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Introduction

The study of contact problems has its origins in the last quarter of the 19th century when Hertz [START_REF] Hertz | Über die Berührung fester elastischer Körper (On the contact of elastic solids)[END_REF] and Boussinesq [START_REF] Boussinesq | Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques[END_REF] presented solutions to the contact of linear elastic materials.

Several solutions were derived from the solution of Boussinesq, an excellent account of which is given in Galin's book [START_REF] Galin | Contact problems in the theory of elasticity[END_REF] and in Johnson [START_REF] Johnson | Contact mechanics[END_REF]. Later, Sneddon [START_REF] Sneddon | The relation between load and penetration in the axisymetric Boussinesq problem for a punch of arbitrary profile[END_REF] established a solution of the axisymmetric Boussinesq problem which enabled him to deduce simple formulas giving the penetration δ of a punch of arbitrary profile as well as the total force necessary to ensure this penetration.

Then the interest of the viscoelastic contact problem emerged, Graham [START_REF] Graham | The contact problem in the linear theory of viscoelasticity[END_REF] gave an expression for the displacement stress field produced at any point of a linear homogeneous and isotropic viscoelastic half space by an arbitrary time dependent distribution of pressure acting on its boundary. The distribution of normal surface tractions prevailing when a rigid punch of arbitrary profile is pressed against the surface of a viscoelastic half space is determined in terms of a one parameter family of solutions to the corresponding elastic problem. One of the approaches for the resolution of a contact problem of a rigid sphere with a viscoelastic material was suggested by Radok [START_REF] Radok | Viscoelastic stress analysis[END_REF]. It replaces elastic constants by an integral operator corresponding to the viscoelastic stress strain relation in which the radius of the contact area is a monotonically increasing function of time. Later, Hunter [START_REF] Hunter | The Hertz problem for a rigid spherical indenter and a viscoelastic halfspace[END_REF] studied the Hertz's problem in the case of the rebound of a rigid sphere on a viscoelastic half space so that the contact radius increases monotonically to a maximum and then decreases to zero. It was assumed that the distribution of pressure remains elliptic as in the elastic case. Ting [START_REF] Ting | The contact stresses between a rigid indenter and a viscoelastic half space[END_REF] presented a method so that the problem of contact could be solved for an arbitrary contact radius.

Numerical methods for the resolution of the contact were also developed. Webster & Sayle [START_REF] Webster | A numerical model for the elastic frictionless contact of real rough surfaces[END_REF] and Chang & Gao [START_REF] Chang | A simple numerical method for contact analysis of rough surfaces[END_REF] developed a numerical model for the elastic contact of rough surfaces. Younguing & Linquing [START_REF] Younguing | A full numerical solution for the elastic contact of three dimensional real rough surfaces[END_REF] proposed a numerical modelling for an elastic 3D contact of rough surfaces. The authors conclude that the interaction of asperities has a great effect on the calculated results, particularly on the contact deformation. The finite element method was used by Kucharski et al [START_REF] Kucharski | Finite elements model for the contact of rough surfaces[END_REF] who modelled the contact between a sphere and a rigid plane. They obtained a relation between the weight and the surface of contact. Kane et al [START_REF] Kane | Finite element analysis of nonsmooth contact[END_REF] developed robust contact algorithms able to deal with complex contact situations involving several bodies with corners. However these numerical methods lead to time consuming computations. This paper presents a semi analytical model which uses a theory of the interaction potential between a rigid body and an elastic or viscoelatic solid. The aim is to get simple and very fast estimates for the contact force for given body shapes. The contact force can be expressed in terms of the volume of interpenetration, the surface and the perimeter of the base of this volume as well as the mechanical characteristics of surfaces in contact. Then, an approach for the resolution in the case of a rubber block with a viscoelastic behaviour is presented. Radok's approach [START_REF] Radok | Viscoelastic stress analysis[END_REF] is used; it replaces elastic constants by an integral operator corresponding to the viscoelastic stress-strain relation. Experimental validations are made for different shapes of simple rigid bodies (spherical, conical and pyramidal). Finally, a comparison of contact forces in the elastic and viscoelastic case is given.

