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Modelling of unsteady 2D cavity flows using the Logvinovich
independence principle
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Abstract

A simple model for two-dimensional cavity flows is presented. It is based upon the Logvinovich independence principle.
Each section ofhe cavity is assumed to behave independently of the neighbouring ones. The equation of evolution of the cavity
interface is derivedt mainly takes into account an added mass effect and is similar to the well-kRawleigh—Plesset
equation relative tepherical bubbles. The dynamics of the 2D cavity is controlled by the pressure difference between infinity
and the cavityThe model proves to be in good agreement with Tulin’s solution for a steady cavity flow and easily applicable to
unsteady cavity flows.

Résumé

M odélisation des écoulements cavitants bidimensionnels basée sur le principe d’indépendance de L ogvinovich. Une
modélisation simple descoulements cavitants bidimensionnels est proposée. Elle est basée sur le principe d'indépendance de
Logvinovich qui suppose que chaque section de cavité se comporte indépendamment des voisines. L'équation d'évolution de
I'interface est présentéans cette Note. Elle prend essentiellement en compte un effet de masse ajoutée et est comparable a
I'équation de RayleighPlesset qui régit I'évolution d’une bulle sphérique. La dynamique d’'une cavité bidimensionnelle est
contr6lée par la différence entre la pression de cavité et la pression a I'infini. Le modéle est en bon accord avec la solution de
Tulin pour unécoulement supercavitant stationnaire et est facilement applicable a une configuration instationnaire.
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1. Introduction

This paper addresses the modelling of two-dimensional unsteady cavity flows. Cavity flows are characterized
by the coexistence of two phases, liquid and vapour. The latter can be due to cavitation or to the injection of
non-condensable gas into the liquid flow, asithie case for ventilated supercavitating flows.

The two phases are supposed to be separated by a well-defined interface. It is assumed that there is no intimate
mixing between them in the form of small bubbles, for instance, or at least that such a zone is limited in space. This
is especially the case for supercavitation, which is actually characterized by a vapour cavity of usually large size
with respect to the cavitator. The interface of such a supercavity is clearly defined except in the vicinity of cavity
closure where the cavity breaks up into smaller scale vapour structures. Fig. 1 shows a typical view of a natural
supercavity generated by a two-dimensional circular cylinder. Such cavity flows can be found around high-speed
supercavitating torpedoes as an example.

Several techniques are available for the modelling of cavity flows. Apart from analytical or quasi-analytical
methods applicable to simple and often linearized configurations [1], we can mention the boundary element method
which is particularly powerful [2]. Other methods based on the resolution of Navier—Stokes equations are also
available with various types of cavitation models (see e.g. [3-5]).

In this paper, a different model based on the Logvinovich independence principle is proposed. This principle
has been widely used in Russia and Ukraine for the modelling of axisymmetric cavity flows ([6-9], see also [1]). In
axisymmetric configurations, a logarithmic singularity appears as the radial distance from the axis tends to infinity.
Itis then necessary to limit the computational domain to an artificial maximum radius. In the two-dimensional case,
this singularity is expected to be stronger and a special procedure, presented in this paper, has to be developed to
overcome the difficulty.

The Logvinovich independeee principle consists in assuming that each cross-section of the cavity evolves inde-
pendently of the neighbouring ones and that its evolution is mainly controlled by the pressure difference between
the cavity and the pressure at infinity or in other words by the cavitation numifef. Eq. (6) for a definition
of o). In comparison with Navier—Stokes techniques that are very time-consuming, one of the main advantages
of this technique is its simplicity, in particular for unsteady cavity flows. It does not take into account viscous
effects, which is generally not a serious limitation for supercavity flows since they are mainly governed by inertia.
The model presented below also requires that the slenderness of the cavity is small enough. This is generally true
for supercavitation since the cavity length increases more rapidly than its thickness as the cavitation number is
decreased (cf. Eq. (10)).

)

Fig. 1. Supercavity flow around a two-dimensional circularraydir in the LEGI hydrodynamic tunnel. The dissymmetry between the upper
and lower part of the cavity is due to the free surface. (Cylindemdtar: 5 cm, flow height in undisturbed conditions: 40 cm, flow velocity:
12 /s, cavitation number: 0.05.)



