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ROBUST FAULT DIAGNOSIS FOR DESCRIPTOR SYSTEMS 
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Abstract : In this paper the factorization approach to robust residual generation is 
extended to descriptor systems. The design of the optimal residual generator for non 
causal systems is performed via two steps. First, the coprime factorization permits to 
use proper filters to perform the robust fault diagnosis. Secondly, the residual 
generation is considered as a special case of H~-filtering. An LMI-based design of 
an optimal residual generator is proposed and illustrated. 
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1. INTRODUCTION

The descriptor form (i.e. E.dx/dt = Ax+ ... ) is much 
more general than the usual state-space 
representation for linear dynamic systems (i.e. dx/dt 
= Ax+ ... ). This representation enables to take into 
account physical constraints, static relations and 
impulsive behaviors due to an improper part of the 
system. Thus descriptor systems appear in many 
fields of system design and control and an important 
literature is devoted to descriptor systems since 
(Lewis, 1986; Dai, 1989). Many topics of control 
have been extended to singular systems, such as LQ 
regulation (Cobb, 1983), H2-control (Takaba and 

Katayama, 1996), H~-control (Takaba et al., 1994) or 
LMI-based controllers (Masubuchi et al., 1997). 

Since two decades one of the most challenging 
problem is to ensure a safe and reliable control for 
dynamic systems faced to failures and despite of 
exogenous signais (Chen and Patton, 1999; Patton et 
al., 2000). Concerning the descriptor systems few 
efforts have been made in fault detection and 
isolation (FDI), mainly developing fault detection 
based on observers (Chap.5 of Patton et al., 2000) 
and unknown input observers (Duan et al., 1999). 

In this paper the coprime factorization is used to 
parameterize all proper residual generators for 
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descriptor plants affected by faults and disturbances. 
An optimal residual generator is synthesised to 
maximize the sensitivity to the faults while 
minimizing the sensitivity to the disturbances. 

The paper is organized as follows. Section 2 recalls 
some useful concepts concerning the descriptor 
systems. In section 3 states some results on 
factorization for descriptor systems, ensuring the 
properness of the factors. Robust residual generation 
is tackled in section 4. An LMI-based design of the 
optimal proper residual generator is proposed. 
Section 5 presents an example of fault diagnosis. 

2. PROBLEM STATEMENT

Let consider a stable linear time-invariant descriptor 
system subject to failures and disturbances given by 

{Ex(t) = Ax(t)+ Bu(t) + RJf(t) + E1d(t) (1)y(t) = Cx(t) + Du(t)+ R2ftt) + E2d(t) 

where x E Rn is the descriptor variable, u E Rnu is the
control input, y E Rm is the measured output, d E Rnd 

is the disturbance, f E Rnf is the failure and E, A, B, C,
D, E1 , E2, R1 and R2 are known real constant matrices 
with compatible dimensions. As discussed in (Frank 
and Ding, 1994), the unknown vector d(t) in the 
equations (1) embraces model uncertainties, additive 



perturbation, input and output multiplicative 
perturbation and the vector f(t) stands for 
dysfunctions, actuator or sensor failures. 

The matrix E may be rank deficient : rank( E) = r::; n. 
The system (1) has a unique solution, for any initial 
condition, if it is regular (i.e. det( sE-A)70). Let 
q=deg(det(sE-A)), (1) has q finite dynamic modes, 
(n-r) static modes and (r-q) impulsive modes. The 
finite modes correspond to the finite eigenvalues of 
the pencil matrix ( E, A). The system is called stable if 
the finite modes are stable, i.e. if the finite 
eigenvalues of (E,A) lie in the open left half-plane. 
The impulsive modes may cause impulse terms in the 
response ansd thus are highly undesirable. A system 
has no impulsive mode and is said to be impulse free 
if and only if 

deg( det( sE -A)) = rank E (2) 

Since the transfer matrix of any impulse free 
descriptor system is (non strictly) proper it can be 
realized by an usual state-space representation (A, B, 
C, D). 
A descriptor system is impulse observable (resp. R
observable) if and only if it satisfies (3) (resp. (4)) 

[ET O O] rank T T T = 11 + rank E 
A E C 

[sE-A] ..., rank C = n, vs complex

(3) 

(4) 

If (3) is verified, there exists a matrix gain L such 
that the pencil matrix (E, A+LC) is impulse free. If 
(4) is verified the finite eigenvalues of (E, A+LC) can
be arbitrarily placed by the matrix gain L. Dual
notions are defined for the controllability (Dai,
1989). If (E, A) is stable and impulse free, it is called
admissible.

