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We consider the problem of constructing bounded-degree planar geometric spanners of Euclidean and unit-disk graphs. It is well known that the Delaunay subgraph is a planar geometric spanner with stretch factor C del ≈ 2.42; however, its degree may not be bounded. Our first result is a very simple linear time algorithm for constructing a subgraph of the Delaunay graph with stretch factor ρ = 1 + 2π(k cos π k ) -1 and degree bounded by k, for any integer parameter k ≥ 14. This result immediately implies an algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch factor ρ • C del and degree bounded by k, for any integer parameter k ≥ 14. Moreover, the resulting spanner contains a Euclidean Minimum Spanning Tree (EMST) as a subgraph. Our second contribution lies in developing the structural results necessary to transfer our analysis and algorithm from Euclidean graphs to unit disk graphs, the usual model for wireless ad-hoc networks. We obtain a very simple distributed, strictly-localized algorithm that, given a unit disk graph embedded in the plane, constructs a geometric spanner with the above stretch factor and degree bound, and also containing an EMST as a subgraph. The obtained results dramatically improve the previous results in all aspects, as shown in the paper.

Introduction

Given a set of points P in the plane, the Euclidean graph E on P is defined to be the complete graph whose vertex-set is P . Each edge AB connecting points A and B is assumed to be embedded in the plane as the straight line segment AB; we define its cost to be the Euclidean distance |AB|. We define the unit disk graph U to be the subgraph of E consisting of all edges AB with |AB| ≤ 1.

Let G be a subgraph of E. The cost of a simple path A = M 0 , M 1 , ..., M r = B in G is r-1 j=0 |M j M j+1 |. Among all paths between A and B in G, a path with the smallest cost is defined to be a smallest cost path and we denote its cost as c G (A, B). A spanning subgraph H of G is said to be a geometric spanner of G if there is a constant ρ such that for every two points A, B ∈ G we have: c H (A, B) ≤ ρ • c G (A, B). The constant ρ is called the stretch factor of H (with respect to the underlying graph G).

The problem of constructing geometric spanners of Euclidean graphs has recently received a lot of attention due to its applications in computational geometry, wireless computing, and computer graphics (see, for example, the recent book [START_REF] Narasimhan | Geometric Spanner Networks[END_REF] for a survey on geometric spanners and their applications in networks). Dobkin et al. [START_REF] Dobkin | Delaunay graphs are almost as good as complete graphs[END_REF] showed that the Delaunay graph is a planar geometric spanner of the Euclidean graph with stretch factor (1 + √ 5)π/2 ≈ 5.08. This ratio was improved by Keil et al [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF] to C del = 2π/(3 cos (π/6)) ≈ 2.42, which currently stands as the best upper bound on the stretch factor of the Delaunay graph. Many researchers believe, however, that the lower bound of π/2 shown in [START_REF] Chew | There are planar graphs almost as good as the complete graph[END_REF] is also an upper bound on the stretch factor of the Delaunay graph. While Delaunay graphs are good planar geometric spanners of Euclidean graphs, they may have unbounded degree.

Other geometric (sparse) spanners were also proposed in the literature including the Yao graphs [START_REF] Yao | On constructing minimum spanning trees in k-dimensional spaces and related problems[END_REF], the Θ-graphs [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF], and many others (see [START_REF] Narasimhan | Geometric Spanner Networks[END_REF]). However, most of these proposed spanners either do not guarantee planarity, or do not guarantee bounded degree.

Bose et al. [START_REF] Bose | Constructing plane spanners of bounded degree and low weight[END_REF][START_REF] Bose | Constructing plane spanners of bounded degree and low weight[END_REF] were the first to show how to extract a subgraph of the Delaunay graph that is a planar geometric spanner of the Euclidean graph with stretch factor ≈ 10.02 and degree bounded by 27. In the context of unit disk graphs, Li et al. [START_REF] Li | Distributed construction of planar spanner and routing for ad hoc wireless networks[END_REF][START_REF] Li | Localized delaunay triangulation with application in Ad Hoc wireless networks[END_REF] gave a distributed algorithm that constructs a planar geometric spanner of a unit disk graph with stretch factor C del ; however, the spanner constructed can have unbounded degree. Wang and Li [START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF][START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF] then showed how to construct a bounded-degree planar spanner of a unit disk graph with stretch factor max{π/2, 1 + π sin (α/2)} • C del and degree bounded by 19 + 2π/α, where 0 < α < 2π/3 is a parameter. Very recently, Bose et. al [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] improved the earlier result in [START_REF] Bose | Constructing plane spanners of bounded degree and low weight[END_REF][START_REF] Bose | Constructing plane spanners of bounded degree and low weight[END_REF] and showed how to construct a subgraph of the Delaunay graph that is a geometric spanner of the Euclidean graph with stretch factor: max{π/2, 1+π sin (α/2)}•C del if α < π/2 and (1+2 √ 3+3π/2+π sin (π/12))•C del when π/2 ≤ α ≤ 2π/3, and whose degree is bounded by 14 + 2π/α. Bose et al. then applied their construction to obtain a planar geometric spanner of a unit disk graph with stretch factor max{π/2, 1 + π sin (α/2)} • C del and degree bounded by 14 + 2π/α, for any 0 < α ≤ π/3. This was the best bound on the stretch factor and the degree.

