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ABSTRACT 

 

This paper presents an analytical model of punctual elastic contact between a rigid body of 

arbitrary geometry and a plane surface.  A simple analytical model is developed in order to 

evaluate the contact force knowing the volume of interpenetration, the surface and the 

perimeter of the base of this volume and the mechanical characteristics of surfaces in contact. 

Analytical and experimental validations are made for this model in the case of simple shapes 

(spherical, conical and pyramidal). Next, an approach for the resolution in case of contact 

between a rigid body and a viscoelastic plane is presented. The elastic constants are replaced 

by an integral operator corresponding to the viscoelastic stress-strain relation. At last, the 

viscoelastic punctual contact is studied analytically and validated experimentally.   

Keywords: contact, viscoelastic, analytical, experiment. 
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1. Introduction  

The study of contact problems has its origins in the last quarter of the 19th century when 

Hertz [6] and Boussinesq [1] presented solutions to the contact of linear elastic materials. 

Several solutions were derived from the solution of Boussinesq, an excellent account of which 

is given in Galin’s book [4] and in Johnson [8]. Later, Sneddon [14] established a solution of 

the axisymmetric Boussinesq problem which enabled him to deduce simple formulas giving 

the penetration δ  of a punch of arbitrary profile as well as the total force necessary to ensure 

this penetration. 

Then the interest of the viscoelastic contact problem emerged, Graham [5] gave an expression 

for the displacement stress field produced at any point of a linear homogeneous and isotropic 

viscoelastic half space by an arbitrary time dependent distribution of pressure acting on its 

boundary. The distribution of normal surface tractions prevailing when a rigid punch of 

arbitrary profile is pressed against the surface of a viscoelastic half space is determined in 

terms of a one parameter family of solutions to the corresponding elastic problem. One of the 

approaches for the resolution of a contact problem of a rigid sphere with a viscoelastic 

material was suggested by Radok [13]. It replaces elastic constants by an integral operator 

corresponding to the viscoelastic stress strain relation in which the radius of the contact area is 

a monotonically increasing function of time. Later, Hunter [7] studied the Hertz’s problem in 

the case of the rebound of a rigid sphere on a viscoelastic half space so that the contact radius 

increases monotonically to a maximum and then decreases to zero. It was assumed that the 

distribution of pressure remains elliptic as in the elastic case. Ting [15] presented a method so 

that the problem of contact could be solved for an arbitrary contact radius. 

Numerical methods for the resolution of the contact were also developed. Webster & Sayle 

[17] and Chang & Gao [3] developed a numerical model for the elastic contact of rough 

surfaces. Younguing & Linquing [18] proposed a numerical modelling for an elastic 3D 
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contact of rough surfaces. The authors conclude that the interaction of asperities has a great 

effect on the calculated results, particularly on the contact deformation.  The finite element 

method was used by Kucharski et al [10] who modelled the contact between a sphere and a 

rigid plane. They obtained a relation between the weight and the surface of contact.  Kane et 

al [9] developed robust contact algorithms able to deal with complex contact situations 

involving several bodies with corners. However these numerical methods lead to time 

consuming computations. 

This paper presents a semi analytical model which uses a theory of the interaction potential 

between a rigid body and an elastic or viscoelatic solid. The aim is to get simple and very fast 

estimates for the contact force for given body shapes. The contact force can be expressed in 

terms of the volume of interpenetration, the surface and the perimeter of the base of this 

volume as well as the mechanical characteristics of surfaces in contact. Then, an approach for 

the resolution in the case of a rubber block with a viscoelastic behaviour is presented. Radok’s 

approach [13] is used; it replaces elastic constants by an integral operator corresponding to the 

viscoelastic stress-strain relation. Experimental validations are made for different shapes of 

simple rigid bodies (spherical, conical and pyramidal). Finally, a comparison of contact forces 

in the elastic and viscoelastic case is given.   