Classical contact theory

One of the first studies concerning the evaluation of the contact tensions between elastic solids was proposed by Hertz [START_REF] Hertz | Über die Berührung fester elastischer Körper (On the contact of elastic solids)[END_REF]. To express the normal force P versus the indentation, he made the assumptions that the sector of contact is elliptic, that each solid can be regarded as an elastic half space, that there is no friction between the two surfaces in contact and that the surfaces are continuous and no conform. These assumptions lead to the following well known

relation 2 3 δ K P = (1) with 3 4 * R E K = ( 2 
)
where P is the normal force applied, R is the equivalent radius of curvature and * E represents the Young's equivalent modulus. The theory of the Hertz's contact is limited to surfaces with smooth and continuous profiles with finite forces everywhere. The problem is different for a surface having edges or corners. The deformation must be sufficiently small in order to be in the field of the linear theory of elasticity.

Consider a cone in contact with a plane surface, the area of contact is supposed to be small compared to the size of the two solids. The deformation is shown in Fig. 1 which presents also the pressure distribution in the contact zone. If the smooth sides of the cone are prolonged beyond the contact surface, the pressures must equal zero at the edges. A classical approach to find the efforts in an elastic half space due to external tractions is given by Boussinesq [START_REF] Boussinesq | Application des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques[END_REF] and Cerruti [START_REF] Cerruti | [END_REF], who used the potential theory. Love [START_REF] Love | Boussinesq's problem for a rigid cone[END_REF] applied the classical approach of the potential function to the cone and evaluated the contact pressure by the formula
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where s is the distance between the origin O and a point ranging between O and a. Thus the normal force is given by
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The quantities α and a are defined in Fig. 1.

Contact between two bodies of complex shape

Interaction potential theory

Suppose that two bodies b 1 and b 2 are in contact at the point O. Oxy is the common tangent plane with axis OZ directed towards the body b 1 (see Fig. 

By Ax z z + ≈ - (5) 
The points M 1 and M 2 have coordinates (x, y, z 1 ) and (x, y, z 2 ) and belong to the surfaces of the bodies. The values A and B are constant. In general we find an additional term 2Cxy in the last part of expression ( 5) but it can be eliminated by a suitable choice for the axes Ox and Oy.

If the body b 1 moves by a distance δ in the negative direction of axis Oz and if it is assumed that the bodies interpenetrate without deformation, there will be an intersecting domain Γ whose projection on the Oxy plan forms the surface (see Fig. 2b)
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with the boundary
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The assumption that the bodies interpenetrate without deformation is an approximation. But this is not too far from reality and this will allow getting the simple expressions that follow. It will also be justified by comparison with the experimental results.

Three characteristics of the intersecting domain will play an important role, namely, the volume V of Γ , the surface S and the perimeter p of σ
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According to the traditional results of Hertz, in the case where the contact zone is an ellipse of
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is the elliptic integral of first species, A and B can be obtained from Eq. ( 12)
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It follows that the relation
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, which does not depend on the load P, is defined by the geometrical characteristics of surfaces in contact. The force P is given by (see Appendix
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The potential U for the interaction of the bodies in contact, is calculated from the expression of virtual works by
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Let us represent the relation ( 15) by the form
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where V, S and p are defined in the relations ( 8), ( 9) and [START_REF] Kucharski | Finite elements model for the contact of rough surfaces[END_REF]. By comparing the powers of δ and (AB) in the expressions ( 15) and ( 16) of U, we find 2 = β and 2
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Finally we obtain
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Then it follows
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The numerical analysis of the function (21) represented in Fig. 3 shows us that the function 
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The parameter c is a constant which depends only on the geometry of contact surfaces.

According to the preceding development c equals 0.36 for regular contact surfaces and for 5 . 0 = ξ . It is supposed that the potential can be written in the same form (25) in the case of a contact of irregular surfaces. We will identify analytically and by experiments the constant c in order to validate this generalized formula in the case of bodies with arbitrary shapes.

Validation in simple shape cases

For this aim, three surface shapes are considered: the contact is between a plane surface and with spherical, conical and pyramidal rigid surfaces. For each case the relation between the force and the interpenetration will be determined. The constant c is then identified from experimental tests.

To validate and generalize the expression of the potential (25) for any surface shape, let's take the example of a spherical form (see Fig. 4a). Once the expressions of the volume, the surface and the perimeter are known, we can replace then in Eq. ( 25). The expressions of the volume, the surface and the perimeter of the part in contact are given by
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where r is the radius of the base of the volume in contact and δ is the interpenetration of the sphere in the plane surface. They are expressed as function of the angle α by the relations
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The relation between r and δ is found by

δ R r 2 2 =
. It is assumed that r << R, thus .