We have two new results in this paper. We develop structural results about Delaunay graphs that allow us to present a very simple linear-time algorithm that, given a Delaunay graph, constructs a subgraph of the Delaunay graph with stretch factor 1+2π(k cos (π/k)) -1 (with respect to the Delaunay graph) and degree at most k, for any integer parameter k ≥ 14. This result immediately implies an O(n lg n) algorithm for constructing a planar geometric spanner of a Euclidean graph with stretch factor of (1 + 2π(k cos (π/k)) -1 ) • C del and degree at most k, for any integer parameter k ≥ 14 (n is the number of vertices in the graph). We then translate our work to unit disk graphs and present our second result: a very simple and strictly-localized distributed algorithm that, given a unit-disk graph embedded in the plane, constructs a planar geometric spanner of the unit disk graph with stretch factor (1 + 2π(k cos (π/k)) -1 ) • C del and degree bounded by k, for any integer parameter k ≥ 14. This efficient distributed algorithm exchanges no more than O(n) messages in total, and runs in O(∆ lg ∆) local time at a node of degree ∆. We show that both spanners include a Euclidean Minimum Spanning Tree as a subgraph.

Both algorithms significantly improve previous results (described above) in terms of the stretch factor and the degree bound. To show this, we compare our results with previous results in more detail. For a degree bound k = 14, our result on Euclidean graphs imply a bound of at most 3.54 on the stretch factor. As the degree bound k approaches ∞, our bound on the stretch factor approaches C del ≈ 2.42. The very recent results of Bose et al. [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] achieve a lowest degree bound of 17, and that corresponds to a bound on the stretch factor of at least 23. If Bose et al. [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] allow the degree bound to be arbitrarily large (i.e., to approach ∞), their bound on the stretch factor approaches (π/2) • C del > 3.75. Our stretch factor and degree bounds for unit disk graphs are the same as our results for Euclidean graphs. The smallest degree bound derived by Bose et al. [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] is 20, and that corresponds to a stretch factor of at least 6.19. If Bose et al. [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] allow the degree bound to be arbitrarily large, then their bound on the stretch factor approaches (π/2) • C del > 3.75. On the other hand, the smallest degree bound derived in Wang et al. [START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF][START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF] is 25, and that corresponds to a bound of 6.19 on the stretch factor. If Wang et al. [START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF][START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF] allow the degree bound to be arbitrarily large, then their bound on the stretch factor approaches (π/2) • C del > 3.75. Therefore, even the worst bound of at most 3.54 on the stretch factor corresponding to our lowest bound on the degree k = 14, beats the best bound on the stretch factor of at least 3.75 corresponding to arbitrarily large degree in both Bose et al. [START_REF] Bose | Diamond triangulations contain spanners of bounded degree[END_REF] and Wang et al. [START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF][START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF]!

Definitions and Background

We start with the following well known observation: Observation 1.1. A subgraph H of graph G has stretch factor ρ if and only if for every edge XY ∈ G: the length of a shortest path in H from X to Y is at most ρ • |XY |.

For three non-collinear points X, Y , Z in the plane we denote by XY Z the circumscribed circle of triangle △XY Z. A Delaunay triangulation of a set of points P in the plane is a triangulation of P in which the circumscribed circle of every triangle contains no point of P in its interior. It is well known that if the points in P are in general position (i.e., no four points in P are cocircular) then the Delaunay triangulation of P is unique [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF]. In this paper-as in most papers in the literature-we shall assume that the points in P are in general position; otherwise, the input can be slightly perturbed so that this condition is satisfied. The Delaunay graph of P is defined as the plane graph whose point-set is P and whose edges are the edges of the Delaunay triangulation of P . An alternative definition that we end up using is: Definition 1.2. An edge XY is in the Delaunay graph of P if and only if there exists a circle through points X and Y whose interior contains no point in P .