 

2. Classical contact theory 

One of the first studies concerning the evaluation of the contact tensions between elastic 

solids was proposed by Hertz [6]. To express the normal force P versus the  indentation, he 

made the assumptions that the sector of contact is elliptic, that each solid can be regarded as 

an elastic half space, that there is no friction between the two surfaces in contact and that the 

surfaces are continuous and no conform. These assumptions lead to the following well known 

relation 
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2
3

δKP =                                                                              (1) 

with 

3
4 * REK =                                                                              (2)  

where P is the normal force applied, R is the equivalent radius of curvature and *E  represents 

the Young’s equivalent modulus. The theory of the Hertz’s contact is limited to surfaces with 

smooth and continuous profiles with finite forces everywhere. The problem is different for a 

surface having edges or corners. The deformation must be sufficiently small in order to be in 

the field of the linear theory of elasticity. 

Consider a cone in contact with a plane surface, the area of contact is supposed to be small 

compared to the size of the two solids. The deformation is shown in Fig.1 which presents also 

the pressure distribution in the contact zone. If the smooth sides of the cone are prolonged 

beyond the contact surface, the pressures must equal zero at the edges. A classical approach to 

find the efforts in an elastic half space due to external tractions is given by Boussinesq [1] and 

Cerruti [2], who used the potential theory. Love [12] applied the classical approach of the 

potential function to the cone and evaluated the contact pressure by the formula 

)/(coshcot
2
1)( 1* saEsp −= α                                                             (3) 

where s is the distance between the origin O and a point ranging between O and a. Thus the 

normal force is given by 

απ cot
2
1 *2 EaP =                                                                               (4)  

The quantities α and a are defined in Fig. 1. 
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3. Contact between two bodies of complex shape 

 3.1. Interaction potential theory  

Suppose that two bodies b1 and b2 are in contact at the point O. Oxy is the common tangent 

plane with axis OZ directed towards the body b1 (see Fig. 2.a). The distance between the 

points M1 and M2 of the two bodies in the vicinity of the point O equals 

22
21 ByAxzz +≈−                                                   (5)                        

The points M1 and M2 have coordinates (x, y, z1) and (x, y, z2) and belong to the surfaces of the 

bodies. The values A and B are constant. In general we find an additional term 2Cxy in the 

last part of expression (5) but it can be eliminated by a suitable choice for the axes Ox and Oy. 

If the body b1 moves by a distance δ  in the negative direction of axis Oz and if it is assumed 

that the bodies interpenetrate without deformation, there will be an intersecting domain Γ   

whose  projection on the Oxy plan forms the surface (see Fig. 2b) 

{ }δByAxx,yσ ≤+= 22:                  (6)                        

with the boundary  

{ }δσ =+=∂ 22:, ByAxyx           (7)                        

The assumption that the bodies interpenetrate without deformation is an approximation. But 

this is not too far from reality and this will allow getting the simple expressions that follow. It 

will also be justified by comparison with the experimental results. 

 

Three characteristics of the intersecting domain will play an important role, namely, the 

volume V of Γ , the surface S and the perimeter p of σ 

∫ ∫ =−−=
σ

πδδ
AB

dydxByxAV
2

)(
2

22                                                        (8) 
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∫ ∫ ==
σ

πδ
AB

dydxS ,                                                                             (9) 

)/(16
1

2/1

BAE
A

p ⎟
⎠
⎞

⎜
⎝
⎛=

δ                                                                                (10) 

where )/(1 BAE  is the elliptic integral of second species given by 

∫ −−=
2/

0

2/12
1 )sin)/1(1()/(

π

ϕϕ dBABAE                                                     (11)  

According to the traditional results of Hertz, in the case where the contact zone is an ellipse of 

surface 
⎭
⎬
⎫

⎩
⎨
⎧

≤+= 1:' 2

2

2

2

b
y

a
xx,yσ , the force P and the coefficients of surfaces are linked by the 

following relations Love [11] 

),(
2

)(3
13

21 kI
a

PA θθ +
=     ∫

∞

++
=

0
32221

)1)(1(
)(

zkz
dzkI  

),(
2

)(3
23

21 kI
b

PB θθ +
=     ∫

∞

−++
=

0
32222

)1)(1(
)(

zkz
dzkI                                         (12) 

),(
2

)(3
1

21 kF
a

P θθ
δ

+
=    ∫

−
==

2

0
22

1

11
sin1

)()(

π

ϕ

ϕ

k

dkFkF  

where 1<=
a
bk , 22

1 1 kk −= , 
i

i
i Eπ

υ
θ

21−
= , i =1,2, )( 1kF is the elliptic integral of first species, 

iE  and iυ  are the Young’s modulus and the Poisson's ratio of the body bi. A relation between 

