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INTRODUCTION

It is known [1] that the simplest self-moving vortex
structure in a plane (stationary or rotating) layer of an
unbounded homogeneous fluid is a system of two recti-
linear vortex filaments (point vortices). In a specific
case of a vortex pair consisting of two spaced (by some
distance r) point vortices with intensities identical in
magnitude and opposite in sign, the two vortices move
uniformly in straight lines perpendicular to the segment
connecting the vortices, and their velocity is propor-
tional to the magnitude of the intensity and inversely
proportional to the length of the segment r.1 In a two-
layer fluid [2, 3], a similar pair of vortex filaments
belonging to different layers is characterized by a non-
monotonic dependence of the velocity on the distance
between the vortices. The velocity of such a two-layer
vortex approaches zero at both small and large dis-
tances between the vortices and assumes its maximum
value at r = 1.114Rd, where Rd is the inner Rossby defor-
mation radius [4]. We note that, as a consequence of
hydrostatic equilibrium, the vortices of the upper layer
with positive (negative) intensity values induce local
upward (downward) deformations of the interface,
whereas the corresponding deformations induced by
the vortices of the lower layer have opposite signs of
curvature. Thus, the motion of a pair formed by vortex
filaments from different layers is always accompanied
by the simultaneous movement of either two ridges or

1 The intensity of a point vortex is considered to mean the circula-
tion of the velocity induced by this vortex over any closed contour
encircling the vortex.

two valleys of the interface. In the case of a stable strat-
ification, the fluid temperature in the upper layer must
be higher than that in the lower layer. Therefore, it is
evident that, if the interface is deformed upward (down-
ward), the integrated (over the vertical) amount of heat
within a vortex tube encircling the vortex filament
decreases (increases). Systems consisting of two vortex
filaments located in different layers are referred to as
hetons (derivative of heat) and antihetons in the cases
when their intensities are opposite and identical in sign,
respectively. Hetons with an enhanced (reduced) heat
content are called warm (cold) [3, 5].

The concept of heton can be extended to the case of
distributed two-layer vortices, when finite-size vortices
with constant potential-vorticity values are localized in
each of the two layers (vortex patches). In this case, in
addition to the single dimensionless spatial parameter
l = r/Rd, which is characteristic of discrete vortices, one
more parameter appears: γ = L*/Rd, where L* is the hor-
izontal length scale of the vortex patch. It turns out that,
unlike its discrete analogue, a distributed heton can
become unstable with respect to small perturbations in
its form if γ > 1.7. In this case, it is able to disintegrate
into smaller vortex structures [6–9]. We note a closely
related problem of deep convection, in which the heton
concept has been successfully used in recent years [10–
13]. Specifically, this approach makes it possible to
construct physically justified parametrizations of hori-
zontal heat transfer in the ocean, which are necessary
for oceanic general circulation models [10].
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A characteristic property of distributed vortices is
also the tendency toward the merging of closely spaced
vortex patches identical in the sign of vorticity. Differ-
ent aspects of the merging of distributed hetons are dis-
cussed thoroughly in a number of theoretical [14–22]
and experimental [23–25] studies.

On the other hand, little is known about the behavior
of vortex pairs located in the vicinity of bottom-topog-
raphy disturbances [26–28]. This study considers the
features of heton motion in the vicinity of an isolated
submerged ridge. The objective of the numerical exper-
iments described in this study was to establish the role
of the submerged obstacle in the behavior of a baro-
clinic vortex pair incident on this obstacle. The extent
to which the resulting vortex motion is affected by the
following factors is revealed: (1) the distance between
the centers of the vortex patches forming the heton, (2)
the sizes of the vortex patches, (3) the vertical distribu-
tion of potential vorticity, (4) the height and horizontal
sizes of the submerged ridge, and (5) the velocity of the
background flow.

