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Abstract

The global sensitivity analysis, used to quantify the influence of uncertain input parameters on the

response variability of a numerical model, is applicable to deterministic computer code (for which the

same set of input parameters gives always the same output value). This paper proposes a new global

sensitivity analysis method for stochastic computer code (having a variability induced by some uncon-

trollable parameters). The well-known framework of the joint modeling of the mean and dispersion of

heteroscedastic data is used. To deal with the complexity of computer experiment outputs, a new non

parametric joint model, based on two interlinked Generalized Additive Models (GAM), is proposed. The

“mean model” allows to obtain the controllable parameters sensitivity indices, while the “dispersion

model” allows to obtain the uncontrollable parameters ones. The relevance of this new model is analyzed

with two case studies. Results show that the joint modeling approach leads accurate sensitivity index

estimations even when clear heteroscedasticity is present.

Keywords: joint modeling, mean and dispersion, generalized linear model, Gaussian process, meta-

model, uncertainty

1 INTRODUCTION

Many phenomena are modeled by mathematical equations which are implemented and solved by complex

computer code. These computer models often take as inputs a high number of numerical parameters and

physical variables, and give several outputs (scalars or functions). For the development of such computer

models, its analysis, or its use, the global Sensitivity Analysis (SA) method is an invaluable tool (Saltelli et

al. [31], Kleijnen [16], Helton et al. [8]). It takes into account all the variation ranges of the inputs, and tries

to apportion the output uncertainty to the uncertainty in the input factors. These techniques, often based

on the probabilistic framework and Monte-Carlo methods, require a lot of simulations. The uncertain input

parameters are modeled by random variables and characterized by their probabilistic density functions. The

1



SA methods are used for model calibration, model validation, decision making process, i.e. all the processes

where it is useful to know which variables mostly contribute to output variability.

The current SA methods are applicable to the deterministic computer code, e.g. for which the same

set of input parameters always gives the same output values. The randomness is limited to the model

inputs, whereas the model itself is deterministic. Most computer code belong to this kind of model. For

example in the nuclear engineering domain, global sensitivity analysis tools have been applied to waste

storage safety studies (Helton et al. [8]), and pollutant transport modeling in the aquifer (Volkova et al.

[35]). In such industrial studies, numerical models are often too time consuming for applying directly the

global SA methods. To avoid this problem, one solution consists in replacing the time consuming computer

code by an approximate mathematical model, called response surface or surrogate model or also metamodel

(Sacks et al. [29], Fang et al. [5]). This function must be as representative as possible of the computer code,

with good prediction capabilities and must require a negligible calculation time. Several metamodels are

classically used: polynomials, splines, neural networks, Gaussian processes (Chen et al. [4], Fang et al. [5]).

In this paper, we are not interested by deterministic computer models but by stochastic numerical models

- i.e. when the same input parameters set leads to different output values. The model is therefore intrinsically

stochastic because of some “uncontrollable” parameters. For the uncertainty analysis, Kleijnen [16] has raised

this question, giving an example concerning a queueing model. In the nuclear engineering domain, examples

are given by Monte-Carlo neutronic models used to calculate elementary particles trajectories, Lagrangian

stochastic models for simulating a large number of particles inside turbulent media (in atmospheric or

hydraulic environment). In our study, “uncontrollable” parameters correspond to parameters that are known

to exist, but unobservable, inaccessible or non describable for some reasons. It includes the important

case in which observable vectorial parameters are too complex to be described by a reasonable number

of scalar parameters. This last situation might concern the code for which some simulations of complex

random processes are used. For example, one can quote some partial differential equation resolutions in

heterogeneous random media simulated by geostatistical techniques (fluid flows in oil reservoirs, Zabalza

et al. [37], acoustical wave propagation in turbulent fluids, Iooss et al. [11]), where the uncontrollable

parameter is the simulated spatial field involving several thousand scalar values for each realization.

For an environmental assessment problem, Tarantola et al. [33] propose a first solution by introducing

a binary input parameter ξ governing the simulation of the random field. Therefore, the sensitivity index

of ξ quantifies the influence of the random field on the model output variable. However, as shown by Iooss

& Ribatet [13], this method does not give any idea about the influence of the possible interactions between

the uncontrollable parameter and the other uncertain input parameters. Moreover, to perform a sensitivity

analysis, such approach requires a large number of computer model calculations (several hundreds per input

parameter). For most applications, this is impossible due to intractable CPU time and computer code have

to be substituted for metamodels.
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For stochastic computer models, classical metamodels (devoted to approximate deterministic computer

models) are not pertinent anymore. To overcome this problem, the commonly used Gaussian process (Gp)

model (Sacks et al. [29], Jones et al. [14]) can include an additive error component (called the “nugget

effect”) by adding a constant term into its covariance function (Rasmussen & Williams [27]). However, it

supposes that the error term is independent of the input parameters (homoscedasticity hypothesis), which

means that the uncontrollable parameter does not interact with controllable parameters. This hypothesis

limits the use of Gp to specific cases. Recently, some authors (e.g. Kleijnen & van Beers [17]) demonstrated

the usefulness of Gp for stochastic computer model in heteroscedastic cases. To construct heteroscedastic

metamodels for stochastic computer code, Zabalza et al. [37] have proposed another approach by modeling

the mean and the dispersion (i.e. the variance) of computer code outputs by two interlinked Generalized

Linear Models (GLMs). This approach, called the joint model, has been previously studied in the context

of experimental data modeling (McCullagh & Nelder [20]).

Modeling the mean and variance of a response variable in function of some controllable parameters is of

primary concern in product development and quality engineering methods (Phadke [24]): experimentation is

used to determine the factor levels so that the product is insensitive to potential variations of environmental

conditions. This can be summarized, in the framework of the robust design, as the optimization of a mean

response function while minimizing a variance function. In this context, Vining & Myers [34] propose to

build polynomial models for the mean and the variance separately, while Lee & Nelder [18] consider the

joint GLM approach. A recent and complete review on this subject can be found in Bursztyn & Steinberg

[3]. Dealing with computer experiments instead of physical ones, Bates et al. [2] propose different strategies

for designing and analyzing robust design experiments. In this case, the noise factors are fully controllable.

This allows the authors to provide a powerful stochastic emulator strategy.

In this paper, we focus on stochastic computer code, which include incontrollable noise factors. Following

the work of Zabalza et al. [37], Iooss & Ribatet [12] have recently introduced the joint model to perform

a global sensitivity analysis of a stochastic model. Results show that a total sensitivity index of all the

uncontrollable parameters can be computed using the dispersion component of the joint model. However,

the parametric form of the GLM framework provides some limitations when modeling complex computer

code outputs. To bypass this hurdle, this paper suggests the use of non parametric models. Due to its

similarity with GLMs, Generalized Additive Models (GAM) are considered (Hastie & Tibshirani [7], Wood

& Augustin [36]), even though Gp or other non parametric models should also be a relevant solution.