It would also be useful to know the expression of the force in case of a contact between a plane surface and a cone as well as in the case of a contact between a plane surface and a

pyramid. An approximation of c for various surfaces in contact enables one to generalize the contact law (25).

The same method is used for a contact between a conical surface with angleα and a plane surface (see Fig. 4b). The expressions of the volume, the surface and the perimeter of contact are evaluated and replaced in the expression of the potential (25). The volume of the part in contact is evaluated by
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The surface of the base in contact is The relation between r and δ is known to be δ α r tg = . So the potential equals
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The force P is written as
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In order to find the relation between the interpenetration δ and the radius a, let us take the Boussinesq's equations for a point force on a half space. It follows that the relation of the interpenetration δ can be written under the form

⎟ ⎠ ⎞ ⎜ ⎝ ⎛ - = s G p s ) 1 ( 2 4 ) ( υ π δ (34) where ) 1 ( 2 υ + = E G
is the shear modulus and υ is the Poisson's ratio. Knowing the pressure repartition (3) given by Love [START_REF] Love | Boussinesq's problem for a rigid cone[END_REF], the interpenetrationδ which is the displacement at the apex of the cone, is written as
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So the relation ( 4) can be written in the form
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If the assumption is made that the Young's modulus of the body (1) is very small in front of the Young's modulus of the body (2)
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Application to a pyramid

After considering the case of a contact between a plane surface with a sphere and a cone, it would be interesting to study the case of a contact between a plane surface and a pyramid (see Fig. 4c). The volume of the part in contact is evaluated by

δ 2 3 1 r V = (40)
The surface of the base in contact is The force is thus written in the form A model of the elastic contact between a plane surface and various surface shapes has been presented. The force P is expressed according to the interpenetrationδ , the geometrical and mechanical characteristics of the bodies in contact, and also by a constant c which was analytically identified for the spherical and conical case. The constants s c , c c and p c will also be identified experimentally and the expressions (30), ( 39), (42) will so be validated.

Extension to materials with a viscoelastic behaviour

Let us consider a pure shear stress, the stress strain relation expressed according to the shear modulus is e G s 2 = . One of the approaches for the resolution of a contact problem between a rigid sphere and a viscoelastic material was suggested by Radok [START_REF] Radok | Viscoelastic stress analysis[END_REF]. His approach replaces elastic constants by an integral operator corresponding to the viscoelastic stress strain relation
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Let us suppose that the variation of the force P according to the interpenetration δ in the case of elastic contact is written as
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where γ and Q depend on the form of the contact surface. By applying the Radok's method [START_REF] Radok | Viscoelastic stress analysis[END_REF], the expression of the force becomes
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By taking into account the parameters γ and Q defined in Table 1, the expression of the force is finally given by -for a contact between a rigid sphere and a viscoelastic plane 

Experimental validation for elastic contacts

In this purpose an experimental device is established. A compression Instron machine, bodies with various shapes (spherical, conical and pyramidal), LabView software for the acquisition of the results and a rubber block are used. Experimental relations between the force and the interpenetration are established for each body in contact with the rubber block. First the Young's modulus of the rubber block is identified by a relaxation test. Knowing the characteristics of the rubber block and the contact bodies, the coefficients s c , c c , p c corresponding to the contact models for the spherical, conical and pyramidal cases will be identified.

Experimental identification of viscoelastic parameters

A simple compression test on the rubber block presented in Fig. 5 is abruptly and quickly carried out by using a compression machine. A deformation of 8% is maintained constant and the evolution of the stress versus the time is recorded. It is noticed an abrupt and rapid increase of the stress to Mpa 0.93 0 = σ just after the load. This deformation is maintained by blocking the crossbar for a long time until the stabilization of the stress which tends towards MPa 0.6 = ∞ σ . The stress versus the time is written under the form of a Prony's series
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For the rubber block four characteristics times are found and the results are represented in table 2. After reconstitution of the relaxation curve from characteristics times and amplitudes, in Fig. 6, we notice that there is a good concordance of the two curves. Using less than four characteristic times doesn't allow a good reconstitution of the curve over the whole time range. The static Young's modulus of the block is found to be

MPa E 5 . 7 0 = = ∞ ∞ ε σ

Experimental validation of the elastic contact model

Contact between a rubber block and a sphere

The experimental device is the same as the one used for the relaxation test (see Fig. 7a). The load is carried out at a speed of 0.001 mm/s to simulate a static loading with the Young's . According to Eq. ( 30) and to the experimental results of the contact between the rubber block and the steel ball, it was found
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Knowing the mechanical and geometrical characteristics of the two bodies in contact, the experimental value from the coefficient s c is deduced and equals 0.34. The theoretical value of the coefficient s c equals 0.36, which is slightly different from the experimental value. This result allows to validate the experiment by recovering the Hertz's result.