TWO-LAYER MODEL

Let constant values ρ1 and ρ2 (ρ1 < ρ2) be the densi-
ties of the upper and lower layers in a two-layer oceanic
model and h1 and h2 be their arbitrary undisturbed
depths, respectively. We introduce a left-handed coor-
dinate system rotating together with the fluid about the
vertical z-axis directed downward. Its angular velocity
is f/2. Thus, in terms of dimensionless variables, we
have z = 0 at the ocean surface, z = h1 – η at the interface
between the layers, and z = h1 + h2 – h ≡ 1 – h at the
bottom. Further, it is assumed that both the deviation of
the interface from its undisturbed state η(x, y, t) and the
disturbance of the bottom topography h(x, y) are small
compared to the total depth of the ocean so that the
ratios of their amplitudes to the depth of the ocean are
of the order of the Kibel–Rossby number.

It is known [29] that, in the quasi-geostrophic
approximation, the following conservation laws are
valid provided that the rigid-lid condition is satisfied at
the ocean surface and external forcings are absent:

(1)

where Pi are the components of the vector of potential
vorticity P, which is related to the corresponding vec-
tor of pressure anomaly (with respect to the pressure at
hydrostatic equilibrium) p as

(2)

Here, γ2 =  = , ρ0 is the average

density of fluid, g is the acceleration of gravity, and
∆ρ = ρ2 – ρ1. In addition, the following notation is used
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We will treat (2) as a system of differential equa-
tions for p1 and p2. By separating the variables in (2),
we obtain the system of equations

(3)

(4)

for the new unknown functions

(5)

which represent the barotropic stream function and the
function describing the behavior of the interface
between the layers, respectively. Here, Fr = γ2h1h2 is the
Froude number. We note that the proportionality of the
function η to the difference of pressure anomalies in the
layers (the second relation in (5)) is obtained by inte-
grating the hydrostatic equation over the vertical with
account for the continuity condition satisfied for the
total pressure at the surface z = h1 – η.

The formal solution of Eqs. (3) and (4) for the
desired functions vanishing at infinity can be written in
terms of the Green functions of the Laplace and Helm-
holtz operators (the right-hand sides of Eqs. (3) and (4),
respectively) as follows:

(6)

(7)

where R = , K0 is the modified

Bessel function2 and Π1 and Π2 obey Eqs. (1). It is evi-

2 In the following, the modified Bessel functions K1 and I0 will also
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dent that the time-independent terms ϕi0 (i = 1, 2) must

be determined from the equations

(8)

(9)

Additional simplifying assumptions will be formu-
lated in the following section. Here, we determine the
parameters h1 and ∆ρ, which still remain free. We use

the method proposed in [30] to construct calibration
functionals. According to [30], these potentials lead to
the parameters of a two-layer model that correspond
optimally to its continuous analogue. In [30], the lower
undisturbed boundary of the upper layer (i.e., the aver-
age position of the level of density discontinuity) is
identified with the level of the peak in the profile of the
Brunt–Våisålå frequency squared. This makes it possi-
ble to obtain the following simple functional relations:

(10)

According to formulas (10), the averaged vertical den-
sity profiles presented in [29] (Table 1.2.1) give the
approximate estimates

for the Pacific and Atlantic oceans, respectively. Thus,

setting h1 = 0.1, ρ0 = 1, and ∆ρ = 3 × 10–3 in our calcu-

lations, we can believe that the model used by us is
quite adequate for typical oceanic conditions. We also
use the following average values of the main dimen-
sional quantities: H* = 4000 m (the depth of the ocean);
i.e., the depths of the upper and lower layers are 400

and 3600 m, respectively; f = 7.29 × 10–5 s–1 (the Cori-

olis parameter at a latitude of 30°); U* = 10 cm s–1 (the
characteristic velocity of the orbital motion of particles

in a vortex); g = 980 cm s–2 (the acceleration of gravity).
As a result, we estimate the deformation radius at Rd ≈
41.2 km and the Kibel–Rossby number ε = U*/L*f at
0.06 and 0.02 in the cases γ = 1 and γ = 2.6 considered
below, respectively. These estimates satisfy the condi-
tions of validity of the quasi-geostrophic approxima-
tion. The values of the other dimensionless and dimen-
sional quantities are listed below in an individual table.
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FORMULATION OF THE PROBLEM OF A HETON 
INCIDENT ON AN AXIALLY SYMMETRIC 