2. Equation of evolution of the cavity interface

Consider the flow around a two-dimensional cavitator and its cavity in an infinite liquid medium as schematically
shown on Fig. 2. For simplicity, we consider a symmetric configuration with respect to the ptan@ The
slender body approximation consists in assuming that ¢tecity does not differ significantly from the velocity at
infinity U. In other words, the two componentsandv of the flow velocity shown in Fig. 2 are supposed to be
everywhere small with respect ..

Thev-component on the cavity interface (denotgllis deduced from the kinematic condition on the interface.
This condition infers that, if a fluid particle is on the interface at a given time, it will remain on it at any subsequent
time until it reaches the closure region ek it will separate from the cavity. Henag,is given by:

dyc dyc
Ve = a7 + U ax (1)
wherey = y¢(x, t) is the equation of the cavity interface at time
Furthermore, the-component vanishes at infinity where the flow is uniform. Then, it is expected to decrease
when moving away from the cavity. For a spherical bubble, the radial velocity behaveg iké 1n the axisym-
metric case, the continuity equation shows that it decreasegraf3§ integration, this leads to the logarithmic
singularity for the pressure already mentioned. For the two-dimensional case, we assume thadrtiponent
behaves like a given powey 1" of the distance to the plane of symmetry. It will be shown later that exponent
depends upon the cavitation numlbeand approaches 1 whenapproaches 0. Neverthelesss supposed to be
always greater than 1 so that no singular behaviour is expected:--Tbmponent is then assumed to be given by:
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In the slender body approximation and for an inviscid fluid, the momentum balanceyrdinection writes:
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wherep is the pressure the liquid density and (i the transport derivative given by:
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Fig. 2. Schematic view of a cavifjow and general notations.

1/ is the distance to the bubble centre in the sphedaak or to the cavity axis in the axisymmetric case.



The equation of evolution of the cavity interface is obtained by introducing expression (2) feicdraponent
in the momentum balance (3) and integrating from the cavity interfa@éhere the pressure is the cavity pressure
pc to infinity wherep is denotedp,. We finally obtain the following equation:

d? dyc\? o
ycﬁm(%) =—m-DULZ 5)

In this equation dd: is still the transport derivative (4) andis the usual cavitation number defined by:
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Eq. (5) is similar to the Rayleigh—Plesset equatiamich allows the computation of the time evolution of a
spherical bubble when submitted to a given pressure differprce pc. It suggests to follow any cross section
of the 2D cavity in a Lagrangian way, as it is advected downstream at flow velggityDuring its downstream
movement, the temporal evolution of the cross-sawti area is given by Eq. (5). Initial conditions have to be
specified at the instant of shedding of the cross section by the cavitator. They concern the initial size of the cross-
section and its derivative which are connected respectively to the size of the cavitator and the slope of the wall at
cavity detachment.

Eq. (5) expresses the Logvinovich priple according to which the temporlolution of a given cross section
of the cavity is independent of the neighbouring ones iain effect that is taken into account in Eq. (5) is an
added mass effect connected to the inertia of the surrounding liquid.

3. Discussion

At this step, the exponentis still unknown. In order to dermine it, the steady case is examined. The shape of
the cavity is given by the steady version of Eqg. (5):

d22
2 - 1o ™

To get Eq. (7), we assumedclose to unity in the left-hand side of Eq. (5) only. It is checked below that this is
a good approximation. This equation has the followatigptic solution for the shpe of the cavity interface:
2 2
—¢/2
Ye (x /):1 ®
(n —1)(0/2)(¢2/4) e2/4
whereZ is the cavity length. This solution is such that the cavity thickness is zero at bothxea@sandx = ¢.
The cavity slenderness is:

5:/@—3% (9)

In order to determine, we compare the present solution to the classical one obtained by Tulin [10] for the cavity
flow about a symmetrical body in an infinite flow field (see also [1]). According to Tulin’s linearized solution, the
cavity is also elliptic and its slenderness is:

_0/2
~1+40/2

(10)

2 The left-hand side of the classical Raigh—Plesset equation would correspond te 3/2.



100

Tulin's model

Non-dimensioned cavity length ¢/c
=

== Present model

0,01 0,1 1

Cavitation number ¢

Fig. 3. Comparison of the present model with Tulin’s solution far #évolution of the cavity length with the cavitation number. Case of a
symmetrical wedge of chord lengthand half vertex angle 8 degrees in an infinite flow field. The cavity length is non-dimensioned by the
wedge chord length.