Assumption 1. (E, A, C) is impulse observable. 

It is frequently claimed that considering both 
descriptor case and disturbance is redundant since the 
state can be augmented with d, but this approach 
gives rise to a more restrictive condition to verify the 
impulse observability of the augmented system. 

3. COPRIME FACTORIZATION OF

DESCRIPTOR SYSTEMS

Factorization techniques have been extensively 
treated not only for usual dynamic systems, using 
polynomial approach (Gao and Antsaklis, 1989) or 
state space approach (Clements, 1993), but also for 
descriptor systems (Liu et al., 1997). This section 
presents a factorization for singular plants ensuring 
proper and stable factors by solving a strict LMI. 

A double coprime factorization of a transfer function 
G( s) is defined by 

G(s) = !:!.(s)M-1 (s) = M-1 (s)N(s) (5) 
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where !Y.(s), M(s), M(s) and N(s) are right and left 
coprime matrices of G(s) respectlively. Since the LTI 
descriptor system (1) can also be described by 

y(s) == Gu(s)u(s)+G1(s) f (s)+Gd(s)d(s) (6)

with Gu(s) = {E.(é g)}, Gd(s) = {E{� i�)} (7)
a11d G1(s) = {E.( � ;� )}

thus it can be factorized using the following theorem. 

Theorem 1. Suppose G(s) is a (non necessarily 
proper) real-rational matrix and 

(8) 

is a regular, impulse observable and impulse 
controllable realization. Let L and F be such that (E, 
A+LC) and (E, A+BF) are impulse free, then !Y.(s), 
M(s) , N(s) and M(s) are given by 

N(s)= { E.( 
A +/C B tW)}. M(s) = { E.( 

A +/C }' )} 

{ (
A+BF B)

� 
{ (

A+BF B
)

� !:!.(s) = E, C + DF D !f' M(s) = E, F I r 
(9)

Proof. The proof is achieved by verifying (5) ■ 

The factorization parameters F and L must be 
determined such that the left and right coprime 
matrices of G(s) are admissible. It is important to 
note that in that case !Y_(s),M(s), M(s) and N(s) are 
stable and proper transfer matrices. Only M.1(s) and 
M·1(s) may present impulsive terms. 

Lemma 1 (Uezato and Ikeda, 1999) gives a method 
to compute L (and F by duality) by solving an LMI. 

Lemma 1. The matrix pencil (E, A+LC) is admissible 
if and only if there exist a positive definite matrix 
PERnxn and matrices SER(n•r)x(n-rJ, TERmxn and 
HERmx

(
n-rJ satisfying the LM/ ( 11 ). L is given by (12)

AT (PE + vsuT J+(PE + vsuT l A+ 
. .. cT(TE+Hur J+(TE+HuT lc<o 

(11) 

L=(PE+vsur ;-r(TE+Hur l (12) 

where U and V are full column-rank matrices 
spanning the nul! spaces of E and Er respectively. 

In the remaining L denotes a solution of ( 11 )-( 12) 

4. ROBUST FAULT DIAGNOSIS

The objective of the fault diagnosis process is to 
build a signal, called residual, which highlights the 
appearance of a faulty behaviour. The mathematical 
definition of a residual signal is 

lim r(t) = 0 for fit)= 0, d(t) = 0 
H= (13) 

r(t)ctO for fit)ctO 



4.1 Residual generation 

Following the procedure of (Frank and Ding, 1994),
the left coprime factorization of Gu( s) is used to
generate a primary residual r( s) only affected by the
failures f(s) and the disturbances d( s). A second step
consists in filtering the primary residual to minimize
the transfer from d( s) to the residual. 