SUBMERGED RIDGE

Let the potential vorticity allow the representation

(11)

where  are finite functions with finite domains Sij

and ni is the number of vortex patches in the ith layer.
Further, let the background field be determined by a
zonal current with velocity U and by a topography ridge
in the form of a straight circular cylinder with radius a
and height h, whose center is located at the origin. In
this axially symmetric case, Eqs. (8) and (9) assume the
form
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(13)

and must be integrated under the conditions
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It is easy to see that the solutions
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satisfy relations (12)–(15). We note that formula (17) is
obtained for ϕ20 by taking into account the known prop-
erty of the Wronskian In(z)Kn + 1(z) + In + 1(z)Kn(z) = 1/z
[32].
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where the functions ϕ10 and ϕ20 are determined by the
solutions given in (16) and (17). Finally, switching to p1

and p2 with the use of (5) and expressing the surface
integrals in terms of contour integrals by the Stokes for-
mulas, we obtain

(18)

where Cij are the contours of the domains Sij; Θ = [(x1 –

x)  – (y1 – y) ]/R2; pi0 are the known functions

expressed from (5) in terms of ϕi0 (i = 1, 2); vij is a con-
tinuous parameter, which is measured counterclock-
wise and determines the position of the integration vari-
ables x1, y1 in the jth contour of the ith layer; dots denote
differentiation with respect to this parameter.

Formulas (18) show that the pressure and, conse-
quently, the velocities at any point of the plane are com-
pletely determined by the configurations of the evolv-
ing contours of vortex patches. This result forms the
basis for the method of contour dynamics, which was
extended in [6] to the case of a two-layer fluid under
consideration. The calculation results illustrated below
are obtained using the method of contour dynamics.
The numerical algorithm used by us is supplemented
by the so-called contour surgery procedure [31], which
enables us to cut off long and thin vortex filaments and
also to remove closely spaced and oppositely oriented
portions of the boundaries, i.e., to allow the merging of
vortex patches belonging to one layer and having equal
potential-vorticity values.

All the above formulas are valid for any finite num-
ber of vortex patches in either of the layers ni (i = 1, 2).
We will consider the problem of a single heton, i.e., a
two-layer vortex, incident on a submerged ridge. We
will assume that the condition of vertical compensation

(19)

is satisfied for this heton. Moreover, we will assume
that motion starts from rest, when the initialization of
the current and the generation of the vortex patches
forming the heton occur at t = 0. It is seen from (3) and
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(4) that a stationary anticyclonic vortex with the inten-
sity –h/h2 localized in the lower layer corresponds to the
time-independent (dependent only on topography) term
of the pressure in the field of potential vorticity. For the
implementation of rest, a covering cyclonic free vortex

with the potential vorticity  = h/h2 should be placed
over the ridge at t = 0. Thus, in our problem, we have
n1 = 1 and n2 = 2 at the initial time.

NUMERICAL RESULTS

First, we indicate the details common to all illustra-
tions. The dimensionless initial radius of all the vortex
patches forming the heton is assumed to be equal to
unity, and the horizontal spatial scale is always defined
as L* = γRd if the Rossby deformation radius is speci-
fied. We switch to the dimensionless time with the help
of the scale multiplier equal to the rotation period of a
fluid particle belonging to the heton’s contour (initially
circular) under the assumption that the lower vortex
patch is situated strictly under the upper patch. Actu-
ally, the calculation of the time scale always uniquely

determines the values of , and , while the value

of  depends also on the height of the ridge. We
recall that the condition (19) must be satisfied for the

heton, and, consequently, the values of , i = 1, 2, are
related to each other and depend on the ratio between
the depths of the layers.

