using the fad that the dassof LMI region is invariant under
intersedion, this theorem generaizes the result of [1] to
descriptor systems (let E=I,, then V and U are null and we
obtain lemma 1). The D-admisshility can be cdeded for all
convex region of the mmplex plane provided it is symmetric
with resped to thered axis.

Theorem 1 is valid bah in the discretetime cae ad
continuous-time case provided the spedfied LMI region D is
a stability region in the mnsidered case. Thus we can derive
the foll owing coroll aries charaderizing the almissbility.



Corollary 1 The continuous-time descriptor system (1) is
admissible if and only if there exist a symmetric positive
definite (nxn) matrix P and a (n-r)x(n-r) matrix Ssuch that

APET +vaUT)+(EP+US'VT)AT <0 (10)

Proof of corollary 1:

Using definition 1, the system (1) is admissble if and only if
it is D-admisgble where D is the open left half-plane which is
the LMI region charaderized by a=0 and (=1. Applying
theorem 1, it is equivaent to Equation (10). [ ]

Corollary 2 The discrete-time descriptor system (2) is
admissible if and only if there exist a symmetric positive
definite (nxn) matrix P and a (n-r)x(n-r) matrix Ssuch that

op, @,0
T o 0<0
2 10
with @; =-EPE" + AvUT +USTVTAT
@, = APE" + AvSUT +USTVT AT

(11)

Proof of corollary 2:

Using definition 1, the system (2) is admissble if and only if
it is D-admisshble where D is the open uritary disk centered at
the origin

fo(2) =3 % For equivalently o = % Fanas = §F
|

then, applying theorem 1, Equation (11) follows.

Remark : The almisshility of a continuous-time and discrete-
time descriptor system are dharaderized in terms of strict
LMIsin [12] and [14] respedively, but the results were not
generdized to al LMI regions.

Numerical example

let us chedk that the finite pdes A=a+iby of a given system
(E, A) liein an LMI region defined by the intersedion of two
basic LMI regions, respedively a verticd strip and a onic
sedor. The first one ensures a minimal and a maximal decay
ratio h; and h, and the second one ensures a minimal damping
ratio £&=cos(6). The verticd strip is defined by Dy={z=x+iy :
h;<x<h,} and

@h-(z+7) 0
fDl(Z)_EZ 0 —2h2+<z+2)E

0 0
or al=Ezgl_2h2Eand ﬂlzg)l E

the mnic sedor isdefined by D,={ z=x+iy : x.tan6<|y|} and
sin6(z+2z) cosB(z-2)
cosf(z-2z)sinfB(z+ Z)E

or o = 0 and g, = sin@ cos6

2_%0E Z_EcosesinGE

According to the definition (7) the intersedion of the two
LMI regionsis defined by

fp,(2)=

[P ~(2+2) 0 0 o L
f _0 0 -2h, +(z+2) 0 0 C
b0 g 0 sin6(z+2) cosd(z-2)E

@ 0 0

For h;=-5, h,=-1 and 6=774 and the following impulse free
matrix pencil (E, A)

—cos6(z-2)sinB(z+2)

5 -1 -5 -5[] 02 -6 3 34[
£_03-63-20  [-2720-25-12C
03-1-310 Uo -4 4 gt
@0—10—3@ -7 2 -6 SE

which finite poes are g; ={-3-2i, -3+2i, -4}, the LMI is
solvable and using the LMI toolbox [5] we obtain the
foll owing result

52.9424 0.32528 0.46319 -2.7244 H
_[00.32528 1.2434 -0.061769 —-0.21080 Dan d S=35963
" 0.46319 -0.061769 24520 -2.3322 U e

@2.7244 -0.21080 -2.3322 12587 ﬁ

Let hy,=-4, the pale of the matrix pencil (E, A) nolonger liein
D and as a result the mrresponding LMI is not feasible and
Matlab returns no solution for P and S,

4. Strict LMI characterization of robust pole-clustering

In this ®dion, we ae looking for an LMI charaderizaion of
the robustness of the D-admisshility. Consider an urcertain
descriptor system given by the following LTI descriptor
system (the oontrol input is not mentioned since the study
focuses on the dynamics)