A and B can be obtained from Eq. (12)  

)(
)(

2

1
3

kI
kIk

B
A

=                (13) 

It follows that the relation 1/ <= kab , which does not depend on the load P, is defined by 

the geometrical characteristics of surfaces in contact. The force P is given by (see Appendix 

A.) 
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4/12/3
1

4/3
21

2/34/1
21

)())(()(3
))()((2

ABkFk
kIkIP

θθ
δ

+
=                                                             (14) 

The potential U for the interaction of the bodies in contact, is calculated from the expression 

of virtual works by 

4/12/3
1

4/3
21

2/54/1
21

)())(()(15
))()((4)(

ABkFk
kIkIUPU

θθ
δ

δδδ
+

=⇒∂=                              (15) 

Let us represent the relation (15) by the form 

ξγβ pSVkfU )(=                                                                                           (16) 

where V, S and p are defined in the relations (8), (9) and (10). By comparing the powers of δ  

and (AB) in the expressions (15) and (16) of U, we find 2=β  and 
2

)3( ξγ +
−= . This leads 

to 

)(15
)(4)(

21
2/)1(

1
2

θθπ ξ

ξ

+
= −

− kfkf                                                                              (17) 

where  

)/()(
)(

1
2/3

1
4/)1(3

4/)1(
2

4/)1(
1

1 BAEkFk
IIkf

ξξ

ξξ

−

−+

=                                                               (18) 

To study the function )(1 kf , let us express )(1 kI and )(2 kI  by the elliptic integrals 

2
11

1 1
)()(

)(
k

kEkFkI
−
−

=          (19) 

))()((
1

)( 1
2

122 kFkkE
k

kkI −
−

=         (20) 

Finally we obtain 

)/()1(
)()1(

)(
11

2/122/)1(

4/)1(21
11

4/)1(1
11

1 BAEFkk
kFEFE

kf
ξξ

ξξ

−

−−
=

−

−−+−

      (21) 

The function )(1 kf  remains bounded if k tends towards 1, since according to Wittaker [16]   
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4
)(lim 11

π
=

→
kI

k
 and 

2
)(lim 11

π
=

→
kF

k
        (22) 

1/lim
1

=
→

BA
k

 and 
2

)1(1
π

=E         (23) 

Then it follows       

ξ

ξ

π +

+

→
= 1

5.0

11

2)(lim kf
k

          (24) 

 The numerical analysis of the function (21) represented in Fig. 3 shows us that the function 

)(1 kf  is nearly constant for 5.0=ξ  with the average value 36.0 . Let us express the potential 

U by the formula  

  4/7

2/12

21
4/1 )(15

8
S

pVcU
θθπ +

=                                                                         (25) 

The parameter c is a constant which depends only on the geometry of contact surfaces. 

According to the preceding development c equals 0.36 for regular contact surfaces and for  

5.0=ξ . It is supposed that the potential can be written in the same form (25) in the case of a 

contact of irregular surfaces. We will identify analytically and by experiments the constant c 

in order to validate this generalized formula in the case of bodies with arbitrary shapes. 

 

3.2. Validation in simple shape cases 

For this aim, three surface shapes are considered: the contact is between a plane surface and 

with spherical, conical and pyramidal rigid surfaces. For each case the relation between the 

force and the interpenetration will be determined. The constant c is then identified from 

experimental tests. 

To validate and generalize the expression of the potential (25) for any surface shape, let’s take 

the example of a spherical form (see Fig. 4a). Once the expressions of the volume, the surface 
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and the perimeter are known, we can replace then in Eq. (25). The expressions of the volume, 

the surface and the perimeter of the part in contact are given by 

)3(
6

22 δδπ
+= rV  

2rS π=           (26) 

rp π2=  

where r is the radius of the base of the volume in contact and δ is the interpenetration of the 

sphere in the plane surface. They are expressed as function of the angle α  by the relations 

αsinRr =   and ( )αδ cos1−= R         (27) 

Suppose that α  is very small thus 

αRr =    and 
2

2αδ R=         (28) 

The relation between r and δ is found by δRr 22 = . It is assumed that r << R, thus 22 r<<δ . 