This paper starts by describing the joint model construction, firstly with the GLM, secondly with the

GAM. We will also show how other models, like Gp, can be used to model the mean and dispersion compo-

nents. The third section describes the global sensitivity analysis for deterministic models, and its extension

to stochastic models using joint models. Particular attention is devoted to the calculation of variance-based

sensitivity indices (the so-called Sobol indices). Considering a simple analytic function, the performance of
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the proposed approach is compared to other commonly used models. Next, an application on an actual in-

dustrial case (groundwater radionucleide migration modeling) is given. Finally, some conclusions synthesize

the contributions of this work.

2 JOINT MODELING OF MEAN AND DISPERSION

2.1 Using the Generalized Linear Models

The class of GLM allows to extend the class of the traditional linear models by the use of: (a) a distribution

which belongs to the exponential family; (b) and a link function which connects the explanatory variables

to the explained variable (Nelder & Wedderburn [23]). Let us describe the first component of the model

concerning the mean:














E(Yi) = µi, ηi = g(µi) =
∑

j xijβj ,

Var(Yi) = φiv(µi) ,

(1)

where (Yi)i=1...n are independent random variables with mean µi; xij are the observations of the parameter

Xj ; βj are the regression parameters which have to be estimated; ηi is the mean linear predictor; g(·) is a

differentiable monotonous function (called the link function); φi is the dispersion parameter and v(·) is the

variance function. To estimate the mean component, the functions g(·) and v(·) have to be specified. Some

examples of link functions are given by the identity (traditional linear model), root square, logarithm, and

inverse functions. Some examples of variance functions are given by the constant (traditional linear model),

identity and square functions.

Within the joint model framework, the dispersion parameter φi is not supposed to be constant as in a

traditional GLM, but is supposed to vary according to the model:















E(di) = φi, ζi = h(φi) =
∑

j uijγj ,

Var(di) = τvd(φi) ,

(2)

where di is a statistic representative of the dispersion, γj are the regression parameters which have to be

estimated, h(·) is the dispersion link function, ζi is the dispersion linear predictor, τ is a constant and vd(·) is

the dispersion variance function. uij are the observations of the explanatory variable Uj . The variables (Uj)

are generally taken among the explanatory variables of the mean (Xj), but might differ. To ensure positivity,

h(φ) = log φ is often taken for the dispersion link function while the statistic d representing the dispersion is

generally taken to be the deviance contribution - which is approximately χ2 distributed. Therefore, as the

χ2 distribution is a particular case of the Gamma distribution, vd(φ) = φ2 and τ ∼ 2.

The joint model is fitted using Extended Quasi-Loglikelihood (EQL) (Nelder & Pregibon [22]) maxi-

mization. The EQL behaves as a log-likelihood for both mean and dispersion parameters. This justifies an
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iterative procedure to fit the joint model. First, a GLM is fitted on the mean; then from the estimate of

d, another GLM is fitted on the dispersion. From the estimate of φ, weights for the next estimate of the

GLM on the mean are obtained. This process can be reiterated as many times it is necessary, and allows to

entirely fit our joint model (McCullagh & Nelder [20]).

Statistical tools available in the GLM fitting are also available for each component of the joint model:

deviance analysis and Student test. It allows to make some variable selection in order to simplify model

expressions. The residuals graphical analysis (which have to be normally distributed) and the q-q plots can

be used as indicators of the correctness of the link function for the mean component (Lee & Nelder [18]).

In practice, some evidence can lead to an adequate choice of the link function (McCullagh & Nelder [20]).

For example, a binomial-type explained variable leads to the use of the logit function. However, if a natural

choice is not possible and if the identity link function does not provide satisfactory residuals analysis, plotting

the adjusted dependent variable versus the linear predictor might help in choosing a more appropriate link

function (McCullagh & Nelder [20]).

In conclusion, all the results obtained on the joint GLM are applicable to the problem of stochastic

computer experiments. The novelty proposed in our paper concerns the global sensitivity analysis issue

(section 3.2). Moreover, in the following section we extend the joint GLM to the non parametric framework.

This kind of model is necessary for the computer experiment outputs which tend to be rather complex and

need non parametric modeling.

Remark: A simpler approach consists in building polynomial models for the mean and the variance separately

(Vining & Myers [34], Bursztyn & Steinberg [3]). This approach, called dual modeling, consists in repeating

calculations with the same sets of controllable parameters (which is not necessary in the joint modeling

approach). The dual modeling approach has been successfully applied in many situations, especially for robust

conception problems. However for our purpose (accurate fitting of the mean and dispersion components),

it has been shown that this dual model is less competitive than the joint model (Zabalza et al. [37], Lee &

Nelder [18]): the dual modeling approach fits the dispersion model given the mean model and this approach

does not always lead to optimal fits.

2.2 Extension to the Generalized Additive Models

Generalized Additive models (GAM) were introduced by Hastie & Tibshirani [7] and allow a linear term in the

linear predictor η =
∑

j βjXj of equation (1) to be replaced by a sum of smooth functions η =
∑

j sj(Xj).

The sj(.)’s are unspecified functions that are obtained by fitting a smoother to the data, in an iterative

procedure. GAMs provide a flexible method for identifying nonlinear covariate effects in exponential family

models and other likelihood-based regression models. The fitting of GAM introduces an extra level of

iteration in which each spline is fitted in turn assuming the others known. GAM terms can be mixed quite

generally with GLM terms in deriving a model.
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One common choice for sj is the smoothing spline, i.e. splines with knots at each distinct value of the

variables. In regression problems, smoothing splines have to be penalized in order to avoid data overfitting.

Wood & Augustin [36] have described in details how GAMs can be constructed using penalized regression

splines. Because numerical models often exhibit strong interactions between input parameters, the incorpo-

ration of multi-dimensional smooth (for example the bi-dimensional spline term sij(Xi, Xj)) is particularly

important in our context.

GAMs are generally fitted using penalized likelihood maximization. For this purpose, the likelihood is

modified by the addition of a penalty for each smooth function, penalizing its “wiggliness”. Namely, the

penalized loglikelihood is defined as:

pℓ = ℓ +

p
∑

j=1

λj

∫

(

∂2sj

∂x2
j

)2

dxj (3)

where ℓ is the loglikelihood function, p is the total number of smooth terms and λj are “smoothing param-

eters” which compromise between goodness of fit and smoothness.

Estimation of these “smoothing parameters” is generally achieved using the GCV score minimization.

The GCV score is defined as:

SGCV =
nd

(n − DoF )
2 (4)

where n is the number of data, d is the deviance and DoF is the effective degrees of freedom, i.e. the trace

of the so-called “hat” matrix. Extension to (E)QL models is straightforward by substituting the likelihood

function and the deviance d for their (extended) quasi counterparts. In practice, the smoothing parameters

are updated at each iteration of the fitting procedure of the joint model. To this aim, on every iteration

a GLM/GAM is fitted for each trial set of smoothing parameters, and GCV scores are only evaluated at

convergence.