Since (E, A, C) is impulse observable, the transfer
matrices Gu(s), Gjs) and G;(s) are factored by 

Gu(s) = M-1 (s)Nu (s)
Gd (s) = M-1(s)Nd (s) (14)
G

f
(s)= M-1(s)N 

f
(s)

where M(s) = { E, ( A +/C 7)} (mxm)

Nu(s) = {E,( A+/C B-llD
J}(mXnu)

Nd (s) = { E, ( A +/C Ei ;�
E

2 J} (mxnd)

N
f

(s) = {E,( A+/C Ri ;�R2 J}(mxnf) (15)

where L is computed by solving the LMI (11). The
residual generator is deduced from (14) and (15) 

!.fs) = M(s)y(s)-Nu(s)u(s) 
= N 

f
(s)fls)+N d(s)d(s). 

r(s) = Q(s)r(s) 
= Q(s)(N 

f
(s)fls) +N J(s)d(s)) 

(16a)

(16b)

where Q(s) is a stable and proper filter of order nq
defined by 

Q(s) = ( �� �� }nrxm) (17)

Since (E, A+LC) is admissible, the finite modes of
Njs) decay exponentially and thus, according to (13),
r(s) is a residual signal. Applying standard H=
techniques, a post fil ter Q( s) is synthesized to
enhance the robustness faced to the unknown inputs
d( s) and to shape the response of the residual
generator. 

4.2 Parameterization of al/ the residual generators 

According to (15) and (16) the residual generator is
parameterized by Land the post-filter Q(s). Theorem
2 proves that the residual generator is independent of
the factorization parameter L (this can be considered
as a generalization of the result established by Ding
and Guo (1997)) 

Theorem 2. Given two factorizations of a real
rational transfe r matrix G( s) 

G(s) = M11(s)N1 (s) = M/(s)Nis) (18)

where M;(s) = {E{A+
C

4c 7 J}and
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N;(s)={E{A+/;C B+;;D J}, for i=l,2.

where L; ensures that M;(s) and N;(s) are admissible 
for i=l,2, there exists a stable Qo(s) which satisfies 

Q0 (s)Mi(s) = Mis) (19a)

f2o(s)Nj (s) = N2(s) (19b)
and furthermore Q0(s) is given by 

Qo(s)={E{ A+
C
LiC Li 7

L1 J} (20)

Proof The proof is achieved by verifying ( 18) ■

As a result of theorem 1, the performance of the
residual generation is independent of the choice of L.
Any possible performance can be achieved by
designing Q(s) for a given L0• 

Corollary 1. Assuming that the matrix L0 ensures the 
admissibility of (E, A+L0C), then ail the residual 
generators can be parameterized by 

r( s) = Q( s)( M 0( s)y(s)-N 0(s)u( s)) (21) 

r(s) = Q( s)M 0(s)(Gd (s)d(s) + G 
f 

(s)f(s)) (22) 

where M0(s) ={E,( A+
C

loC 7 J} 

and No(s)={E,(A+
C

loC B+�DJ} 

4.3 Synthesis of the optimal residual generator 

Since perfect FDI -where each component of the
residual vector is non null if and only if the
corresponding fault has occurred- is a very restrictive
case, residual generators need to be optimal
regarding to a criterion to define. Roughly speaking
the objective is to make the residual sensitive to f(s)
while insensitive to d( s). A natural approach is to
maximize the following criterion 

(23) 

where li.li denotes a matrix norm. Choosing the L2
norm, this problem can be solved via a generalized
eigenvalue / eigenvector problem (Frank and Ding,
1997). Choosing the L� norm is a more generic
approach since no assumption need to be made on the
power spectrum off( s) and d( s) excepted their fini te
energy. This optimization problem have been treated
by Frank and Ding (1994, 1997) for usual systems. 
This contribution is based on the standard H� filtering
approach to robust residual generation, treated by
Edelmayer et al. ( 1994) for the usual systems. 

The objective is to find the Q(s) which minimizes the
following performance index 

J = jjG
11
..(sJ-[O T(s)l (24)



1'--� 

residual generator 

Fig 1. Scheme of robust residual generation. 

where Grw is the transfer from w(s)=[dT(s) /(s)l to
r( s ). T( s) is a filtering parameter which allows to take 
advantage of the available knowledge concerning the 
faults, for instance by amplifying a frequency range 
where the faults are expected or filtering by a 
diagonal of low-pass filter when the estimated faults 
are used for reconfiguration. The objective is to 
minimize the transfer from w(s) to e(s)=r(s)-T(s)f(s) 
by choosing the appropria te post fil ter Q( s) as shown 
on figure l. 