So the potential is summarized in the case of a plane contact/sphere by 

2/5*2/3

15
4)( δπδ REcU s=                                                              (29) 

The force P then equals 

2/3*2/3

3
2 δπ

δ
REcUP s=

∂
∂

=        (30) 

The relation (30) expresses the force as function of the interpenetration in the case of a 

contact between a plane surface and a spherical surface. The constant sc  can be determined 

by identification with the Hertz’s law which leads to 36.02
2/3 ==

πsc .  

It would also be useful to know the expression of the force in case of a contact between a 

plane surface and a cone as well as in the case of a contact between a plane surface and a 

pyramid. An approximation of c for various surfaces in contact enables one to generalize the 

contact law (25). 
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The same method is used for a contact between a conical surface with angleα  and a plane 

surface (see Fig. 4b). The expressions of the volume, the surface and the perimeter of contact 

are evaluated and replaced in the expression of the potential (25). The volume of the part in 

contact is evaluated by 

δπ 2

3
rV =            (31) 

The surface of the base in contact is 2rS π= , and the perimeter of the surface S is rp π2= . 

The relation between r and δ is known to be 
δ

α rtg = . So the potential equals 

32/3*

9
2

15
8 δαπ tgEcU c=                                                                 (32) 

The force P is written as 

2*2/3

45
28 δαπ tgEcP c=                                                                    (33) 

In order to find the relation between the interpenetration δ  and the radius a, let us take the 

Boussinesq’s equations for a point force on a half space. It follows that the relation of the 

interpenetration δ  can be written under the form 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
sG

ps )1(2
4

)( υ
π

δ                                                                      (34) 

where 
)1(2 υ+

=
EG  is the shear modulus and υ  is the Poisson's ratio.  Knowing the pressure 

repartition (3) given by Love [12], the interpenetrationδ which is the displacement at the 

apex of the cone, is written as 

∫ ⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

ds
s

sps
G 0

)1(2
)(2

4
1 υ

π
π

δ                                                    (35) 

It becomes 
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G
Ea

2
)1(cot

2

*υαπδ −
=                                                                       (36) 

So the relation (4) can be written in the form  

2
*2

2

)1(
8 δα

υπ
tg

E
GP

−
= .                                                                  (37) 

If the assumption is made that the Young’s modulus of the body (1) is very small in front of 

the Young’s modulus of the body (2) 21 EEE <<= , we then obtain 

( ) ( )
EEE

2

1

2
1 11

*
1 υυ −

=
−

≈         (38) 

It follows that *

2
)1( EG υ−

=  , and the relation (36) becomes   

2*2 δα
π

tgEP =           (39) 

By comparison with relation (33) we find 45.0
24
45

2/5
≈=

πcc . 

 

3.3. Application to a pyramid 

After considering the case of a contact between a plane surface with a sphere and a cone, it 

would be interesting to study the case of a contact between a plane surface and a pyramid (see 

Fig. 4c). The volume of the part in contact is evaluated by 

δ2

3
1 rV =              (40) 

The surface of the base in contact is 2rS =  and the perimeter of the surface S is rp 4= . 

The relation between r and δ is  
δ

α rtg
2
2

= . So the potential equals 

34/3*

9
22

15
8 δαπ tgEcU p=                                                                (41) 

The force is thus written in the form 



 13

24/3*

45
216 δαπ

δ
tgEcUP p=

∂
∂

=                                                       (42) 

A model of the elastic contact between a plane surface and various surface shapes has been 

presented. The force P is expressed according to the interpenetrationδ , the geometrical and 

mechanical characteristics of the bodies in contact, and also by a constant c which was 

analytically identified for the spherical and conical case. The constants sc , cc and pc will also 

be identified experimentally and the expressions (30), (39), (42) will so be validated. 