The identification of Egs. (9) and (10) allows the determination of expofient
/2
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Exponent: is then always greater than unity and approaches unity whends to zero.
Finally, the equation of evolution of the steady cavity is:
(2 2 12
dx2 1+0/2

The solution of Eq. (12) in terms of the evolution of the cavity length with the cavitation number is compared to
Tulin’s solution in Fig. 3 in the particular case of a wedge. The present solution is in good agreement with Tulin’s
original one. The systematic difference which is obeédrbetween the two is not so critical since it is well known
that, from an experimental viewpoint, cavity closure is affected by large fluctuations due to cavity unsteadiness and
that the cavity length is then not defined very accurately in practice.

It has been checked that, if the exact valua gfiven by Eq. (11) is taken instead of unity in the left-hand side
of Eq. (12), this makes no significant difference in the range of cavitation numbers considered in Fig. 3.

In the unsteady case, the temporal evolution of the cavity is governed by Eq. (5). The principle of the simulation
of an unsteady cavity is then the following. At each time step, a new ‘slice’ of cavity is shed by the cavitator. Each
slice is advected downstream independently and thaugaal of its cross section is governed by Eq. (5). At each
time step, the whole cavity is reconstructed by piling up the different slices of cavity shed at previous time steps.
At time steps 12, ..., k, the cavity is then made of 2, ..., k slices respectively.

Unsteadiness can have several origins. It can be caused by variations of pressure or cavitation number in Eq. (5).
Another source of unsteadiness may be due to the movement of the cavitator or to the possible deformation of its
walls at constant cavitation number. If so, from a mathematical viewpoint, the unsteady behaviour of the cavity orig-
inates in the initial conditions, at the instant of sheddingaxdh cross section, and not in Eq. (5) itself. Unsteadiness
can also be due to pressure oscillations inside the cavity, as observed for ventilated pulsating supercavities. The
present model is able to account for these various sources of unsteadiness.

A difficulty arises as for the choice of exponenin the unsteady case. It has been shownshata function of
the cavitation number for the steady case. It sedren reasonable to use the same determinatierfief. (11)) in
the unsteady case. However, this is not fully justified agelds to be further validated against experimental results.
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Fig. 4. Unsteady behaviour of the cavity past a symmetrical wedge icefeof sinusoidal oscillations ofgltavitation number (chord length:

¢ =1, half vertex angle: 8 degrees, time stey:= 0.1, flow velocity: Us, = 1, space stepAx = Uso At = 0.1). Variation of the applied
cavitation humbet with time ¢: o = 0.2 — 0.15sins. Top view of the cavity at different timeteps between 0 and 200, coloured by cavity
thickness (maximum thickness in white). The origin of space steps corresponds to the basis of the wedge from which the cavity detaches.

An example of solution is given in Fig. 4 for an oscillatory cavitation number in the case of the symmetrical
wedge already considered in Fig. 3. Fig. 4(b) presents a collection of top views of the cavity as a function of the
distance from the wedge basis at different times. The grey level is representative of the cavity thickness. The linear
part at the bottom of diagram 4(b) corresponds to the starting stage and more precisely to the advection of the very
first cross section of the cavity shed at the first time step.

Here, the oscillation frequency has been chosen so that it is comparable to the advectititinmbased on
the maximum cavity length. Significant unsteady effectslaea expected. This can be seen by the phase difference
between the oscillations in pressure and cavity length. When the cavitation number is minimum, the cavity length
is not maximum and, moreover, the maximum cavity length is much smaller than that which would be estimated
from Fig. 3 assuming a quasi-steady behaviour.

It can be also observed on Fig. 4 that at some instants (typically around time step 125), the cavity is made up
of two separate parts. This is characteristic of the development of an undulation of the cavity interface which leads
to a local pinching of the cavity and the subsequent separation of part of the cavity. The model is then capable
of predicting the break-off of the cavity and the production of a large scale vapour structure which collapses
downstream.

The present model appears to have the capabilities of predicting the steady and unsteady behaviours of two-
dimensional cavity flows. It is based upon an Eq. (5) which can be considered as a 2D version of the Rayleigh—
Plesset equation and which can easily be solved nwalsri The model appears to be intermediate between
analytical techniques which are limited to simple and usually steady configurations and more sophisticated and
time-consuming techniques as the resolution of Navier—Stokes equation together with a cavitation model.
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