We have seen that GAMs extend in a natural way GLMs. Therefore, it would be interesting to extend the

joint GLM model to a joint GAM one. Such ideas have been proposed in Rigby & Stasinopoulos [28] where

both the mean and variance were modeled using semi-parametric additive models (Hastie & Tibshirani [7]).

This model is restricted to observations following a Gaussian distribution and is called Mean and Dispersion

Additive Model (MADAM). Our model is more general and relax the Gaussian assumption as now quasi-

distributions are considered. Note that while the MADAM fitting procedure relies on the maximization of

the penalized likelihood, our model maximizes the penalized extended quasi-likelihood. In addition, Rigby

& Stasinopoulos [28] only used cubic regression splines, our framework allows also the use of multivariate

smoothers - e.g. thin plate regression splines. As our model is based on GAMs and by analogy with the

denomination “joint GLM”, we call it “joint GAM” in the following.

Lastly, it has to be noticed that, within the EQL maximization framework, a large number of models
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can be considered instead of GAMs. For instance, one can use a GAM for the mean response and a GLM

for the dispersion component. In addition, more complex models can also be considered such as Gaussian

processes - see Section 2.3.

2.3 Joint modeling with other models

For some applications, joint GAM could be inadequate, and other models can be proposed. For example,

for Gaussian observations, Juutilainen & Rning [15] have used a neural network model for mean and disper-

sion. It is shown to be more efficient than joint GLM and joint additive models in a context of numerous

explanatory variables (25) and of a large amount of data (100000). They perform an extensive comparison

for large data sets between joint neural network model, MADAM, joint local linear regression model and

joint linear regression model. While our context of computer experiments is different (we have small data

sets), it is interesting to recall their conclusion:

• the neural network joint model gives the best prediction performance;

• MADAM requires a huge amount of memory;

• joint local linear model is extremely time consuming;

• joint linear model is appropriate when simplicity is required.

It is also possible to build a heteroscedastic model based on the Gaussian process (Gp) metamodel

(Sacks et al. [29]). A first approach, proposed by Ginsbourger et al. [6], consists in modeling the mean of

the computer code with a Gp metamodel for which the nugget effect is supposed to vary with the inputs.

From this fitted Gp, one can use the estimation of the MSE (given by the Gp model) as the dispersion

statistic d introduced in Equation (2). This model does not require any fitting of the dispersion component

and we prefer to focus our attention on another method, the joint Gp model, which is coherent with our

previous joint models.

The first step of our methodology models the mean by a Gp metamodel (having a nugget effect) estimated

on the learning sample. The second step consists in adjusting a second Gp metamodel on the squared

residuals. This process can be iterated as in the joint GLM and joint GAM fitting procedure. Due to the

presence of a nugget effect in the mean component, the mean Gp is not anymore an exact interpolator and

the learning sample residuals can be used for the dispersion model. However, residuals could also be derived

from a cross validation method.
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3 GLOBAL SENSITIVITY ANALYSIS

3.1 Deterministic models

The global SA methods are applicable to deterministic computer code, e.g. for which the same set of input

parameters always leads to the same response value. This is considered by the following model:

f : R
p → R

X 7→ Y = f(X)
(5)

where f is the model function (possibly analytically unknown), X = (X1, . . . , Xp) are p independent inputs

and Y is the output. In our problem, X is uncertain and considered as a random vector with known

distribution which reflects this uncertainty. Therefore, Y is also a random variable, whose distribution is

unknown. In this section, let us recall some basic ideas on the variance-based sensitivity indices, called Sobol

indices, applied on this model.

Among quantitative methods, variance-based methods are the most often used (Saltelli et al. [31]). The

main idea of these methods is to evaluate how the variance of an input or a group of inputs contributes into

the variance of output. We start from the following variance decomposition:

Var [Y ] = Var [E (Y |Xi)] + E [Var (Y |Xi)] , (6)

which is known as the total variance theorem. The first term of this equality, named variance of the

conditional expectation, is a natural indicator of the importance of Xi into the variance of Y : the greater

the importance of Xi, the greater is Var[E(Y |Xi)]. Most often, this term is divided by Var[Y ] to obtain a

sensitivity index in [0, 1].

To express the sensitivity indices, we use the unique decomposition of any integrable function on [0, 1]p

into a sum of elementary functions (see for example Sobol [32]):

f(X1, · · · , Xp) = f0 +

p
∑

i

fi(Xi) +

p
∑

i<j

fij(Xi, Xj) + . . . + f12..p(X1, · · · , Xp) , (7)

where f0 is a constant and the other functions verify the following conditions:

∫ 1

0

fi1,...,is
(xi1 , . . . , xis

) dxik
= 0 ∀k = 1, . . . , s , ∀{i1, . . . , is} ⊆ {1, . . . , p} . (8)

Therefore, if the Xis are mutually independent, the following decomposition of the model output variance
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is possible (Sobol [32]):

Var [Y ] =

p
∑

i

Vi(Y ) +

p
∑

i<j

Vij(Y ) +

p
∑

i<j<k

Vijk(Y ) + . . . + V12..p(Y ) , (9)

where Vi(Y ) = Var[E(Y |Xi)], Vij(Y ) = Var[E(Y |XiXj)] − Vi(Y ) − Vj(Y ), . . . One can thus defines the

sensitivity indices by:

Si =
Var [E (Y |Xi)]

Var(Y )
=

Vi(Y )

Var(Y )
, Sij =

Vij(Y )

Var(Y )
, Sijk =

Vijk(Y )

Var(Y )
, . . . (10)

These coefficients are called the Sobol indices, and can be used for any complex model functions f . The

second order index Sij expresses sensitivity of the model to the interaction between the variables Xi and

Xj (without the first order effects of Xi and Xj), and so on for higher orders effects. The interpretation of

these indices is natural as their sum is equal to one (thanks to equation (9)): the larger and close to one an

index value, the greater is the importance of the variable or the group of variables linked to this index.

For a model with p inputs, the number of Sobol indices is 2p − 1; leading to an intractable number of

indices as p increases. Thus, to express the overall sensitivity of the output to an input Xi, Homma & Saltelli

[9] introduce the total sensitivity index:

STi
= Si +

∑

j 6=i

Sij +
∑

j 6=i,k 6=i,j<k

Sijk + . . . =
∑

l∈#i

Sl , (11)

where #i represents all the “non-ordered” subsets of indices containing index i. Thus,
∑

l∈#i Sl is the

sum of all the sensitivity indices containing i in their index. For example, for a model with three input

parameters, ST1
= S1 + S12 + S13 + S123.

The estimation of these indices can be done by Monte-Carlo simulations or by the FAST method (Sobol

[32], Saltelli [30], Saltelli et al. [31]). Recent algorithms have also been introduced to reduce the number of

required model evaluations significantly. As explained in the introduction, an alternative method consists in

replacing complex computer models by metamodels which have negligible calculation time. Estimation of

Sobol indices by Monte-Carlo techniques with their confidence intervals (requiring thousand of simulations)

can then be done using these response surfaces. In practice, when the model has a great number of input

parameters, only the first order and total Sobol indices are considered.