 

4. Extension to materials with a viscoelastic behaviour  

Let us consider a pure shear stress, the stress strain relation expressed according to the shear 

modulus is eGs 2= . One of the approaches for the resolution of a contact problem between a 

rigid sphere and a viscoelastic material was suggested by Radok [13]. His approach replaces 

elastic constants by an integral operator corresponding to the viscoelastic stress strain relation 

∫ ∂
∂

−=
t

dt
t
tettts

0

'
'
)'()'()( ψ                                                                     (43) 

Let us suppose that the variation of the force P according to the interpenetration δ  in the case 

of elastic contact is written as 

γδQGP 2=                                                                            (44) 

where γ  and Q  depend on the form of the contact surface. By applying the Radok‘s method 

[13], the expression of the force becomes 

∫ −=
t

dtt
dt
dttQtP

0

')'(
'

)'()( γδψ                                                         (45) 

By taking into account the parameters γ  and Q  defined in Table 1, the expression of the 

force is finally given by 

- for a contact between a rigid sphere and a viscoelastic plane 
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∫ −=
t

dtt
dt
dttRtP

0

2/3 ')'(
'

)'(
3
8)( δψ                                                 (46) 

- for a contact between a rigid cone and a viscoelastic plane 

∫ −=
t

dtt
dt
dtttgtP

0

2 ')'(
'

)'(4)( δψα
π

.                                                (47) 

- for a contact between a rigid pyramid and a viscoelastic plane 

∫ −=
t

p dtt
dt
dttctP

0

24/3 ')'(
'

)'(cot2
45
32)( δψαπ                 (48) 

 

5. Experimental validation for elastic contacts 

In this purpose an experimental device is established. A compression Instron machine, bodies 

with various shapes (spherical, conical and pyramidal), LabView software for the acquisition 

of the results and a rubber block are used. Experimental relations between the force and the 

interpenetration are established for each body in contact with the rubber block. First the 

Young’s modulus of the rubber block is identified by a relaxation test. Knowing the 

characteristics of the rubber block and the contact bodies, the coefficients sc , cc , pc  

corresponding to the contact models for the spherical, conical and pyramidal cases will be 

identified.  

 

5.1. Experimental identification of viscoelastic parameters 

A simple compression test on the rubber block presented in Fig. 5 is abruptly and quickly 

carried out by using a compression machine. A deformation of 8% is maintained constant and 

the evolution of the stress versus the time is recorded. It is noticed an abrupt and rapid 

increase of the stress to  Mpa 0.930 =σ just after the load. This deformation is maintained by   
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blocking the crossbar for a long time until the stabilization of the stress which tends towards  

MPa 0.6=∞σ . The stress versus the time is written under the form of a Prony’s series 

  0
/

1
/

1
/ )...()( 11 εσ τττ

∞
−−

−
− ++++= − EeAeAeAt tt

n
t

n
nn                                     (49) 

For the rubber block four characteristics times are found and the results are represented in 

table 2.  After reconstitution of the relaxation curve from characteristics times and amplitudes, 

in Fig. 6, we notice that there is a good concordance of the two curves. Using less than four 

characteristic times doesn’t allow a good reconstitution of the curve over the whole time 

range. The static Young’s modulus of the block is found to be MPaE 5.7
0

== ∞
∞ ε

σ                                          

5.2. Experimental validation of the  elastic contact model  

5.2.1. Contact between a rubber block and a sphere   

The experimental device is the same as the one used for the relaxation test (see Fig. 7a). The 

load is carried out at a speed of 0.001 mm/s to simulate a static loading with the Young’s 

modulus MPaE 5.7=∞ . Fig. 8a represents the evolution of the force versus the 

interpenetration. By linear regression of the curve we obtained a line that has the following 

equation 10.14)(51.1)( += δLnPLn . According to Eq. (30) and to the experimental results of 

the contact between the rubber block and the steel ball, it was found 

10.14*2/3

3
2 eREcs =π                                                                 (50) 

Knowing the mechanical and geometrical characteristics of the two bodies in contact, the 

experimental value from the coefficient sc  is deduced and equals 0.34. The theoretical value 

of the coefficient sc  equals 0.36, which is slightly different from the experimental value. This 

result allows to validate the experiment by recovering the Hertz’s result. 
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5.2.2. Contact between a rubber block and a cone 

  The same test as the one used for the contact between the rubber block and the sphere is 

carried out. Two steel cones that have different angles ( °= 60α and °= 45α ) are used in order 

to study the influence of the angle on the distribution of the force. The experimental device is 

presented in Fig. 7b. The force versus the interpenetration for each cone in contact is given in  

Fig. 8b. By plotting the logarithmic curve of the force as function of the interpenetration and 

after having carried out a linear regression for each curves it is found for the cone with 

°= 60α  that 15.16)(99.1)( += δLnPLn  and for the cone with °= 45α  that 

67.15)(00.2)( += δLnPLn . 