It is well known that the Delaunay graph of a set of points P is a spanning subgraph of the Euclidean graph defined on P (i.e., the complete graph on point-set P ) whose stretch factor is bounded by C del = 4 √ 3π/9 ≈ 2.42 [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF]. Given integer parameter k > 6, the Yao subgraph [START_REF] Yao | On constructing minimum spanning trees in k-dimensional spaces and related problems[END_REF] of a plane graph G is constructed by performing the following Yao step at every point M of G: place k equally-separated rays out of M (arbitrarily defined), thus creating k closed cones of size 2π/k each, and choose the shortest edge in G out of M (if any) in each cone. The Yao subraph consists of edges in G chosen by either endpoint. Note that the degree of a point in the Yao subgraph of G may be unbounded.

Two edges M X, M Y incident on a point M in a graph G are said to be consecutive if one of the angular sectors determined by M X and M Y contains no neighbors of M .

Bounded Degree Spanners of Delaunay Graphs

Let P be a set of points in the plane and let E be the complete, Euclidean graph defined on point-set P . Let G be the Delaunay graph of P . This section is devoted to proving the following theorem: Theorem 2.1. For every integer k ≥ 14, there exists a subgraph G ′ of G such that G ′ has maximum degree k and stretch factor 1 + 2π(k cos π k ) -1 . A linear time algorithm that computes G ′ from G is the key component of our proof. This very simple algorithm essentially performs a modified Yao step (see Section 2.3) and selects up to k edges out of every point of G. G ′ is simply the spanning subgraph of G consisting of edges chosen by both endpoints.

In order to describe the modified Yao step, we must first develop a better understanding of the structure of the Delaunay graph G. Let CA and CB be edges incident on point C in G such that ∠BCA ≤ 2π/k and CA is the shortest edge within the angular sector ∠BCA. We will show how the above theorem easily follows if, for every such pair of edges CA and CB:

1. we show that there exists a path p from A to B in G of length |p|, such that:

|CA| + |p| ≤ (1 + 2π(k cos π k ) -1
)|CB|, and 2. we modify the standard Yao step to include the edges of this path in G ′ , in addition to including the edges picked by the standard Yao step but without increasing the number of edges chosen at each point beyond k. This will ensure that: for any edge CB ∈ G that is not included in G ′ by the modified Yao step, there is a path from C to B in G ′ , whose edges are all included in G ′ by the modified Yao step, and whose cost is at most (1 + 2π(k cos π k ) -1 )|CB|. In the lemma below, we prove the existence of this path and show some properties satisfied by edges of this path; we will then modify the standard Yao step to include edges satisfying these properties.

Lemma 2.2. Let k ≥ 14 be an integer, and let CA and CB be edges in G such that ∠BCA ≤ 2π/k and CA is the shortest edge in the angular sector ∠BCA. There exists a path p :

A = M 0 , M 1 , ..., M r = B in G such that: (i) |CA| + r-1 i=0 |M i M i+1 | ≤ (1 + 2π(k cos π k ) -1 )

|CB|. (ii)

There is no edge in G between any pair M i and M j lying in the closed region delimited by CA, CB and the edges of p, for any i and j satisfying 0

≤ i < j -1 ≤ r. (iii) ∠M i-1 M i M i+1 > ( k-2 k )π, for i = 1, • • • , r -1. (iv) ∠CAM 1 ≥ π 2 -π k .
We break down the proof of the above lemma into two cases: when △ABC contains no point of G in its interior, and when there are points of G inside △ABC. We define some additional notation and terminology first. We define the circle (O) = ABC with center O, and set Θ = ∠BCA. Note that ∠AOB = 2Θ ≤ 4π/k. We will use ⌢ AB to denote the arc of (O) determined by points A and B and facing ∠AOB. We will make use of the following easily verified Delaunay graph property: Proposition 2.3. If CA and CB are edges of G then the region inside (O) subtended by chord CA and away from B and the region inside (O) subtended by chord CB and away from A contain no points.