3.2 Stochastic models

In this work, models containing some intrinsic alea, which is described as an uncontrollable random input

parameter ε, are called “stochastic computer models”. In the following, the expectation and variance op-

erators involve averaging over the distribution of (X, ε), unless another distribution is indicated. Similarly
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from equation (5), consider the following (stochastic) model:

g : R
p → R

X 7→ Y = f(X) + ν(ε,X : ε)
(12)

where X are the p controllable input parameters (independent random variables), Y is the output, f is the

deterministic part of the model function and ν is the stochastic part of the model function, which is supposed

to be centered relatively to ε: Eε(ν) = 0. The notation ν(ε,X : ε) means that ν depends only on ε and on the

interactions between ε and X. The additive form of equation (12) is deduced directly from the decomposition

of the function g into a sum of elementary functions depending on (X, ε) (like the decomposition in Eq. (7)).

For a stochastic model (12), the joint models introduced in section 2 enables us to recover two GLMs,

two GAMs or two Gps:

Ym(X) = E(Y |X) = Eε(Y |X) = µ(X) (13)

by the mean component (Eq. (1)), and

Yd(X) = Var(Y |X) = Varε(Y |X) = φ(X)v[µ(X)] (14)

by the dispersion component (Eq. (2)). If there is no uncontrollable parameter ε, it leads to a deterministic

model case with Yd(X) = Var(Y |X) = 0. By using the total variance theorem (Eq. (6)), the variance of the

output variable Y can be decomposed by:

Var(Y ) = VarX [E (Y |X)] + EX [Var (Y |X)] = VarX [Ym(X)] + EX [Yd(X)] . (15)

According to model (12), Ym(X) is the deterministic model part, and Yd(X) is the variance of the stochastic

model part:

Ym(X) = f(X) ,

Yd(X) = Varε [ν(ε,X : ε)|X] .
(16)

The variances of Y and Ym(X) are now decomposed according to the contributions of their input pa-

rameters X. For Y , the same decomposition than for deterministic models holds (Eq. (9)). However, it

includes the additional term EX [Yd(X)] (the mean of the dispersion component) deduced from equation

(15). Consequently,

Var(Y ) =

p
∑

i

Vi(Y ) +

p
∑

i<j

Vij(Y ) +

p
∑

i<j<k

Vijk(Y ) + . . . + V12..p(Y ) + EX [Yd(X)] , (17)

where Vi(Y ) = VarXi
[E(Y |Xi)], Vij(Y ) = Var(Xi,Xj)[E(Y |XiXj)] − Vi(Y ) − Vj(Y ), . . . For the mean com-
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ponent Ym(X) that we note Ym for easing the notation, we have

Var(Ym) =

p
∑

i

Vi(Ym) +

p
∑

i<j

Vij(Ym) +

p
∑

i<j<k

Vijk(Ym) + . . . + V12..p(Ym) . (18)

By noticing that

Vi(Ym) = VarXi
[EX(Ym|Xi)] = VarXi

{EX[Eε(Y |X)|Xi]} = VarXi
[EX,ε(Y |Xi)] = Vi(Y ) , (19)

and from equation (10), the sensitivity indices for the variable Y according to the controllable parameters

X = (Xi)i=1...p can be computed using:

Si =
Vi(Ym)

Var(Y )
, Sij =

Vij(Ym)

Var(Y )
, . . . (20)

These Sobol indices can be computed by classical Monte-Carlo techniques, the same ones used in the deter-

ministic model case. These algorithms are applied on the metamodel defined by the mean component Ym of

the joint model.

Thus, all terms contained in VarX[Ym(X)] of the equation (15) have been considered. It remains to

estimate EX[Yd(X)] by a simple numerical integration of Yd(X) following the distribution of X. Yd(X) is

evaluated with a metamodel, for example the dispersion component of the joint model. EX[Ym(X)] includes

all the decomposition terms of Var(Y ) (according to X and ε) not taken into account in VarX[Ym(X)] i.e.

all terms involving ε. Therefore, the total sensitivity index of ε is

STε
=

EX[Ym(X)]

Var(Y )
. (21)

As Yd(X) is a positive random variable, positivity of STε
is guaranteed. In practice, Var(Y ) can be estimated

from the data or from simulations of the fitted joint model:

Var(Y ) = VarX[Ym(X)] + EX[Ym(X)] . (22)

If Var(Y ) is computed from the data, it seems preferable to estimate EX[Ym(X)] with Var(Y )−VarX[Ym(X)]

to satisfy equation (15). In our applications, the total variance will be estimated using the fitted joint model

(Eq. (22)).

Finally, let us note that we cannot quantitatively distinguish the various contributions in STε
(Sε, Siε,

Sijε, . . . ). Indeed, it is not possible to combine the functional anova decomposition of Ym(X) with the

functional anova decomposition of Yd(X) in order to deduce the unknown sensitivity indices. Finding a way

to form some composite indices still remains an open problem which needs further research. However, we
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argue that the analysis of the terms in the regression model Yd and their t-values give useful qualitative

information. For example, if an input parameter Xi is not present in Yd, we can deduce the following correct

information: Siε = 0. Moreover, if the t-values analysis and the deviance analysis show that an input

parameter Xi has a smaller influence than another input parameter Xj , we can suppose that the interaction

between Xi and ε is less influential than the interaction between Xj and ε. Therefore, giving this kind of

information is an improvement compared to the Tarantola’s method (Tarantola et al. [33], see introduction).

In conclusion, this new approach, based on joint models to compute Sobol sensitivity indices, is useful if

the following conditions hold:

• if the computer model contains some uncontrollable parameters (the model is no more deterministic

but stochastic);

• if a metamodel is needed due to large CPU times of the computer model;

• if some of the uncontrollable parameters interact with some controllable input ones;

• if some information about the influence of the interactions between the uncontrollable parameters and

the other input parameters is of interest.

4 APPLICATIONS

4.1 An analytic test case: the Ishigami function

The proposed method is first illustrated on an artificial analytical model with 3 input variables, called the

Ishigami function (Homma & Saltelli [9], Saltelli et al. [31]):

Y = f(X1, X2, X3) = sin(X1) + 7 sin(X2)
2 + 0.1X4

3 sin(X1) , (23)

where Xi ∼ U [−π; π] for i = 1, 2, 3. For this function, all the Sobol sensitivity indices (S1, S2, S3, S12,

S13, S23, S123, ST1
, ST2

, ST3
) are known. This function is used in most intercomparison studies of global

sensitivity analysis algorithms. In our study, the classical problem is altered by considering X1 and X2 as the

controllable input random variables, and X3 as an uncontrollable input random variable. It means that the

X3 random values are not used in the modeling procedure; this parameter is considered to be inaccessible.