The initial arrangement of the system of vortices
characteristic of all calculation variants and the nota-
tion used for the geometrical parameters are given in
the first fragment of Fig. 1, where B is the initial dis-
tance between the centers of the heton and the sub-
merged ridge and C is the half-distance between the
centers of the vortex patches forming the heton. If C ≠ 0,
the heton will be said to have an inclined axis. The thick
(thin) line depicts the contour of the vortex patch of the
upper (lower) layer; the shaded evolving region repre-
sents a free vortex, which covers the ridge at the initial
time; and the outer boundary of the ridge is marked
everywhere by the dashed line.

In the first run of experiments (see Fig. 1), the effect
of the value of C—the inclination of the axis of a self-
moving heton—on the vortex pattern forming in the
vicinity of the ridge is studied. The vortex patches are
characterized by the anticyclonic (cyclonic) vorticity in
the upper (lower) layer; i.e., the heton is warm.

In Fig. 1a, the process evolves by the following sce-
nario. As the heton approaches the ridge, the free vortex
placed over it starts to move and to deform markedly,
which favors the manifestation of the anticyclonic rota-
tion of a stationary topographic vortex (initially, this
rotation was absent, because the action of topography
was completely compensated by the free vortex). It is
evident that the effect of the bottom topography is most
clearly defined in the lower layer. The cyclonic vortex

Π22

Π11 Π21

Π22

Π i1

4



patch located in this layer is involved in a clockwise
rotation and is strongly stretched. On the other hand,
the vortex of the upper layer remains essentially unde-
formed, but this vortex without its “partner” loses the
opportunity to execute a further translational motion.
At the same time, under the action of the anticyclonic
rotation induced by this vortex, a certain part of the free
vortex of the lower layer separates and is involved in
this rotation: a new self-moving two-layer vortex with
an inclined axis is formed. Making a turn around the
ridge, the lower-layer cyclone belonging initially to the
heton comes under the attraction of the two parts of the
free vortex, which results in its partial separation and
serves as a cause for its significant degradation. Finally,
two configurations are formed: one consists of the parts
of two lower-layer cyclones entrained by the topo-
graphic vortex and another represents a receding two-
layer vortex with an inclined axis. If we disregard the
processes occurring at intermediate stages of interac-
tion and compare the configurations at t = 0 and t = 36,
we could infer that the heton falling in the vicinity of
the submerged ridge merely changes the direction of its
motion. Actually, the structure of its lower part changes

radically, because the vortex patch of the lower layer
now contains the fluid initially situated over the ridge.

A decrease in the inclination of the heton’s axis ë by
an order of magnitude radically alters the result (see
Fig. 1b). Here, the hypothetical situation described in
the previous example occurs: making an almost com-
plete turn, a two-layer vortex retains its individuality,
although, as in the previous example, the lower-layer
cyclone loses a significant portion of vorticity. The
point is that the heton is much weaker in this case,
because the inclination of its axis is small. As a result,
we observe a decrease in the velocity of its motion (this
is seen from the indicated times) and, more importantly,
the reduction of its effect on the free vortex. Therefore,
the larger part of the free vortex remains entrained by
the topography and has no way of taking an active part
in the interaction with the heton.

In the second run of experiments (see Fig. 2), the
features of the formation of the vortex pattern are stud-
ied, depending on the vertical distribution of potential
vorticity of the incident vortex structure. The cases of
warm and cold hetons are considered.

Before we analyze the results of this run, we com-
pare Figs. 1b and 2a. The distinctions between them are
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Fig. 1. Evolution of vortex patches in the case of a warm heton incident on a submerged ridge at  h = 1, γ = 1, a = 1, B = 4, and U = 0:
(a) C = 1 and (b) C = 0.1.
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due only to different values of the parameter γ. While
the initial radii of all vortex patches in the first case are
equal to the deformation radius, these radii in the sec-
ond case are 2.6 times greater than the deformation
radius. As was shown in [4], a heton with an inclined
axis becomes unstable by itself under these conditions,
and it is bound to disintegrate into smaller vortex struc-
tures even in the absence of an additional perturbation
due to the topography. Especially important here is the
fact that the vortex patch of the upper layer also breaks
down into two parts, whereas, in Fig. 1, it remains
essentially undeformed. Finally, we observe the origi-
nation of a new two-layer vortex with opposite rota-
tions in the layers, which consists of parts of the upper-
layer and lower-layer vortex patches and moves in the
direction nearly opposite to the initial direction; i.e., a
kind of inelastic reflection of the heton from the ridge
occurs. The remains of the lower-layer vortex patch
partially disintegrate and partially merge with the free
vortex. The remaining part of the upper-layer vortex
patch appears to be located in the vicinity of the ridge
for a long time.