The evaluation of the force from the expression (33) adapted for the case of a contact between 

a plane surface and a cone is given by 

2*2/3

45
28 δαπ

δ
tgEcUP c=

∂
∂

=                                                          (51) 

The values of the coefficients are deducted and 43.0=cc  for an angle =α 60° and 45.0=cc  

for an angle =α 45°. The value of the coefficient cc does not differ much for different angles 

of the cone and from the analytical value which equals 0.45. 

5.2.3. Contact between a rubber block and a pyramid 

The expression of the force versus the interpenetration is 

24/3*

45
216 δαπ

δ
tgEcUP p=

∂
∂

=                                                       (52) 

In order to identify the coefficient pc , the experimental device used for the identification of  

the coefficients sc and cc is taken again. The pyramid has an angle °= 68α (see Fig. 7c.). After 

having plotted the logarithmic curve (see Fig. 8c.) of the force variation versus the 

interpenetration, one obtains 
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53.164/3*

45
216 etgEcp =απ                                                                  (53) 

Which leads to 53.0=pc . 

The coefficients sc  and cc  were identified experimentally and analytically. pc  was identified 

only experimentally since there is no analytical model for the pyramidal case. In Table 3 the 

values obtained for various surfaces are presented. The differences between the experimental 

and the analytical results are quite small. Let’s conclude that the value of the coefficient sc  

equals 0.36. For the conical case the value of the coefficient cc  equals 0.45, which is true for 

any angle α. Considering the absence of a classical analytical theory for the pyramidal shape, 

we can however conclude that the contact law has the same shape as for the other cases with 

pc  which equals 0.53. 

 

6. Experimental validation for viscoelastic contacts  

The expression of the force according to the interpenetration is put in the form (46), (47) and 

(48). In the same way as for the case of an elastic contact, experimental tests are carried out in 

order to validate viscoelastic contact models. 

 

6.1. Contact between a rubber block and a steel ball 

In this test the same experimental device is used, except that instead of charging at a speed of 

0,001 mm/s, the loading is done at a speed of 5 mm/s. The same rubber block and the same 

steel ball are used so the geometrical and mechanical characteristics are well known. The test 

does not last more than one second so only the characteristic time s37,34 =τ  is taken into 

account. From Eq. (49) one obtains 

0
/

4 )'()( 4 εσ τ EeAt t += −         (54)  
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with 321' AAAEE +++= ∞ . In order to solve Eq. (346), let’s put ')'( tVt =δ . The shear 

modulus for an incompressible material is 
3
EG = . It results that Eq. (46) gives  

( )∫ += −−
t

tt dttV
dt
dEeARtP

0

2/3/)'(
4 ')'(

'
'

3
2

3
8)( 4τ                                       (55) 

Which after integration leads to 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= −

4

/
4

2/3
4

2/1
44

2/32/3 4

2
'

3
2

3
8)(

τ
τπτ τ tierfeAitAtEVRtP t                (56) 

where erf is the error function given by 

∫
−

=
x

y dye
i

xierf
0

22)(
π

       (57) 

In Fig. 9, we can see the evolution of the force P according to the interpenetration δ  for the 

spherical, conical and pyramidal cases. The curves show that in all cases there is a good 

concordance between the two results. A comparison between the results obtained in the case 

of the elastic analytic model and in the case of the viscoelastic analytic model concludes that 

the value of the force in the case of a viscoelastic contact is higher by 24% than the value of 

the force in the case of an elastic contact. 

7. Conclusion 

The theoretical model of the potential interaction for contacts between regular surfaces was 

presented and generalized for irregular surfaces. The validation of this model in the case of a 

contact between a plane surface with a sphere, a cone and a pyramid was made. Then an 

approach of the solution of a viscoelastic contact problem was seen, where the method of 

Radok [13], which consists of replacing elastic constants by an integral operator, was applied.  