However, sensitivity indices have the same theoretical values as in the standard case.

For this analytical function case, it is easy to obtain the exact mean and dispersion models by deriving

(via analytical integration) the analytical expressions of the mean component Ym(X1, X2) and dispersion
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component Yd(X1, X2):

Ym(X1, X2) = E(Y |X1, X2) =

(

1 +
π4

50

)

sin(X1) + 7[sin(X2)]
2 ,

Yd(X1, X2) = Var(Y |X1, X2) = π8

(

1

900
−

1

2500

)

[sin(X1)]
2 = Yd(X1) .

(24)

4.1.1 Metamodeling

For the model fitting, 1000 samples of (X1, X2, X3) were simulated leading to 1000 observations for Y .

In this section, the GLM, GAM and Gp model (with their relative joint extensions) are compared (see

Table 1). To compare the predictivity of different metamodels, we use the predictivity coefficient Q2, which

is the determination coefficient R2 computed from a test sample (composed here by 10000 randomly chosen

points). For each joint model, Q2 is computed on the mean component.

Table 1: Results for the fitting of different metamodels for the Ishigami function. Dexpl (the explained deviance of

the model) and Q2 (the predictivity coefficient of the model) are expressed in percent. For the joint models, Dexpl
and Q2 are those of the mean component Ym. In the formulas for GAM, s1(·), s2(·) and sd1(·) are three spline terms.

Dexpl Q2 Formula

Simple GLM 61.3 60.8 Y = 1.92 + 2.69X1 + 2.17X2

2
− 0.29X3

1
− 0.29X4

2

Joint GLM 61.3 60.8 Ym = 1.92 + 2.69X1 + 2.17X2

2
− 0.29X3

1
− 0.29X4

2

log(Yd) = 1.73

Simple GAM 76.8 75.1 Y = 3.76 − 2.67X1 + s1(X1) + s2(X2)
Joint GAM 92.8 75.5 Ym = 3.75 − 3.06X1 + s1(X1) + s2(X2)

log(Yd) = 0.59 + sd1(X1)

Simple Gp — 75.0 —
Joint Gp — 75.0 —

The simple GLM is a fourth order polynomial. Only the explanatory terms are selected in our regression

model using analysis of deviance and the Fisher statistics. The Student test on the regression coefficients

and residuals graphical analysis make it possible to judge the goodness of fit. We see that it remains 39%

of non explained deviance due to the model inadequacy and/or to the uncontrollable parameter. The mean

component of the joint GLM gives the same model as the simple GLM. For the dispersion component,

using analysis of deviance techniques, no significant explanatory variable was found. Thus, the dispersion

component is supposed to be constant; and the joint GLM is equivalent to the simple GLM approach - but

with a different fitting process.

Studying now the non parametric modeling, we start by the simple GAM fitting where we have kept

some parametric terms by applying a term selection procedure. The predictivity coefficient of the mean

component of the joint GAM is slightly better than the predictivity coefficient of the simple GAM. However,

the explained deviance given by the joint GAM mean component is clearly larger than the one given by the

simple GAM approach. Even if this could be related to an increasing number of parameters, as the number

of parameters remains very small compared to the data size (1000), it is certainly explained by the fact that

GAMs are more flexible than GLMs. This demonstrates the efficiency of the joint modeling of the mean and

dispersion when heteroscedasticity is involved. Indeed, the joint procedure leads to appropriate prior weights
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for the mean component. The joint GAM improves both the joint GLM and simple GAM approaches:

(a) due to the GAMs flexibility, the explanatory variable X1 is identified to model the dispersion component

(the interaction between X1 and the uncontrollable parameter X3 is therefore retrieved);

(b) the joint GAM explained deviance (93%) for the mean component is clearly larger than the simple GAM

and joint GLM ones (joint GLM: 61%, simple GAM: 77%).

For the Gp metamodel fitting, we use the methodology of Marrel et al. [19] which include in the model a

linear regression part and a Gp defined by a generalized exponential covariance. We obtain for the simple Gp

the predictivity coefficient Q2 = 75.0%, which is extremely close to the one of the simple GAM (Q2 = 75.1%).

The variance of the nugget effect (additional error with constant variance) introduced in the Gp model is

estimated to 25.9% of the total variance, which is close to the expected value (1 − Q2 = 25.0%). We can

also fit, at present, a Gp model on the squared residuals to obtain a joint Gp model (cf. section 2.3). In

order to understand which inputs act in the dispersion component, we compute the Sobol sensitivity indices

of the dispersion component using a Monte Carlo algorithm: SYd
(X1) = 0.996 and SYd

(X2) = 0.001. These

results draw the same conclusion than those obtained from the dispersion component equation of the joint

GAM: X2 is not an explanatory factor for the dispersion. This also leads to the right conclusion that only

X1 interacts with the uncontrollable parameter X3 in the Ishigami function.

Let us now perform some graphical analyses in order to compare the results for the three joint models

Joint GLM, joint GAM and Joint Gp. Figure 1 shows the observed response against the predicted values

for the three models. First, the advantage of the GAM and Gp approaches are visible in the Figure 1 as

the dispersion around the y = x line is clearly reduced compared to the joint GLM dispersion. Graphical

comparisons between Joint GAM and Joint Gp results do not provide any advantage for one particular

model: similar biases are shown. Second, using the GAM model, Figure 2 compares the obtained residuals

of a non parametric simple model (homoscedastic) with the obtained residuals of a non parametric joint

model (heteroscedastic). The deviance residuals for the mean component of the joint GAM seem to be

more homogeneously dispersed around the x-axis; leading to a better prediction on the whole range of the

observations. Thus, the joint approach is more competitive than the simple one. From this simple graphical

analyses, we conclude that a non parametric joint model (GAM or Gp) has to be preferred to other models

(simple and/or parametric).

In order to make a finer comparison between GLM, GAM and Gp models, we examine how well they

predict the mean Ym(X1, X2) at inputs for which we have no data. We can also compare the different

dispersion models Yd(X1). The exact analytical expressions of Ym and Yd are given in Eq. (24). Let us

remark that we visualize Yd versus X1 only because, for GLM and GAM dispersion models, there is no

dependence in X2 and, for the Gp dispersion model, there is an extremely small X2-dependence (we then

take X2 = 0). Figure 3 plots the theoretical Ym and Yd surfaces (left panels) and their estimates derived

from the fitted joint GLM, joint GAM and Joint Gp models. As shown before, the joint GLM is irrelevant
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Figure 1: Observed response variable versus the predicted values for the three joint models: Joint GLM, Joint GAM
and joint Gp (Ishigami application).

for the mean component and for the dispersion component. The joint GAM fully reproduces the mean

component, while joint Gp gives a rather good approximation, but with small noise. Indeed, spline terms of

GAM are perfect smoothers while Gp predictor is impacted by residual noise on the observations: the nugget

effect does not allow to suppress all the noise induced by the uncontrollable parameter. For the dispersion

component, joint GP and joint GAM give result of the same quality: these models correctly reproduce

the overall behaviour but with small inadequacies, probably caused by overfitting problems. For the two

dispersion models, fitted observations have been taken from the residuals of the mean component learning

sample. It would be convenient, in a future work, to test another solution by taking predicted residuals, for

example by applying a cross validation procedure.