The essential difference of the experiment presented
in Fig. 2b from all previous experiments is the opposite
cyclonic vorticity of either of the vortex patches in the
upper and lower layers. Thus, while the interaction
between two vortices identical in sign was previously
observed in the lower layer, now, the free vortex and the
lower vortex of the heton incident on the ridge are
opposite in the sign of potential vorticity. In this case,
the vortex patches disintegrate in another way. One part
of the anticyclone of the lower layer merges with the
cyclone separated from the free vortex. The vortex pair
so formed in the lower layer leaves the vicinity of the
submerged ridge. The cyclonic vortex of the upper
layer breaks down into two unequal parts, and the anti-
cyclone of the lower layer breaks down into three parts.
The larger part of the upper-layer vortex patch, together
with two parts of the lower vortex, forms a two-layer
tripolar structure.3 This structure is sluggish and
weakly responds to changes in the topography. At the
same time, the smaller part of the upper-layer vortex is

3 In [4, 7, 14, 15], similar vortex structures were obtained through
other mechanisms. It seems likely that one can regard a two-layer
tripolar vortex as a rather universal structure.
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Fig. 2. Evolution of vortex patches in the cases of (a) warm and (b) cold hetons incident on a submerged ridge at  h = 1, γ = 2.6, a = 1,
B = 4, U = 0, and C = 0.1.
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entrained in anticyclonic rotation around the ridge. The
latter element of vortex motion demonstrates the effect
of the topography on the dynamics of the upper layer.

In the next run of experiments (see Fig. 3), the role
of an additional external factor—the leading zonal
flow—was studied. In addition, the height of the sub-

merged obstacle is increased twofold in these experi-
ments.

In Fig. 3a, the current is in the direction of the
proper motion of the two-layer vortex, and the current
and heton velocities are equal in magnitude. It is evi-
dent that, first, the current must drive the vortex pair
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Fig. 3. Evolution of vortex patches in the case of a warm heton incident on a submerged ridge at h = 2, γ = 2.6, a = 1, B = 4, and
C = 1: (a) U = 0.195 and (b) U = –0.195.
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and, second, it must favor the drift of the free vortex
from the ridge. In addition to a purely zonal compo-
nent, this drift must also have a meridional component
due to the deflecting action of the stationary topo-
graphic vortex. This situation is observed in the figure.
As time passes, the free vortex breaks down into three
parts. One part is completely entrained by the topogra-
phy, and the other two parts merge with two parts of the
disintegrated cyclone of the lower layer, respectively.
Further, the configuration of the two-layer pair and the
cyclonic vortex of the lower layer leaves the vicinity of
the ridge, which is favored by the background flow. One
part of the free vortex is firmly entrained by the ridge.

In the next experiment of this run (see Fig. 3b), the
background current counteracts the motion of the pair,
and the heton must occupy a stationary position in the
absence of the topography. As is seen from the figure,
this situation actually occurs on the time interval t = 0–6.
Further, the disturbance due to a small part separated
from the free vortex by the current starts to manifest
itself. A strong interaction between this part (and also a
new part separated next from the free vortex) and the
cyclonic vortex patch starts to occur. Specifically, this
interaction is responsible for the loss of a part of the
cyclone. Intraheton interactions weaken, and, as a
result, the anticyclone of the upper layer starts to drift
under the action of the flow. The tendency toward the
drift of the lower-layer vortex patches, which are unaf-
fected by the topography, is also observed. It is believed
that the most interesting effect here is the mere fact of
the influence of the topography on the heton occupying
a stationary position downstream.