Since NJ,s) and Njs) are admissible, by a singular
value decomposition of E, they can be realized using
stable usual state-space systems of order r=rank E

Grw(s)= Q(s)lNd(s) N f(s)J 

- ( Ao BQ 
I
J (gl E.JJ 

-l CQ DQ f (K2 fü) 
(25) 

The following theorems give a method to design the
post-filter Q(s) for a given stable T(s), of order nt 
defined by 

T(s) =(AT BT Î
CT Dr) 

(26) 

The objective (24) can be re-formulate as finding the
controller Q(s) that minimizes the H= norm of the
transfer from w( s) to e( s ), in other words finding the
controller Q( s) that satis fies (27) for a given real 
positive y chosen as small as possible 

ll'T,,w(s)L =JIGrw(s)-[0 T(s)t <y (27) 

TeJs) is given by the interconnection of a plant (28)
and a controller (29). In the standard IL framework,
e( s) is the controlled output, r.( s) is the measured
output, w( s) gathers the exogenous signais and r( s) is 
the control input 

(
e(s)Î 

[ 
(Ad) (B1d B2d) } w(s)î

r_
(s)

) = ( ��:) ( ���: 
D

g
d
) f r(s))

(28) 

r(s) j Ao BQ lr(s) (29) 
l CQ DQ f
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The design of Q(s) follows the LMI-based controller
synthesis presented by Gahinet and Apkarian (1994). 
The conditions to be verified are the detectability and 
stabilizability of (Ad, B2d, C2d), and a null direct 
transfer from r( s) to r.( s ). The former is secured since
A and Ar are stable. And the latter is verified in (28).
The optimal achievable y is determined by theorem 3 
and theorem 4 gives the computation of the post
filterQ( s ).

Theorem 3. For a given positive number y, a post 
filter Q( s) satisfying (27) exists if and only if there 
exist Rand S real symmetric (nt+r)x(nt+r) matrices 
such that the LM/s (30) hold 

( AdR ; RAJ B1d t o (30a) 
l Bld -yl) 

(NT O T T Ns 0
) 1

AJ s + SAJ SB1d cTd

J J I B1dS -y/ D11d 0 I <0 (30b)
C1d D11d -y/ 

( 1 n2:o (30c)

where N5 is an orthonormal basis of the null space of 
[C2dD21dJ. 

In addition, y is achievable by a Q(s) of order k < 

nt+r if and only if the LM/s (30) hold for some R, S
which also satisfy 

Rank( I + RS) � k (31) 

The optimal achievable Yopt can be determined by a
simple minimization of the LMI variable y, under the 
constraint (30). 

Theorem 4. Let (R,S) satisfy (30) for Yapi- An 
optimally robust residual generator , satisfying (27), 
is determined by the post filter Q( s) defined by 

eJ Ao BQ 1 (32) l CQ DQ)

where 8 satisfies the LM/ ( 33) [AJ x + XAo XBo cl

j Bl x -yI Dl + pT eQ + QT eT 
P < o (33)

Co Do -yl 

where Ao =[} � g], Bo =[I1 t] 
0 0 0 0 0 

c0 = ( -cT o o ), D0 = (o -Dr) 
P=((g g b)x g �) 

Q = ( ( g f b) �/ E2 ) g J 
X=( ;r -NRM:�>Mr1 J 

where M and N are full column rank matrices E 
R!r+ntJ><nq such that MNT 

=l-RS



Proof. Derived from (Gahinet and Apkarian, 1994). ■ 

The design of a reduced order Q( s) follows the same
method with (R, S) also satisfying (31). 

Algorithm of fault detection 
Stepl. Solve the LMI (11) to determine L such that

the factorisation (14) is admissible. 
Step2. Determine Yopt by minimizing y under the LMI

constraint (30). 
Step3. Compute the post-filter Q(s) by solving the

LMI (33). 

From the classical H=-control theory it is known that 
the order of Q(s) is bounded by nq :::; r+nt. For
implementation it is of interest to minimize nq by
checking (31) for a decreasing k. If no satisfactory y
can be achieved for a reduced order Q(s), the order of
T(s) can be decreased. The extreme case is fault
estimation, where T(s) has no dynamic. 

4.4 Robust fault estimation. 

The aim of the robust fault estimation is to find Q(s) 
such that that the residual signal r( s) converges
toward a linear combination of the faults. Q( s) is
chosen to satisfy (34) for a given real positive y 
chosen as small as possible 

jjQ(s>[Nd(s) N1(sJ]-[o DT t <y (34)

It can be considered as a special case of filtering, 
with T(s)=DT, and can be addressed with the same 
machinery. Following theorems 3 and 4 respectively, 
theorem 5 gives the existence condition of Q(s) and
theorem 6 gives its computation. 