We conclude that the joint GAM and joint Gp both adequately model the stochastic analytical model

(the Ishigami function). We let some fine comparisons between joint GAM and joint Gp for another study

including a relevant analytical application. For example, an analytical model with strong and high order

interactions will probably show the superiority of the Gp joint model (because spline high order interaction

terms are difficult to include in a GAM). Therefore, in the industrial application of section 4.2, we only use

the models based on GLM and GAM, while Gp could also be applied.

4.1.2 Sobol indices

Table 2 depicts the Sobol sensitivity indices for the joint GLM, the joint GAM and joint Gp using equations

(20) and (21). The standard deviation estimates (sd) are obtained from 100 repetitions of the Monte-Carlo

estimation procedure (which uses 104 model computations for one index estimation). When this Monte-Carlo

procedure is used to estimate the Sobol index, we report “MC” in the “Method” column; while “Eq” (resp.
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Figure 2: Deviance residuals for the simple and joint GAMs versus the fitted values (Ishigami application). Dashed
lines correspond to local polynomial smoothers.

“SYd
”) indicates that the sensitivity indices have been deduced from the joint model regressive equations

(resp. from the sensitivity analysis of the dispersion Yd). Therefore, no estimation errors (sd) are associated

to these indices (except for total indices STi
which can be deduced from Si). When no quantitative deduction

on the sensitivity index can be made with this process, we have put a variation interval which borders the

true value. These variation intervals are deduced from the elementary relations between sensitivity indices

(e.g. S1 ≤ ST1
, S13 ≤ ST3

, etc).

The joint GLM gives only a good estimation of S1, while S2 and ST3
are badly estimated (errors greater

than 30%). S12 is correctly estimated to zero by looking directly at the joint GLM mean component formula

(see Table 1). However, some conclusions drawn from the GLM dispersion component formula (which is a

constant) are wrong. As no explanatory variable is involved in this formula, the deduced interaction indices

are equal to zero: S13 = S23 = S123 = 0. Thus, S3 = ST3
= 0.366 while the correct values of S3 and ST3

are

respectively zero and 0.243.

Contrary to the joint GLM, the joint GAM and joint Gp give good approximations of all the Sobol

indices. Their largest errors concern ST3
for the joint GAM (7%-error) and joint Gp (16%-error). Moreover,

the deductions drawn from the model formulas (see Table 1) are correct (ST2
= S2, S12 = S23 = S123 = 0).

The only drawback of this joint model-based method is that some indices remain unknown due to the non

separability of the dispersion component effects. However, it can be deduced that S13 is non null due to

the explicative effect of X1 in the dispersion component. The deduced interval variations provide also useful

information concerning the potential influence of the interactions.

Table 3 gives the Sobol indices computed by the same Monte-Carlo procedure using two classical meta-
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Figure 3: Mean component (up) and dispersion component (down) for the exact analytical model, Joint GLM, Joint
GAM and Joint Gp (Ishigami application).

models as the simple GAM and the simple Gp. To estimate the first order Sobol indices Si = Vi(Ym)/Var(Y )

(for i = 1, 2), the metamodel is used to compute Vi(Ym) and the observed data (the 1000 observations of

Y ) to compute Var(Y ). To estimate the total sensitivity index ST3
of the uncontrollable parameter, the

metamodel predictivity coefficient Q2 is used. In fact, by supposing that the metamodels fit correctly the

computer code, one deduces that all the unexplained part of these metamodels is due to the uncontrollable

parameter: ST3
= 1 − Q2. This is a strong hypothesis, which is verified here due to the simplicity of the

analytical function. However, it will not be satisfied for all application cases: in practical and complex situa-

tions, the Q2 estimation (usually done by a cross-validation method) can be difficult and subject to caution.

For the Ishigami function, S1, S2, ST3
are correctly estimated. S12 can be deduced from the formula for the

simple GAM (see Table 1) and estimated by Monte-Carlo method for the Gp model. However, any other

sensitivity indices can be proposed as no dispersion modeling is involved.

Remark: Estimating the nugget effect variance of the Gp model mean component gives another estimation

of the total sensitivity index of the uncotrollable parameter. In this example, the variance of the nugget effect

has been estimated to 25.9% of the total variance, which is close to the exact value (24.4%). However, this

estimation can be difficult in more complex situations, because of a difficult optimization step while fitting

the Gp model (Fang et al. [5], Marrel et al. [19]).

In conclusion, this example shows that the joint non parametric models can adjust complex heteroscedas-
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Table 2: Sobol sensitivity indices (with standard deviations) for the Ishigami function: exact and estimated values
from joint GLM and joint GAM. “Method” indicates the estimation method: MC for the Monte-Carlo procedure,
Eq for a deduction from the model equations and SYd

for a deduction from the sensitivity analysis of Yd(X).

Indices
Exact Joint GLM Joint GAM Joint Gp
Values Values sd Method Values sd Method Values sd Method

S1 0.314 0.314 4e-3 MC 0.325 5e-3 MC 0.292 7e-3 MC
S2 0.442 0.318 5e-3 MC 0.414 5e-3 MC 0.417 7e-3 MC

ST3
0.244 0.366 2e-3 MC 0.261 2e-3 MC 0.205 1e-3 MC

S12 0 0 — Eq 0 — Eq 0.004 7e-3 MC
S13 0.244 0 — Eq ]0, 0.261] — Eq ]0, 0.205] — SYd
S23 0 0 — Eq 0 — Eq 0 — SYd
S123 0 0 — Eq 0 — Eq 0 — SYd

ST1
0.557 0.314 4e-3 Eq ]0.325, 0.586] — Eq ]0.292, 0.497] — SYd

ST2
0.443 0.318 5e-3 Eq 0.414 5e-3 Eq 0.417 7e-3 SYd

S3 0 0.366 2e-3 Eq [0, 0.261] — Eq [0, 0.205] — SYd

Table 3: Sobol sensitivity indices (with standard deviations) for the Ishigami function: exact and estimated values
from simple GAM and simple Gp model. “Method” indicates the estimation method: MC for the Monte-Carlo
procedure, Eq for a deduction from the model equations and Q2 for the deduction of the predictivity coefficient Q2.

Indices
Exact Simple GAM Simple Gp
Values Values sd Method Values sd Method

S1 0.314 0.333 6e-3 MC 0.292 7e-3 MC
S2 0.442 0.441 6e-3 MC 0.417 7e-3 MC
ST3

0.244 0.249 — Q2 0.250 — Q2

S12 0 0 — Eq 0.004 7e-3 MC

tic situations for which classical metamodels are inadequate. Moreover, the joint models offer a theoretical

basis to compute efficiently global sensitivity indices of stochastic models.