Figure 4 demonstrates the effect of the horizontal
sizes of the submerged ridge on the formation of a vor-
tex structure in its vicinity. In all previous calculations,
the radius of the circular ridge was equal to the initial
radii of the vortex patches forming the heton. In Figs. 4a
and 4b, this radius is 2.5 times greater and smaller,
respectively. The background current is in the direction
of heton motion as in Fig. 3a. In the first case, a signif-
icant entrainment of both the free vortex and the lower-
layer cyclonic vortex initially belonging to the heton is
characteristic for a larger size ridge. The two-layer vor-
tex with an inclined axis, which is formed by the upper-
layer anticyclone and a part of the free vortex, is carried
downstream. In addition, a cyclonic vortex formed
from two vortex patches starts to manifest itself in the
last fragment shown in the figure. Subsequently, this
vortex will also be carried by the current.

A ridge with small horizontal sizes (see Fig. 4b) has
little deflecting effect on heton motion. The free vortex
is completely carried from the ridge by the current.
Then, it merges with the cyclonic vortex and, together
with the anticyclone of the upper layer, forms a new
two-layer vortex with an inclined axis, which is carried
away by the current.

All the figures under consideration only depict
evolving configurations of vortex patches. Actually,

this is the illustration of fluid motion in the Lagrangian
representation, with the only correction that, strictly
speaking, the algorithm of the method of contour dynam-
ics does not trace the motion of the individual fluid parti-
cles belonging to the boundaries of the vortex patches. In
order to improve the approximation properties of the
scheme, a uniform redistribution of nodes in each contour
occurs at each instant, but all particles belonging to the
contour at the initial time stay in this contour.

It is obvious that the more usual Eulerian stream
lines give a different pattern of motion, which is con-
firmed by Fig. 5, where the conditions of the experi-
ment presented in Fig. 3a are repeated. When this
approach is used, the role of either of the layers is more
clearly defined in the course of their interaction. It is
significant that, in the field of stream lines, closed cir-
culation rings are given only by the most intense vorti-
ces. Indeed, the condition of vertical compensation (19)
imposes the following restriction on the distribution of

potential vorticity:  = (h2/h1)  = 9 ; there-
fore, a rather weak lower-layer vortex patch initially
belonging to the heton is almost “unprocessed” here.

The lower row of the figure, where the scale in the
“vertical” is significantly exaggerated for clearness, shows
that the heton is actually warm and that the stationary anti-
cyclonic vortex of the lower layer induces a local upward
deformation of the interface over the ridge.

OCEANOLOGICAL INTERPRETATION 
OF THE RESULTS

Up to this point, almost nothing has been mentioned
about the actual spatial and temporal scales of the pro-
cesses being modeled. We have indicated only that the
total depth of the ocean is assumed equal to 4000 m; the
depths of the upper and lower layers are 400 and 3600 m,
respectively; and the deformation radius amounts to
41.2 km. The table presented below lists the other
external parameters characteristic of the numerical
experiments conducted in this work.

We recall that the rotation period, i.e., the time of a
complete turn of a fluid particle initially belonging to the
circular boundary of the vortex, corresponds to the dimen-
sionless unit of time. Thus, the time intervals correspond-
ing to the processes being modeled usually vary from one
and one-half to three years. The exception is Fig. 1b, where
the computation time corresponds to about six years.

Of course, the key question remains unanswered as
to whether there is reason to believe that heton-type
vortices are observed in the ocean. We are unaware of
any evidence to support the existence of such struc-
tures, as we are unaware of detailed instrumental mea-
surements of the vertical structure of an individual vor-
tex. Nevertheless, one can support the existence of vor-
tices rotating in opposite directions at the upper and
lower horizons. V.M. Gryanik4 proposes the following