The Outward Path

We consider first the case when no points of G are inside △ABC. Since both CA and CB are edges in G and by Proposition 2.3, the region of (O) subtended by chord AB closer to C has no points of G in its interior. Keil and Gutwin [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF] showed that, in this case, there exists a path between A and B in G inside the region of (O) subtended by chord AB away from C, whose length is bounded by the length of ⌢ AB (see Lemma 1 in [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF]). We find it convenient to use a recursive definition of their path (for more details, we refer the reader to [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF]):

1. Base case: Keil and Gutwin [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF], from this point on, use a purely geometric argument (with no use of Delaunay graph properties) to show that the length of the obtained path A = M 0 , M 1 , • • • , M r = B (where each point M p , for p = 1, • • • , r -1, is an intermediate point with respect to a pair (M i , M j ), where 0 ≤ i < p < j ≤ r) is smaller than the length of ⌢ AB. Figure 1 illustrates an outward path between A and B. Since M i M j is not an edge in G, the point M p chosen in the construction is the point with the property that the region R of M i M p M j subtended by chord M i M j away from C, contains no point of G. Then the circle passing through C and M p and tangent to

If AB ∈ G,
C B = M 3 A = M 0 M 1 M 2 ≤ 2π/k
M i M p M j at M p is completely inside (O M i ) ∪ (O M j ) ∪ R ∪ R ′
, and therefore devoid of points of G. This proves part (a).

The region of CM i M p subtended by chord M i p and containing C is inside (O M i ) ∪ R ∪ R ′ , and therefore contains no point of G in its interior. The same is true for the region of CM j M p subtended by chord M j M p and containing C, and part (b) holds as well.

We are now ready to prove Lemma 2.2 in the case when no point of G lies inside △ABC.

In this case we define the path in Lemma 2.2 to be the outward path between A and B.

Proof of Lemma 2.2 for the case of outward path. 

|CA| + | ⌢ AB | ≤ |CB| + 2Θ • |OA| = |CB| + ( Θ sin Θ ) • |AB| = |CB| + ( Θ cos Θ 2 ) • |CB| ≤ (1 + 2π(k cos π k ) -1 )|CB|.
The last inequality follows from Θ ≤ 2π/k and k > 2. (ii) If M i M j was an edge in G then, for every p between i and j, the circle M i M p M j would not contain C. This, however, contradicts part (a) of Proposition 2.5. (iii) If the outward path contains a single intermediate point

M 1 , then since M 1 lies inside (O) = CAB, ∠AM 1 B ≥ π -∠AOB/2 ≥ π -2π/k = (k -2)π/k (note that ∠AOB = 2 • ∠ACB)
, as desired. Now the statement follows by induction on the number of steps taken to construct the outward path between A and B, using the fact (proved in [START_REF] Keil | Classes of graphs which approximate the complete Euclidean graph[END_REF]) that each angle ∠M i-1 O i M i+1 at the center of the circle (O i ) defining the intermediate point M i , is bounded by ∠AOB. (iv) This follows from the fact that ∠CAM 1 ≥ ∠CAB ≥ π/2 -π/k. The last inequality is true because |CA| ≤ |CB| and ∠BCA ≤ 2π/k in △CAB.

The Inward Path

We consider now the case when the interior of △ABC contains points of G. Let S be the set of points consisting of points A and B plus all the points interior to △ABC (note that C / ∈ S). Let CH(S) be the points on the convex hull of S. Then CH(S) consists of points N 0 = A and N s = B, and points N 1 , ..., N s-1 of G interior to △ABC. We have the following proposition: Proposition 2.6. We now prove Lemma 2.2 in the case when there are points of G interior to △ABC. In this case we define the path in Lemma 2.2 to be the inward path between A and B.

For every i = 1, • • • , s -1 : (a) CN i ∈ G, (b) |CN i | ≤ |CN i+1 |, and (c) ∠N i-1 N i N i+1 ≥ π, where ∠N i-1 N i N i+1 is
i = 0, 1, • • • , s-1, satisfying all the properties of Lemma 2.2. Let A = M 0 , M 1 , • • • , M r = B be the concatenation of the paths P i , for i = 0, • • • , r -1. Definition 2.7. We call the path A = M 0 , M 1 , • • • , M r = B constructed
Proof of Lemma 2.2 for the case of inward path. For every i = 0, 1, • • • , s -1, we define arc α i to be the arc of CN i N i+1 subtended by chord N i N i+1 and facing ∠N i CN i+1 . For every i = 0, 1, ..., s -1, we define N ′ i to be the point on the half-line