4.1.3 Convergence study

In order to provide some practical guidance for the sampling size issue, we perform a convergence study for

the estimation of the joint GAM and the associated sensitivity indices. Figure 4 shows some convergence

results for a learning sample size n varying between 30 to 200 by step of 5. The predictivity coefficient Q2

is obtained from a test sample (composed of 1000 randomly chosen points). The total sensitivity index of

the uncontrollable parameter ST3
is obtained by averaging the dispersion component Yd (with 1e6 randomly

chosen points). We can notice the rapid convergence of the predictivity coefficient Q2 and the slower

convergence of E(Yd). The convergence speed for S1 and S2 computed from the mean component are not

shown here but are similar to the one of Q2.

From this particular case (low-dimensional but rather complex numerical model due to non linearities and

strong interaction), we conclude that a 100-size sample is sufficient for fitting the joint GAM and for obtaining

precise sensitivity indices. Moreover, for the estimation of the total sensitivity index of the uncontrollable

parameter, using the predictivity coefficient of the mean component is highly recommended (instead of using

the dispersion component). With additional experiments, Iooss & Ribatet [13] have confirmed this result.

4.2 Application to an hydrogeologic transport code

The joint approach is now applied to a complex industrial model of radioactive pollutants transport in sat-

urated porous media using the MARTHE computer code (developed by BRGM, France). In the context of
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Figure 4: For the Ishigami function, mean and 90%-confidence interval (based on 100 replicates) of joint GAM Q2

and ST3
in function of the learning sample size n.

an environmental impact study, MARTHE has been applied to a model of strontium 90 (90Sr) transport in

saturated media for a radwaste temporary storage in Russia (Volkova et al. [35]). Only a partial character-

ization of the site has been made and, consequently, values of the model input parameters are not known

precisely: 20 scalar input parameters have been considered as random variables, each of them associated to a

specified probability density function. The model output variables of interest concern the 90Sr concentration

values in different spatial locations. One of the main goals of this study is to identify the most influential

parameters of the computer code in order to improve the characterization of the site in a judicious way.

Because of large computing times of the MARTHE code, the Sobol sensitivity indices are computed using

metamodels (boosting regression trees model for Volkova et al. [35] and Gaussian process model for Marrel

et al. [19]).

As a perspective of the Volkova et al. [35] work, Iooss [10] studies more precisely the influence of the

spatial form of an hydrogeologic layer. The method consists in performing a geostatistical simulation of this

layer (which is a two-dimensional spatial random field), before each calculation of the computer model. This

geostatistical simulation is rather complex and the resulting spatial field cannot be summarized by a few

scalar values. Therefore, as explained in our introduction, this hydrogeologic layer form has to be considered

as an uncontrollable parameter of the computer model. Additionally to the uncontrollable parameter, 16

scalar input parameters remain uncertain and are treated as random variables. It concerns the permeability of

different geological layers, the longitudinal and transversal dispersivity coefficients, the sorption coefficients,

the porosity and meteoric water infiltration intensities.

In order to keep coherence with Volkova et al. [35] previous study, the learning sample size has been

chosen to be the same: N = 300. This size is in adequation with the heuristic recommandation of 10

observations per input dimension, used in most of the practical studies on deterministic computer codes

(Jones et al. [14], Marrel et al. [19]). The Latin Hypercube Sampling method is used to obtained a
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sample of N random vectors (each one of dimension 16). In addition, N independent realizations of the

spatial random field (noticed by ε) are obtained by a specific geostatistical simulation algorithm (Iooss [10]).

Performing independent realizations for each of the simulator run has been imposed by the small number

of available runs (300) relatively to the high-dimensional model (20). Moreover, one of our primary concern

was also to perform an uncertainty propagation study, in which replicates have to be avoided. In any case,

more interesting designs should be chosen, making replicates for example by changing the controllable input

factors while keeping fixed the geostatistical realization. However, such ideas are well beyond the scope of

the current paper (see Anderson-Cook et al. [1] for a recent review about the design issue).

After 8 calculation days, we obtain 300 observations of the output variable of the MARTHE model

(90Sr concentration at the domain center). As two computer runs have given incoherent values, we keep

298 observations. For the GLMs and GAMs construction phase, the large data dispersion suggests the

use of logarithmic link functions for g and h (see Eqs (1) and (2)). Due to the large number of inputs, a

manual term selection process has been applied. No interaction term has been found to be explicative in the

GLMs. However, a bi-dimensional spline term has been added in the GAMs because of convincing deviance

contribution and negligible p-value. To find this significant interaction term, we have not introduced in the

model all the 120 interaction terms. We have sequentially tested all the interaction terms involving one

significant first order term (kd1, kd2, per2 and per3) and each other factor. Then, we keep the interaction

terms which show some explanatory contribution to the model.

The results are summarized below by giving the explained deviance and the explanatory terms involved

in the formulas:

• Simple GLM: Dexpl = 60% with the terms kd1, kd2, per1, per2.

• Joint GLM: Dexpl(mean) = 66.4%, with the same terms than the simple GLM, Dexpl(dispersion) =

8.7% with the terms kd1 and per3.

• Simple GAM: Dexpl = 81.8% with s(kd1), s(kd2), s(per3), s(per2, kd2).

• Joint GAM: Dexpl(mean) = 98.1% with the same terms than the simple GAM, Dexpl(dispersion) =

29.7% with kd1, kd2.

kd1, kd2 and per1, per2, per3 are respectively the sorption coefficients and the permeabilities of the different

hydrogeologic layers. One observes that the GAM models outperform the GLM ones. The predictivity

coefficient (computed by the leave-one-out method) of the simple GAM gives Q2 = 76.4%, while for the

simple GLM Q2 = 58.8%.

Figure 5 shows the deviance residuals against the fitted values for the joint GLM, simple GAM and joint

GAM models. For the joint GLM approach, some outliers are not visible to keep the figure readable. As a

consequence, the GAMs clearly lead to smaller residuals. Moreover, the joint GAM outperforms the simple
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GAM due to the right explanation of the dispersion component. It can be seen that the joint GAM allows

to suppress the bias involved by the heteroscedasticity, while simple GAM residuals are affected by this bias.
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Figure 5: Deviance residuals (mean component) for the Simple GAM, Joint GAM and Joint GLM versus the fitted
values (MARTHE application). Dashed lines correspond to local polynomial smoothers.

Figure 6 shows the proportion ∆ of observations that lie within the α% theoretical confidence interval

against the confidence interval α. By definition, if a model is suited for both mean and dispersion modelings,

the points should be located around the y = x line. As a consequence, this plot is useful to compare the

goodness of fit for the different models. It can be seen that the joint GAM is clearly the most accurate

model. Indeed, all its points are close to the theoretical y = x line, while the joint GLM (resp. simple

GAM) systematically leads to underestimations (resp. overestimations). Consequently, from the Figures 5–

6, one deduces that the joint GAM model is the most competitive one. On one hand, the mean component

is modeled accurately without any bias. On the other hand, the dispersion component is competitively

modeled leading to reliable confidence intervals.
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Figure 6: Proportion ∆ (in percent) of observation that lie within the α% theoretical confidence interval in function
of the confidence level α. MARTHE application.