Ex = Ax+ Bw
z=Cx+Dw (12)
w=Az
and the norm-bounded uncertainties
Aan(dxd) matrix such that o, (A)<y ™ (13)
the dosed-loop system is defined by
Ex=AlA
(a)x 14)

with A(4)=(A+B(l -AD)AC), Opex(A) <y

Thus heredter, we ansider the family of descriptor systems
described by the uncertain pencil matrix (E,A(4)) for all
admissble A (i.e. satisfying Equation (14)). The cae 4=0 is
the nominal case and the parameter y correspondsto alevel of
uncertainty. The main isue of robust D-admisshbility is to
know if, for a given y, the descriptor system family (E,A(Q))
remains admissble and if its finite poles remain in the LMI
region D. As discussd in [2] this formalism is gill valid for
time-varying urcertainties.

Definition 3 The uncertain descriptor system family (E,A(4))
isrobustly D-stable (respectively robustly D-admissible) if the
finite eigenvalues of (E,A(4)) liein D (respectively if the finite
eigenvalues of (E,A(4)) liein D and (E,A(4)) is impulse free)
for all admissible A.



Robust D-admissbility is generaly difficult to prove, thus a
more pradicd notion is frequently used : the quadratic D-
admissbility, defined bell ow

Definition 4 [10] The uncertain descriptor system family
(E,A(4)) is quadratically D-admissible if there exists a real
symmetric (nxn) matrix P>0 and a real (n-r)x(n-r) matrix S
such that, for all admissible A the following LMI holds

Mp(E,A(A),P,S)=a DE"PE+ B0 E PAA)
+BTA(A)T PE + 1y, VSUT A(A) + A(A)TusTvT)<o

Obvioudly, quadratic D-admisshility implies robust D-
admisghility. The quadratic D-stability is more mnservative
since asinge par (P, S should satisfy the LMI for all
admissble A’s, whil e robust D-admissbility implies that pairs
(P(4), 9(4)) exist for ead admissble A. As discussed in [2]
for usua systems, the aaumption P and S red is not
restrictive while much more pradicd from the computational
point of view.

(15

The following theorem charaderizes the quadratic D-
admisgbility in terms of strict LMIs and thus generali zes the
result obtained in [2] for usual systems. Contrarily to [10] the
condition is a strict LMI. The system (12) is a continuous-
time system but the result is gill valid while mnsidering a
discrete time system, provided the LMI region D is a stability
region.

Theorem 2 The uncertain descriptor system family (E, A(4))
is quadratically D-admissible if there exist real symmetric
positive definite matrices P and P; (respectively (nxn) and
(kxK)), a positive real number P, and a (n-r)x(n-r) matrix S
such that

[©;, 01,0
T o <0 (16)
12 220
with
EMD(E,A,P,S) B O ETPBlm1DVSUTBE
on=0 BOB'PE -y(ROl) 0 C
HimOB'USVT 0 -v(P1a) E

gﬁplDCT 1m1PzDCTS

O, =0R 0D’ 0 [gand
0 T 0
5 O RD" {
o y(ROly) o0 O
22 =0 0
o O ~y(P14)0

where 3; and 3, are full column rank (kxm) matrices such that
Proof of theorem 2:

the proof foll ows the one of [2], with no lossof generality we
asaume y=1. Since P, is positive, Equation (16) implies

N

thus by Schur complement it is easily seen that (D)< 1 and

hence g,x(AD)< 1 for al admissble A.
By definition, quadratic D-admisshbility holds if and only if
P>0 and Sexist such that, for all gpa(4)<1

Mp(E,A(A),P,S)=Mp(E,AP,S)+B0E"PB(I -aD)*AC
+87 0 (B(I - AD)‘lAC)r PE + 1y
0 @su TB(1 -aD)tac + (B(I - AD)'lAC)rUSTVT =<0
Equivalently, for any nonzero vedor h and any admissble A
the foll owing inequality should hold
h"Mo(E,AP,S)h+ 20" (87 8,)0 ETPB( - aD) 2ac )
+2hH (1442m) O ﬁ/suT B(I -ap)taclh<o
or equivalently
h"Mp(E,A,P,S)h+2h" (ﬁT 0 ETPBXﬁz ol —AD)‘lac)n
+2hM (1) 0 (\/SJTB)Xllm 0(1 -ap)tach<o
For fixed nonzero h, this result amounts to requiring
h?Mp(E,AP,S)h+2h" (BT O’ PB)pl
+2hM{(1,,)0WVsUTB)Jp,.<0 whenever
p O0Sy =18, O(1 —AD)tAaCh: amax(A)sl}
P, 0Son =m0 (I —AD)*ACh: amaX(A)sl}
Observing that
P = %2 ol - AD)_lAC)‘l
pp =\l O (1 - 4D)tAaC
are respedively the unique solution of the foll owing equations