[CN i such that |CN ′ i | = |CN i+1 |, (O i ) to be the circle CN ′ i N i+1
, and α ′ i to be the arc of (O i ) subtended by chord N ′ i N i+1 and facing ∠N ′ i CN i+1 . Finally, for every i = 0, • • • , s-1, we define N ′′ i to be the point of intersection of the half-line [CN i and circle (O ′′ ), and α ′′ i to be the arc of (O ′′ ) subtended by chord N ′′ i N ′′ i+1 and facing ∠N ′′ i CN ′′ i+1 . As shown in section 2.1, the length of the outward path P i between N i and N i+1 is bounded by the length of α i . Since the convex body C 1 delimited by CN i , CN i+1 and α i is contained inside the convex body C 2 delimited by CN ′ i , CN i+1 and α ′ i , by [START_REF] Benson | Euclidean Geometry and Convexity[END_REF], the perimeter of C 1 is not larger than that of C 2 . Denoting by |P i | the length of path P i , we get:

|P i | ≤ |N i N ′ i | + α ′ i , i = 1, • • • , s -1. (2.1)
Since (O i ) and (O ′′ ) are concentric circles (of center C), and the radius of (O i ) is not larger than that of (O ′′ ), we have

α ′ i ≤ α ′′ i , for i = 0, • • • , s -1.
It follows from Inequality (2.1) that:

|P i | ≤ |N i N ′ i | + α ′′ i , i = 1, • • • , s -1. (2.2)
Using Inequalities (2.1) and (2.2) we get: if such an edge between two points M i and M j exists, then M i and M j must belong to an outward path between two points N p and N p+1 of CH(S). But this contradicts part (ii) of Lemma 2.2 for the case of the outward path applied to N p and N p+1 . (iii) For each i = 0, • • • , r, either M i = N j ∈ CH(S), or M i is an intermediate point on the outward path between two points N p and N q in CH(S). In the former case

|CA| + s-1 i=0 |P i | ≤ |CA| + s-1 i=0 |N i N ′ i | + s-1 i=0 α ′′ i . (2.3) Noting that s-1 i=0 |N i N ′ i | = |CB| -|CA|, that r-1 i=0 α ′′ i = α ′′ ,
∠M i-1 M i M i+1 ≥ ∠N j-1 M i N j+1 ≥ π ≥ (k -2)π/k for k ≥ 14 (N j-1
and N j are points before and after M i = N j on CH(S)), by part (c) of Proposition 2.6. In the latter case ∠M i-1 M i M i+1 ≥ (k -2)π/k by the proof of part (iii) of Lemma 2.2 applied to the outward path between N p and N q . (iv) This follows from

|CA| = |CM 0 | ≤ |CM 1 | and ∠ACM 1 ≤ ∠ACB ≤ 2π/k, in triangle △CAM 1 .

The Modified Yao Step

We now augment the Yao step so edges forming the paths described in Lemma 2.2 are included in G ′ , in addition to the edges chosen in the standard Yao step. Lemma 2.2 says that consecutive edges on such paths form moderately large angles. The modified Yao step will ensure that consecutive edges forming large angles are included in G ′ . The algorithm is described in Figure 3.

Since the algorithm selects at most k edges incident on any point M and since only edges chosen by both endpoints are included in G ′ , each point has degree at most k in G ′ .

Before we complete the proof of Theorem 2.1, we show that the running time of the algorithm is linear. Note first that all edges incident on point M of degree ∆ can be mapped to the k cones around M in linear time in ∆. Then, the shortest edge in every cone can be found in time O(∆) (step 2. in the algorithm). Since k is a constant, selecting the ℓ/2 edges clockwise (or counterclockwise) from a sequence of ell < k empty cones around M (step 3.1.) can be done in O(∆) time. Noting that the total number of edges in G is linear in the number of vertices completes the analysis.

To complete the proof of Theorem 2.1, all we need to do is show:

Algorithm Modified Yao step Input: A Delaunay graph G; integer k ≥ 14 Output: A subgraph G ′ of G of maximum degree k 1. define k disjoint cones of size 2π/k around every point M in G;
2. in every non-empty cone, select the shortest edge incident on M in this cone; 3. for every maximal sequence of ℓ ≥ 1 consecutive empty cones: 3.1. if ℓ > 1 then select the first ⌊ℓ/2⌋ unselected incident edges on M clockwise from the sequence of empty cones and the first ⌈ℓ/2⌉ unselected edges incident on M counterclockwise from the sequence of empty cones; 3.2. else (i.e., ℓ = 1) let M X and M Y be the incident edges on M clockwise and counterclockwise, respectively, from the empty cone; if either M X or M Y is selected then select the other edge (in case it has not been selected); otherwise select the shorter edge between M X and M Y breaking ties arbitrarily; 4. G ′ is the spanning subgraph of G consisting of edges selected by both endpoints. Lemma 2.8. If edge CB is not selected by the algorithm, let CA be the shortest edge in the cone out of C to which CB belongs. Then the edges of the path described in Lemma 2.2 are included in G ′ by the algorithm.