4 Private communication.

Π11 Π21 Π21
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possible mechanism of their formation. In the autumn–
winter period of ocean surface cooling, very intense
convective motions due to the descent of cold surface
waters are observed. It is evident that these waters do
not reach the bottom, but they attain the level at which
they meet colder underlying water masses; i.e., a
clearly defined two-layer structure is formed. It is also
obvious that the convective motions cannot be horizon-
tally uniform. Most likely, extended patches encom-
passing closed domains of the upper layer, where the

process is most intense, must be observed. Within each
domain, the naturally arising interface must have a
downward deformation in its central part. Conse-
quently, in view of the above considerations, an anticy-
clonic (cyclonic) circulation must arise in the upper
(lower) layer; i.e., a warm heton is formed. Because of
their sluggishness, these vortex motions can have a
time scale significantly greater than the period of the
convective motions generated them.
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Fig. 5. Stream lines of horizontal motion with superimposed configurations of vortex patches in the (a) upper and (b) lower layers
and (c) isometric projections of the interface between the layers at the dimensionless time instants indicated (h = 2, γ = 2.6, a = 1,
B = 4, C = 1, U = 0.195).

Table

Figure

Dimensionless parameters Dimensional quantities

γ ε a h U
vortex 

radius, km
ridge

radius, km
ridge 

height, m
rotation

period, days
current

velocity, cm/s

1 1 0.06 1 1 0 41.2 41.2 228 29.3 0

2 2.6 0.02 1 1 0 107.2 107.2 228 76.1 0

3a 2.6 0.02 1 2 0.195 107.2 107.2 456 76.1 1.95

3b 2.6 0.02 1 2 –0.195 107.2 107.2 456 76.1 –1.95

4a 2.6 0.02 2.5 2 0.195 107.2 268.0 456 76.1 1.95

4b 2.6 0.02 0.4 2 0.195 107.2 42.9 456 76.1 1.95

5 2.6 0.02 1 2 0.195 107.2 107.2 456 76.1 1.95
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If this scheme is plausible, it can be used as the basis
for a possible mechanism of heton formation in the
ocean.

MAIN RESULTS

The numerical experiments carried out in this work
make it possible to establish some features in the for-
mation of the vortex structure in the vicinity of an iso-
lated submerged ridge when a heton with an inclined
axis is incident on it. Specifically, the following results
are obtained.

If the horizontal sizes of the ridge are of the order of
the average vortex radius, even a small (in height) per-
turbation in the bottom topography significantly
deflects the trajectory of the initial motion of a two-
layer vortex (Fig. 1). The direction of motion can
change and even be reversed. The ridge with a small
radius has little deflecting effect on heton motion.

The greatest vortex activity is observed within the
lower layer, where a strong interaction occurs among
the lower vortex patch of the heton, the free vortex, and
the stationary topographic vortex. Due to the fact that
closely spaced vortex patches belonging to the same
layer and having the same sign tend to merge, water
masses are frequently redistributed so that the vertical
structure of two-layer vortices changes significantly. If
vortex patches of different signs are localized in the
lower layer, their interaction has quite a different char-
acter. Therefore, warm and cold hetons are affected
quite differently by the ridge. For example, the experi-
ment demonstrated in Fig. 2 shows that, after an active
interaction between a warm (cold) heton and a sub-
merged obstacle, a two-layer vortex with an inclined
axis (a pair formed by two lower-layer patches opposite
in the sign of vorticity) moves away from the obstacle.

The horizontal sizes of a heton or, more specifically,
the ratio of the vortex radius to the deformation radius
are of great importance. In view of the fact that rather
large two-layer vortices are unstable and break down
into smaller vortex structures, this also has effect on
interactions with the ridge.

We also note the features of the process in which
vortices of the same sign approach each other and sub-
sequently merge. As a rule, horizontal mixing is signif-
icantly intensified during this process. One vortex starts
to break down, radiating vortex filaments, whereas the
other vortex (victorious vortex) remains compact and
tends to attract and wind the largest possible part of the
first vortex on its core [33]. Manifestations of such an
asymmetric interaction can be observed in almost all
the figures presented.

In addition to the above qualitative results, we note
that this work also shows that the method of contour
dynamics is efficient in solving such types of problems.
As follows from the illustrations presented, the method
of contour dynamics makes it possible to study the evo-
lution of individual vortex structures and to describe

the processes of their separation, merging, and reinte-
gration, which is important, for example, in studies of
the horizontal mixing of different water masses in the
ocean.
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