pr=(1 O A)qlphl with g gh =(l, OD)p + (B, OCh
py =10 A)szm with ¢ pn =Dpy + (4 OCh

an equivalent and simpler charaderizaion of Sy, and Sy, is
Sin =kp1 p =0 A)qlphlo-max(A)SJf
Sh=1p2 1 P2 =10 A)qthlUmax(A)Sl
Now, py = (I, 0A)agn, P2 = L0 A)gzpn 8Nd Ora(A)<1 ensure,
for any (kxk) matrix P;>0 and any P,>0,
o' (P O1g)n-pl' (A O1g)p =qf (Pl o (' ‘AHA)&ZO
0 (P O g )az = p5' (P, O 1g)po =t (Pz 0 (' -& A, 20
Consequently a sufficient condition for the quadratic D-
admisshility isthat
h?Mp(E,AP,S)h+2h" (ﬁT 0 ETPB)p1
+2h"( 1)D(\/SJTB5p2<O
whenever
(P Olg)n-p' (R OIG)p 20
@' (R Olg)az -y (P D1g)p, 20
Or equivaently if

S Mp(E,AP,S) Bf DETPB(lml)DQ/SUTBE

vio p,OBTPE 0 0 <o,
Hum)O (BTUSTVT ) 0 0 g
whenever

B= BITBZ



Toc’o M 0 O

WiH, 0D" E(led)[ﬁzmmkDDo] R O1400Y20
o § 0 0
,0c’o 00 0

WIH o gpzd)[llmDCOD] 00 0 H¥=0
D' ORIy

with v§ :[hT pr p;].

Using an S-procedure agument [8], M+ N1+ N,<0 implies that
s'"Ms<0 for all s such that s'N;s>0 and s'N,s>0, a sufficient
condition for quadratic D-admisshility is

BMD(EAPS) B ODETPB (1,1)0 6/su B)j

0 B, O0BTPE POy 0 D
Hum)O (BTusTvT 0 Rlg |
+D| op' E(leld)[ﬁzmmkDDo]

d oo
g D
%mlDCTD
+0 0 ﬁpzld)[llmmcoo]w.
O pT O
5|

Finaly by Schur complement and pre- and paost-multi plying
by diag(limn, lkas 1, P1, P2) the proof is completed. n

This result generalizes the result of [2], for usual state-space
systems. Let E=1,, V=0 and V=0 by deleting the third and
fifth rows and columns then theorem 3.3 of [2] foll ows.

A sufficient condition for robust admisgbility in continuous-
time cae is derived from theorem 2.

Corollary 3 The continuous-time uncertain descriptor system
family (E, A(4)) is robustly admissible if there exist a
symmetric positive definite nxn matrix P, real positive
numbers P; and P, and a (n-r)x (n-r) matrix Ssuch that

T T
[F'PA+ATPE E'PBVSUTB RPCT RC H
%vsﬂm ATusTvVT D
0 BT PE -Wlg 0 RDT 0 <0
B BTUSTVT 0 -yly 0 PRD' S
D CP]_ DP]_ O _VRI.Id O D
H P, 0 DR 0 -ylgH

Proof of corollary 3:
Let D be the open left half-plane, applying theorem 2,
corollary 3 follows. [

Remark: applying theorem 2, with D defined by the unitary
disk centered at the origin, a similar result can be established
for discrete-time descriptor systems.

5. Conclusion

In this paper we have studied the D-admisshbility of a pencil
matrix which can be envisaged as the extension of the mncept
of D-stability to the descriptor systems. A necessary and
sufficient LMI condition to test the D-admisgbility has been
established. The robustness of the D-admisgbility faced to
norm-bounded uncertainties is envisaged. A sufficient LMI
condition for robust D-admissgbility has been establi shed. For
the sake of numericd tradability, the results are exclusively
given in terms of drict LMIs, i.e. without any equality
constraint.

Further works are to be done to derive cntrollers achieving
(robust) paole-clustering of the cntrolled system.
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