Proof. For brevity, instead of saying that the algorithm Modified Yao Step selects an edge M X out of a point M , we will say that M selects edge M X. To get started, it is obvious that C will select edge CA.

By part (iv) of Lemma 2.2, the angle ∠CAM 1 ≥ π/2 -π/k ≥ 6π/k for k ≥ 14. Therefore, at least two empty cones must fall within the sector ∠CAM 1 determined by the two consecutive edges CA and AM 1 , and edges AC and AM 1 will both be selected by A. Since edge CA is also selected by point C, edge AC ∈ G ′ .

By part (iii) of Lemma 2.2, for every

i = 1, 2, • • • , r -1, the angle ∠M i-1 M i M i+1 ≥ (k -2)π/k ≥ 10π/k for k ≥ 12
, and hence at least four cones fall within the angular sector ∠M i-1 M i M i+1 . Since by part (ii) of Lemma 2.2 M i C is the only possible edge inside the angular sector ∠M i-1 M i M i+1 , it is easy to see that regardless of the position of these four cones with respect to edge M i C, M i ends up selecting all edges M i M i-1 , M i M i+1 and M i C in steps 2 and/or 3 of the algorithm. Since we showed above that A selects edge AM 1 , this shows that all edges M i M i+1 , for i = 0, • • • , r -2, are selected by both their endpoints, and hence must be in

G ′ . Moreover, edge M r-1 M r = M r-1 B is selected by point M r-1 .
We now argue that edge BM r-1 will be selected by

B. First, observe that |BM r-1 | ≤ | ⌢ AB | < |CB|.
Let CD be the other consecutive edge to CB in G (other than CM r-1 ). Because C does not select B, it follows that ∠M r-1 CD ≤ 6π/k. Otherwise, since CM r-1 and CB are in the same cone, two empty cones would fall within the sector ∠BCD and C would select B. Since CB is an edge in G, by the characterization of Delaunay edges [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF], ∠CM r-1 B + ∠CDB ≤ π. By considering the quadrilateral CDBM r-1 , we have ∠M r-1 CD + ∠DBM r-1 ≥ π. This, together with the fact that ∠M r-1 CD ≤ 6π/k, imply that ∠DBM r-1 ≥ (k -6)π/k ≥ 8π/k, for k ≥ 14. Therefore, ∠DBM r-1 contains at least three cones of size 2π/k out of B. If one of these cones falls within the angular sector ∠CBM r-1 then, since |M r-1 B| < |CB|, BM r-1 must have been selected out of B.

Suppose now that ∠CBM r-1 contains no cone inside and hence ∠CBM r-1 < 4π/k. If one of these three cones within sector ∠DBM r-1 contains edge CB, then the remaining two cones must fall within ∠DBC and BM r-1 will get selected out of B when considering the sequence of at least two empty cones contained within ∠CBD. Suppose now that all three empty cones fall within ∠CBD. Then we have ∠CBD ≥ 6π/k.

If ∠M r-1 CD ≥ 4π/k, then since M r-1 C and CB belong to the same cone, the sector ∠BCD must contain an empty cone. Because D is exterior to CBM r-1 , ∠CBM r-1 < 4π/k, and ∠M r-1 CB ≤ 2π/k, it follows that ∠CDB < ∠M r-1 CB + ∠CBM r-1 < 6π/k < ∠DBC. Therefore, by considering the triangle △CDB, we note that |CB| < |CD|. But then edge CB would have been selected by C in step 3 since the sector ∠BCD contains an empty cone, a contradiction.

It follows that ∠M r-1 CD ≤ 4π/k, and therefore ∠M r-1 BD ≥ (k -4)π/k ≥ 10π/k for k ≥ 14. This means that at least four cones are contained inside sector ∠DBM r-1 . It is easy to check now that regardless of the placement of the edge BC with respect to these cones, edge BM r-1 is always selected out of B by the algorithm. This completes the proof.

Corollary 2.9. A Euclidean Minimum Spanning Tree (EMST) on P is a subgraph of G ′ . Proof. It is well known that a Delaunay graph (G) contains a EMST. If an edge CB is not in G ′ , then, by Lemma 2.8, a path from C to B is included in G ′ . All edges on this path are no longer than CB, so there is a EMST not including CB.