Contact between a rubber block and a cone

The same test as the one used for the contact between the rubber block and the sphere is carried out. Two steel cones that have different angles ( °= 60 α and °= 45 α ) are used in order to study the influence of the angle on the distribution of the force. The experimental device is presented in Fig. 7b. The force versus the interpenetration for each cone in contact is given in Fig. 8b. By plotting the logarithmic curve of the force as function of the interpenetration and after having carried out a linear regression for each curves it is found for the cone with The evaluation of the force from the expression (33) adapted for the case of a contact between a plane surface and a cone is given by 
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Contact between a rubber block and a pyramid

The expression of the force versus the interpenetration is The coefficients s c and c c were identified experimentally and analytically. p c was identified only experimentally since there is no analytical model for the pyramidal case. In Table 3 the values obtained for various surfaces are presented. The differences between the experimental and the analytical results are quite small. Let's conclude that the value of the coefficient s c equals 0.36. For the conical case the value of the coefficient c c equals 0.45, which is true for any angle α. Considering the absence of a classical analytical theory for the pyramidal shape, we can however conclude that the contact law has the same shape as for the other cases with p c which equals 0.53.

Experimental validation for viscoelastic contacts

The expression of the force according to the interpenetration is put in the form (46), (47) and (48). In the same way as for the case of an elastic contact, experimental tests are carried out in order to validate viscoelastic contact models.

Contact between a rubber block and a steel ball

In this test the same experimental device is used, except that instead of charging at a speed of 0,001 mm/s, the loading is done at a speed of 5 mm/s. The same rubber block and the same steel ball are used so the geometrical and mechanical characteristics are well known. In Fig. 9, we can see the evolution of the force P according to the interpenetration δ for the spherical, conical and pyramidal cases. The curves show that in all cases there is a good concordance between the two results. A comparison between the results obtained in the case of the elastic analytic model and in the case of the viscoelastic analytic model concludes that the value of the force in the case of a viscoelastic contact is higher by 24% than the value of the force in the case of an elastic contact.

Conclusion

The theoretical model of the potential interaction for contacts between regular surfaces was presented and generalized for irregular surfaces. The validation of this model in the case of a contact between a plane surface with a sphere, a cone and a pyramid was made. Then an approach of the solution of a viscoelastic contact problem was seen, where the method of Radok [START_REF] Radok | Viscoelastic stress analysis[END_REF], which consists of replacing elastic constants by an integral operator, was applied.

The viscoelastic behaviour of the material was modeled by a Prony's series. The Young's modulus and the characteristic times of a rubber block were identified. Once these characteristics were identified, tests were carried out in which the rubber block was put into contact with various surfaces (spherical, conical and pyramidal). These tests made it possible to identify the coefficients s c , c c and p c .Thus, we validated the models of elastic contact.

Using the same method, tests of viscoelastic contact at a speed of 5 mm/s with the same rubber block and the various bodies were carried out. The results were compared to the results of a viscoelastic contact model. The results of the model and those of the experiments agree very well. A comparison between the results of the elastic contact model and the results of the viscoelastic contact model shows that for a given value of interpenetration δ , the viscoelastic force is 25% higher than the elastic force for this load speed. All these results validate the simple semi-analytical model developed in this paper for elastic and viscoelastic contacts of bodies with arbitrary shapes.

Appendix A. Calculation of the force P

The force P and the coefficients of surfaces σ and ' σ are linked by the following relations
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From Eqs. (A.1) and (A.2) we obtain 
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Table 1

 1 Parameters γ and Q for the various forms of contact surfaces.

	Shapes	Spherical	Conical		Pyramidal
	γ	3/2		2				2
	Q	3 8	R	π 4	tg	α	c p	45 32	α π tg 4 / 3 2

Table 2

 2 Characteristic times and amplitudes for the rubber block.

	i	1	2	3	4
	i τ (second)	33333.33	1110.00	64.94	3.37
	i A (Mpa)	0.58	0.79	1.56	2.29

It follows that the force relation is given by