Theorem 5. For a given positive number y, a post 
filter Q(s) satisfying (34) exists if and only if there 
exist R and S real symmetric ( rxr) matrices such that 
the LMls ( 35) hold 

(AR+
{=,{ 801 Î < O (35a) 

Bo1 -yl) 

(NT o{
�T s/ s � SB01d �

!N S 
o
j Os 

I Bo1dS -y/ Dud O I <0 (35b)
0 Dud -y/ 

( f J) � 0 (35c) 

where Bo1=[!i.J !id and Ns is an orthonormal basis of 
the null space of{{;_ lb &}. 

The optimal achievable Yopt can be determined by a 
simple minimization of the LMI variable y, under the 
constraint (35). 

Theorem 6. Let (R,S) satisfy (35) for Yopt- An
optimally robust fault estimator is determined by the
post filter Q( s) satisfying ( 34 ), defined by 
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eJ � BQ 1 
l CQ DQ)

where 8 satisfies the LMJ ( 37) 

(36) 

[AJ ://flo :�� :b j + pT E)Q + QT E)T P < 0 (37)
0 Do -yl

where Ao = ( � �} B0 = ( �1 �1 )' D0 = (o - DT) 

p = ( ( g b )x g �} Q = ( ( � b) �/ fü ) g} 
X = ( :T - NRM(: T MF1 j

where M and N are full column rank matrices E RrXnq 

such that MNT 
=l-RS. (38) 

Remark. A post filter of reduced order k < r can be
synthesized by adding the constraint (31) to (35). 

Algorithm of fault estimation 
Stepl. Solve the LMI (11) to determine L such that

the factorisation (14) is admissible. 
Step2. Determine Yopt by minimizing y under the LMI

constraint (35). 
Step3. Compute the post-filter Q(s) by solving the

LMI (37). 

5. NUMERICAL EXAMPLE

In this section the algorithm of robust fault diagnosis 
is illustrated. Let consider the descriptor system ( 1) 
defined by 

0000 0 0 01 01 
E=[8 i g �] A=r-r -JO� g] B=[8 g]

R, ·[} 1] E1 ·[Hl c-(Z Ô � 8) D =(Z Z)

R2 = ( g �) E2 = ( g b) (39) 

where d(t) and f(t) are defined by (40) and (41)
respectively. fi(t) is an actuator failure and fit) is a
sensor offset 

di(t)=0.01 *sin( 300.t) 
d2(t)=0.01 *sin(200.t) 

f ( 1) = {
-u( t ), for 3 < t < 5

1 0 , else 

f ( t) = 
{1, for 7 < t < 9

2 0, else 

(40) 

(41) 

(E,A,C) is impulse observable but (E,A) 1s not
impulse free. 

First, L is determined such that (E, A+LC) is
admissible (impulse free and stable). Solving (11), 
(E,A+LC) is impulse free and the finite eigenvalues
are {-4.50 +/- l.0li, -0.83). 
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Fig. 2. Comparison of the faults (dashed lines) and 
residual signais (solid lines). 

T(s) is chosen to be a diagonal of first order low-pass 

filters. The minimization of y results in Yr,
p
,=0.99. An

optimally rabust post-filter Q(s) of order nq=5 is 
determined by solving (31 ). The original and 
estimated faults are displayed on figure 2. 

6. CONCLUSION

In this paper the design of an optimal residual 
generator for descriptor systems, formulated in the 

H- contra! framework, was proposed and illustrated.
The residual generator is synthesized by a two step
procedure. Firstly, the residual generation is based on
the coprime factorization of the plant. Since the
resulting factors are not impraper the residual
generator can be realized by an usual state-space
realization. Secondly, a post-filter is added to ensure
the robustness of the fault diagnosis. The synthesis is

based on the H- -filtering appraach.
As pointed in (Chen and Patton, 1999) it is not
obvious to introduce mode! uncertainties in this
formulation since Q( s) is a post-filter and has no
influence on the dynamics of the plant. Further works
of interest should be to generalize the integrated
contra! and fault detection investigated by Niemann
and Stoustrup (1997).
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