Since a Delaunay graph of a Euclidean graph of n points can be computed in time O(n lg n) [START_REF] Berg | Computational Geometry: Algorithms and Applications[END_REF] and has stretch factor C del ≈ 2.42, we have the following theorem.

Theorem 2.10. There exists an algorithm that, given a set P of n points in the plane, computes a plane geometric spanner of the Euclidean graph on P that contains a EMST, has maximum degree k, and has stretch factor (1 + 2π(k cos π k ) -1 ) • C del , where k ≥ 14 is an integer. Moreover, the algorithm runs in time O(n lg n).

Geometric Spanners of Unit Disk Graphs

In this section we generalize our planar geometric spanner algorithm to unit disk graphs. Unit disk graphs model wireless ad-hoc and sensor networks and, for packet routing and other applications, a bounded-degree planar geometric spanner of the wireless network is often desired. Due to the limited computational power of the network devices and the requirement that the network be robust with respect to device joining and leaving the network, the construction/algorithm should ideally be strictly-localized: the computation performed at a point depends solely on the information available at the point and its d-hop neighbors, for some constant d (in our case d = 2). In particular, no global propagation of information should take place in the network.

The results in the previous section do not carry over to unit disk graphs because not all Delaunay graph edges on a point-set P are unit disk edges. However, if U is the unit disk graph on points in P and U Del(U ) is the subgraph of the Delaunay graph on P obtained by deleting edges of length greater than one unit, then U Del(U ) is a connected, planar, spanning subgraph of U with stretch factor bounded by C del (see [START_REF] Li | Distributed construction of planar spanner and routing for ad hoc wireless networks[END_REF][START_REF] Bose | Approximating geometric bottleneck shortest paths[END_REF]). Therefore, if we apply the results from the previous section to U Del(U ) and observe that all edges on the path defined in Lemma 2.2 must be unit disk edges (given that edges CA and CB are), it is easy to see that Theorem 2.1 and Theorem 2.10 carry over to unit disk graphs. The only problem, however, is that the construction of U Del(U ) cannot be done in a strictly-localized manner.

To solve this problem, Wang et al. [START_REF] Li | Distributed construction of planar spanner and routing for ad hoc wireless networks[END_REF][START_REF] Li | Localized delaunay triangulation with application in Ad Hoc wireless networks[END_REF] introduced a subgraph of U denoted LDel (2) (U ). It was shown in [START_REF] Li | Distributed construction of planar spanner and routing for ad hoc wireless networks[END_REF][START_REF] Li | Localized delaunay triangulation with application in Ad Hoc wireless networks[END_REF] that LDel (2) (U ) is a planar supergraph of U Del(U ), and hence also has stretch factor bounded by C del . Moreover, the results in [START_REF] Calinescu | Computing 2-hop neighborhoods in Ad Hoc wireless networks[END_REF][START_REF] Wang | Localized construction of bounded degree and planar spanner for wireless ad hoc networks[END_REF] show how LDel (2) (U ) can be computed with a strictly-localized distributed algorithm exchanging no more than O(n) messages in total (n is the number of points in U ), and having a local processing time of O(∆ lg ∆) = O(n lg n) at a point of degree ∆. In a style similar to Definition 1.2, LDel (2) (U ) can be defined as follows: Definition 3.1. An edge XY of U is in LDel (2) (U ) if and only if there exists a circle through points X and Y whose interior contains no point of U that is a 2-hop neighbor of X or Y .

We will use G = LDel (2) (U ) as the underlying subgraph of U to replace the Delaunay graph G used in the previous section. We note that G is planar, is a supergraph of U Del(U ), and hence has stretch factor C del . To translate our results to unit disk graphs, we need to show that the inward and outward paths are still well defined in G. In particular, we need to show that Lemma 2.2 holds for G = LDel (2) (U ). We outline the general approach and omit the details for lack of space.

The following is equivalent to Proposition 2. Proof. By symmetry it is enough to prove the lemma for the region of (O) subtended by chord CA and away from B. By Definition 3.1, there is a circle (O CA ) passing through C and A whose interior is empty of any point within two hops of C or A. The region of (O) subtended by chord CA and away from B is inside this circle, so we only need to argue that it doesn't contain two hop neighbors of B either. If it did, say point X, then any neighbor of X and B would have to be a neighbor of C or A as well, a contradiction.