Table 4 gives the main Sobol sensitivity indices for the joint GLM, joint GAM and simple GAM (using

104 model computations for one index estimation). The Sobol indices of the interactions between controllable

parameters are not given (except between kd2 and per2) because these interactions are not included in the
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formulas of the two joint models. Therefore, their Sobol indices are zero. The two joint models give similar

results for all first order sensitivity indices. The sorption coefficient of the second layer kd2 explained more

than 52% of the output variance, while the permeability of the second layer per2 explained more than 5%.

Some large differences arise in the total influence of the uncontrollable parameter ε: 38.2% for the joint GLM

and 27.7% for the joint GAM. Moreover, the joint GLM shows an influence of the interaction between per3

and ε, while the joint GAM shows an influence of the interaction between kd2 and ε. In this application,

we consider the joint GAM results more reliable than the joint GLM ones because the joint GAM captures

more efficiently the mean and dispersion components of the data than the joint GLM.

Table 4: Estimated Sobol sensitivity indices (with standard deviations obtained by 100 repetitions) for the MARTHE
code. “Method” indicates the estimation method: MC for the Monte-Carlo procedure, Eq for a deduction from the
model equations and Q2 for the deduction of the predictivity coefficient Q2. “—” indicates that the value is not
available.

Indices
Joint GLM Joint GAM Simple GAM

Values sd Method Values sd Method Values sd Method
S(kd1) 0.002 0.6e-2 MC 0.037 1.0e-2 MC 0.140 1.0e-2 MC
S(kd2) 0.522 0.6e-2 MC 0.524 1.0e-2 MC 0.550 1.1e-2 MC
S(per1) 0.018 0.7e-2 MC 0 — Eq 0 — Eq
S(per2) 0.052 0.6e-2 MC 0.078 1.0e-2 MC 0.044 1.0e-2 MC
S(per3) 0 — Eq 0.005 1.0e-2 MC 0.008 1.0e-2 MC
S(kd2,per2) 0 — Eq 0.063 1.0e-2 MC 0.026 1.0e-2 MC
ST (ε) 0.382 0.2e-2 MC 0.277 0.3e-2 MC 0.235 — Q2

S(kd1,ε) ]0, 0.382] — Eq ]0, 0.277] — Eq — — —
S(kd2,ε) 0 — Eq ]0, 0.277] — Eq — — —
S(per1,ε) 0 — Eq 0 — Eq — — —
S(per2,ε) 0 — Eq 0 — Eq — — —
S(per3,ε) ]0, 0.382] — Eq 0 — Eq — — —

By comparing the joint GAM results with the simple GAM results, some significant differences can be

printed out:

• The kd1 first order sensitivity index is overestimated using the simple GAM (14.0% instead of 3.7% for

the joint GAM). Indeed, the deviance analysis of the joint GAM dispersion component shows a high

contribution of kd1, which means that the interaction between kd1 and the uncontrollable parameter

is probably large. For a standard metamodel, like the simple GAM, this interaction is not found out

and leads to a wrong estimation of the first order sensitivity index of kd1.

• For the simple metamodels, using the relation ST (ε) = 1 − Q2, the total sensitivity index of the

uncontrollable parameter is underestimated: 23.5% (simple GAM) instead of 27.7% (joint GAM). The

classical metamodels tend to explain some parts of the data which can be adequately included in the

dispersion component of the joint GAM during the iterative fitting algorithm.

• Contrary to the other metamodels, the joint GAM allows to prove that only kd1 and kd2 interact with

the uncontrollable parameter.

As a conclusion, these sensitivity analysis results will be very useful to the physicist or the modeling

engineer during the model construction and calibration steps. In this specific application, the sensitivity

analysis shows that the geometry of the second hydrogeological layer has a strong influence (up to 28%) on
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the predicted 90Sr concentration. Therefore, an accurate modeling of this geometry, coupled with a better

knowledge of the most influential parameter kd2, are the key steps to an important reduction of the model

prediction uncertainties.

5 CONCLUSION

This paper has proposed a solution to compute variance-based sensitivity indices of stochastic computer

model outputs. It consists in modeling the mean and the dispersion of the code outputs by two explanatory

models. The classical way is to separately build these models. In this paper, the use of the joint modeling is

preferred. This theory, proposed by Pregibon [25] and extensively developed by Nelder [21], is a powerful tool

to fit the mean and dispersion components simultaneously. Zabalza et al. [37] already applied this approach

to model stochastic computer code. However, the behavior of some numerical models can be highly complex

and non linear. In the present paper, some examples show the limit of this parametric joint model. Being

inspired by Rigby & Stasinopoulos [28] who use non parametric joint additive models (restricted to Gaussian

cases), we have developed a more general joint model using GAMs and quasi distributions. Like GLMs,

GAMs are a suited framework because it allows variable and model selections via quasi-likelihood function,

classical statistical tests on coefficients and graphical displays. Additional works using joint GLMs and joint

GAMs for computer experiments can be found in Iooss & Ribatet [13].

The joint GAM has proven its flexibility to fit complex data: we have obtained the same performance

for its mean and dispersion components as the powerful Gp model. Dealing with computer codes involving

many factors and strong interactions between model factors, it would be convenient to look more precisely

at other joint models, as the joint Gp model we have shortly described and used. An analytic case on the

Ishigami function shows that these two non parametric joint models (GAM and Gp) are adapted to complex

heteroscedastic situations where classical metamodels are inadequate. Moreover, it offers a theoretical basis

to compute Sobol sensitivity indices in an efficient way. The analytical formulas available with the joint

GAM are very useful to complete the sensitivity analysis results and to improve our model understanding

and knowledge.

The performance of the joint model approach was assessed on an industrial application. Compared to

other methods, the modeling of the dispersion component allows to obtain a robust estimation of the total

sensitivity index of the uncontrollable parameter, which leads to correct estimations of the first order indices

of the controllable parameters. In addition, it reveals the influential interactions between the uncontrollable

parameter and the other input parameters. Obtaining quantitative values for these interaction effects is

still an open issue, but a challenging problem. Finally, the joint model would also serve in the uncertainty

propagation studies of complex models, to obtain the full distribution of the model output.

In the whole, all statistical analysis were performed using the R software environment [26]. In particular,
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the following functions and packages were useful: the “glm” function to fit a simple GLM, the “mgcv”

(Multiple Smoothing Parameter Estimation by GCV) package to fit a simple GAM, and the “sensitivity”

package to compute Sobol indices. We also developed the “JointModeling” package to fit joint models

(including joint GLM and joint GAM).
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