The viscoelastic behaviour of the material was modeled by a Prony’s series. The Young’s 

modulus and the characteristic times of a rubber block were identified. Once these 
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characteristics were identified, tests were carried out in which the rubber block was put into 

contact with various surfaces (spherical, conical and pyramidal). These tests made it possible 

to identify the coefficients sc , cc and pc .Thus, we validated the models of elastic contact. 

Using the same method, tests of viscoelastic contact at a speed of 5 mm/s with the same 

rubber block and the various bodies were carried out. The results were compared to the results 

of a viscoelastic contact model. The results of the model and those of the experiments agree 

very well. A comparison between the results of the elastic contact model and the results of the 

viscoelastic contact model shows that for a given value of interpenetration δ , the viscoelastic 

force is 25% higher than the elastic force for this load speed. All these results validate the 

simple semi-analytical model developed in this paper for elastic and viscoelastic contacts of 

bodies with arbitrary shapes. 

 

Appendix A. Calculation of the force P  

 

The force P and the coefficients of surfaces σ  and 'σ  are linked by the following relations 

Love [11] 

),(
2

)(3
13

21 kI
a

PA θθ +
=     ∫

∞

++
=

0
32221

)1)(1(
)(

zkz
dzkI ,                                        (A.1) 
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)(3
23

21 kI
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∞
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=
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dkFkF ,                                    (A.3) 

where 1<=
a
bk , 22

1 1 kk −=  and 
i

i
i Eπ

υ
θ

21−
= , i =1,2. 

From Eqs. (A.1) and (A.2) we obtain 
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33
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Let us represent the relation (A.4) by the form 
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From Eq. (A.3) it results    
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It follows that the force relation is given by 
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Figure captions 

Fig. 1. Contact cone / plane surface. 

Fig. 2. (a) Contact between two bodies of an arbitrary form, (b) Domain of intersection Γ . 

Fig. 3. Evolution of the function ),(1 ξkf . 

Fig. 4. Contact between a plane surface and (a) a spherical surface, (b) a conical  surface and 

(c) a pyramidal surface. 

Fig. 5. Relaxation test. 

Fig. 6. Comparison of the relaxation  curve and the reconstitution curve with four 

characteristic times. 

Fig. 7. Experimental device for a contact between a rubber block and (a) a sphere, (b) a cone, 

(c) a pyramid. 

Fig. 8. Evolution of the force upon the interpenetration for the sphere contact (a), the cone 

contact (b) and the pyramid contact (c). 

Fig. 9. Comparison between viscoelastic experimental results and analytic results for the 

spherical case (a),  the conical case (b) and the pyramidal case (c). 
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Fig. 1. Contact cone / plane surface. 
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Fig. 2. (a) Contact between two bodies of an arbitrary form, (b) Domain of intersection Γ .     
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Fig. 3. Evolution of the function ),(1 ξkf . 
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                    (c) 
 
Fig. 4. Contact between a plane surface and (a) a spherical surface, (b) a conical  surface and 

(c) a pyramidal surface. 
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Fig. 5. Relaxation test. 
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Fig. 6. Comparison of the relaxation curve and the reconstitution curve with four 

characteristic times. 
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(a) 

 

(b) 

 

(c) 
Fig. 7. Experimental device for a contact between a rubber block and (a) a sphere, (b) a cone, 

(c) a pyramid . 
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Fig. 8.  Evolution of the force upon the interpenetration for the sphere contact (a), the cone 
contact (b) and the pyramid contact (c). 
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Fig. 9. Comparison between viscoelastic experimental results and analytic results for the 
spherical case (a),  the conical case (b) and the pyramidal case (c). 
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Table 1 

Parameters γ  and Q for the various forms of contact surfaces. 

Shapes Spherical Conical Pyramidal 
γ  3/2 2 2 

Q  R
3
8  α

π
tg4  απ tgc p

4/32
45
32  
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Table 2  

Characteristic times and amplitudes for the rubber block.  

i 1 2 3 4 

iτ  (second) 33333.33 1110.00 64.94 3.37 

iA (Mpa) 0.58 0.79 1.56 2.29 
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Table 3 

Identification of the coefficients sc , cc et pc . 

   Shape Spherical Conical Pyramidal 

C sc  cc  pc  

Experimentally 0.34 45° 60° 0.53 0.43 0.45 
Analytically 0.36 0.45 - 

 