With this lemma in hand, the recursive construction of the outward path given in Subsection 2.1 can be applied to the graph G = LDel (2) (U ). The following proposition for G = LDel (2) (U ) corresponds to Proposition 2.5 for Delaunay graphs and is proven in an equivalent manner: Proposition 3.3. In every recursive step of the outward path construction, if M p is an intermediate point with respect to a pair of points (M i , M j ), then:

(a) there is a circle passing through C and M p that contains no point of G that is a two-hop neighbor of C or M p , and (b) circles CM i M p and CM j M p contain no points of G that are two-hop neighbors of C, M i and M p and C, M j , and M p , respectively, except, possibly, in the region subtended by chords M i M p and M p M j , respectively, away from C.

With this proposition, we can show that Lemma 2.2 holds true for G = LDel (2) (U ) for outward paths. It holds for inward paths as well, using the same argument as in Section 2.2. Finally, it is obvious how the Modified Yao Step algorithm in Section 2.3 can be easily described as a strictly-localized algorithm. We can show, therefore, the following theorem: Theorem 3.4. There exists a distributed strictly-localized algorithm that, given a set P of n points in the plane, computes a plane geometric spanner of the unit disk graph on P that contains a EMST, has maximum degree k, and has stretch factor (1 + 2π(k cos π k ) -1 ) • C del , for any integer k ≥ 14. Moreover, the algorithm exchanges no more than O(n) messages in total, and has a local processing time of ∆ lg ∆ at a point of degree ∆.

Due to the strictly-localized nature of the algorithm, the algorithm is very robust to topological changes (such as wireless devices moving or joining or leaving the network), an essential property for the application of the algorithm in a wireless ad-hoc environment.

Figure 1 :

 1 Figure 1: Illustration of an outward path.

  (i) With Θ = ∠BCA, we have | ⌢ AB | = 2Θ • |OA| and sin Θ = |AB|/(2|OA|). We note that |CA| + | ⌢ AB | is largest when |CA| = |CB|, i.e. when CA and CB are symmetrical with respect to the diameter of CAB passing through C; this follows from the fact that the perimeter of a convex body is not smaller than the perimeter of a convex body containing it (see page 42 in [1]). If |CA| = |CB|, sin Θ 2 = |AB| 2|CB| . Using elementary trigonometry, it follows from the above facts and from |CA| ≤ |CB| that:

  above the inward path between A and B.
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 230122 Figure 2 illustrates an inward path between A and B.

  (i) Define A ′′ to be a point on the half-line [CA such that |CA ′′ | = |CB|, and let (O ′′ ) = CA ′′ B. Denote by α ′′ the length of the arc of CA ′′ B subtended by chord A ′′ B and facing ∠A ′′ CB.

  and using the same argument as in part (i) of Lemma 2.2) completes the proof. (ii) Since CN p ∈ G for p = 1, • • • , s -1 by part (a) of Proposition 2.6, by planarity of G,

Figure 3 :

 3 Figure 3: The modified Yao Step.

3 : 3 . 2 .

 332 Lemma If CA and CB are edges of G then the region of (O) = ABC subtended by chord CA and away from B and the region of (O) subtended by chord CB and away from A contain no points that are two hop neighbors of A, B and C.

  the path consists of edge AB. 2. Recursive step: Otherwise, a point must reside in the region of (O) subtended

by chord AB and away from C. Let T be such a point with the property that the region of AT B subtended by chord AB closer to T is empty. We call T an intermediate point with respect to the pair of points (A, B). Let (O 1 ) be the circle passing through A and T whose center O 1 lies on segment AO and let (O 2 ) be the circle passing through B and T whose center O 2 lies on segment BO. Then both (O 1 ) and (O 2 ) lie inside (O), and ∠AO 1 T and ∠T O 2 B are both less than ∠AOB ≤ 4π/k. Moreover, the region of (O 1 ) subtended by chord AT that contains O 1 is empty, and the region of (O 2 ) subtended by chord BT and containing O 2 is empty. Therefore, we can recursively construct a path from A to T and a path from T to B, and then concatenate them to obtain a path from A to B. Definition 2.4. We call the path constructed above the outward path between A and B.

  the angle facing point C. Proof. These follow follow from the following facts: CA and CB are edges in G, CA is the shortest edge in its cone, and hence |CA| ≤ |CN i |, for i = 0, • • • , s, and points N 0 , • • • , N s are on CH(S) in the listed order. Since |CN i | ≤ |CN i+1 | and no point of G lies inside △N i CN i+1 (N i and N i+1 are on CH(S)), CN i is the shortest edge in the angular sector ∠N i CN i+1 . Since ∠N i CN i+1 ≤ ∠BCA ≤ 2π/k, by Lemma 2.2 there exists an outward path P i between N i and N i+1 , for every
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