
HAL Id: hal-00230153
https://hal.science/hal-00230153v1

Submitted on 21 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Dynamics of heton-like vortices
Vladimir Gryanik, Mikhail Sokolovskiy, Jacques Verron

To cite this version:
Vladimir Gryanik, Mikhail Sokolovskiy, Jacques Verron. Dynamics of heton-like vortices. Regular and
Chaotic Dynamics, 2006, 11 (3), pp.383-434. �10.1070/RD2006v011n03ABEH000361�. �hal-00230153�

https://hal.science/hal-00230153v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


V.M. GRYANIK
A. M. Oboukhov Institute of Atmospheric Physics,
Russian Academy of Sciences,
Pyzhevskii per. 3, Moscow 109017 Russia

Alfred Wegener Institute for Polar and Marine Research,
Postfach 12 0161, D-27515 Bremerhaven, Germany,

E-mail: vgryanik@awi-bremerhaven.de

M.A. SOKOLOVSKIY
Water Problems Institute,
Russian Academy of Sciences,
3 Gubkina str., Moscow 117735, Russia

Institute of Mathematics and Mechanics,
Ural Branch of the Russian Academy of Sciences,
16, S.Kovalevskaja str., Ekaterinburg 620219, Russia

E-mail: sokol@aqua.laser.ru

J.VERRON
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DYNAMICS OF HETON-LIKE VORTICES

Studies of the properties of vortex motions in a stably stratified and fast rotating fluid that can be described by the
equation for the evolution of a potential vortex in the quasi-geostrophic approximation are reviewed. Special attention
is paid to the vortices with zero total intensity (the so-called hetons). The problems considered include self-motion of
discrete hetons, the stability of a solitary distributed heton, and the interaction between two finite-core hetons. New
solutions to the problems of three or more discrete vortices with a heton structure are proposed. The existence of
chaotic regimes is revealed. The range of applications of the heton theory and the prospects for its future application,
particularly in respect, to the analysis of the dynamic stage in the development of deep ocean convection, are discussed.

In memory of Professor
Vadim Fedorovich Kozlov

1. Introduction

The theory of the vortex motion of an ideal incompressible fluid [11], [120], [113], [127], [148], [174],
going back to the classical works of Helmholtz, Gröbli, Kirchhoff, Rankin, Greenhill, Taylor, Poincaré,
(see [20], [168], [8]), has developed mainly due to the need to understand the properties of atmospheric
cyclones and anticyclones. Indeed, the simplest two-dimensional hydrodynamic models of discrete vor-
tices provide some insight into the type of interaction occurring between elementary vortices and into
the structure of the velocity field they induce. However, many effects intrinsic to motion (especially,
vortex motion) in the atmosphere or ocean cannot be explained without allowance being made for the
rotation of the medium as a whole and the heterogeneity (stratification) of the density field that forms
under the effect of gravity. The solution of some important hydrodynamic problems of a planetary
nature has become possible with the development of Geophysical Hydrodynamics (GH) [102], [151],
[167], [176] dealing with this class of problem (an independent branch of hydromechanics which has
developed over the last three decades), the establishment of domains of flow parameters dominated
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by vortex motions [18], [19], [74], [32], [41], [99], and the generalization of methods of Hamiltonian
dynamics to the description of geophysical processes [20], [67], [102], [176]. Thus, within the context
of the quasi-geostrophic approximation, which is valid for fast rotating stably stratified fluids [102],
[167], Gryanik and co-authors successively created the theories of discrete vortices for a two-layer fluid
[71], a stratified medium comprising an arbitrary number of uniform-density layers [86], [87], [88], and
a continuously stratified fluid [72], [73]. The contour dynamics method (CDM) has been developed by
Kozlov et al. [119] for the description of finite-size vortices in a two-layer fluid and generalized later
for three layers [183], and for the case of continuous stratification [115], [118]. These works formed
the basis for new studies, the results of which are partially reflected in this publication.

This paper focuses mainly (sections 3–6) on the analysis of the dynamics of both discrete and
distributed baroclinic vortices with zero total intensity — hetons. Unlike classical (barotropic) vor-
tices in an ideal fluid, the baroclinic vortices possess a reserve of not only kinetic but also available
potential (thermal) energy. As shown in [71], the baroclinic nature of vortices radically changes both
the structure of the velocity fields they induce and the character of vortex interaction. Structures
comprising two vortices with zero total intensity feature an important self-motion property (a two-
layer pair moving without changing in shape or intensity [71]). In particular, in the case of two point
vortices concentrated in different layers of a two-layer fluid and having equal intensities with opposite
signs, each induces a rectilinear and uniform motion in the other.

The notion of heton was introduced by Hogg and Stommel [96] with the aim of emphasizing the ability of a
baroclinic vortex pair to transfer heat. The word ‘heton’ was derived from ‘heat’. Indeed, when the geostrophic
and hydrostatic approximations [102], [167], conventional for GH, are valid, any vortex of the top (bottom)
layer, which has negative (positive) intensity, induces a downward local distortion of the interface between the
layers. When the vorticity sign of each vortex changes, the sign of the curvature of the interface also changes.
Since, under conditions of stable stratification, the bottom layer should be denser and (under the assumption
of isopycnicity) colder, the integral amount of heat in the domain containing vortices of this type will clearly
be anomalous to that in any domain with the same volume. It is therefore obvious that the motion of hetons
consisting of combinations of oppositely rotating vortices has a greater effect on the redistribution of heat (heat
and salts, in the case of the ocean) than the motion of any other vortex structures. The notion of ‘heton’ is also
used to refer to vortices with finite horizontal dimensions (vortical patches, i. e., domains with constant values
of potential vorticity Π1 and Π2 in the top and bottom layer, respectively). When the centres of the vortex
patches in different layers are vertically aligned, the heton is said to have a vertical axis, otherwise the axis is
said to be tilted (Fig. 1).

Hetons can be generated in a laboratory by sources and sinks of mass [69], [70], by mechanically and
locally spinning the top-layer fluid [64], [200], [201], or by heat or buoyancy sources [58], [60], [92]. Such vortices
naturally form when baroclinic currents, associated with the phenomenon of deep convection in the ocean,
become unstable [1], [26], [27], [28], [30], [42], [43], [44], [47], [48], [49], [50], [55], [79], [84], [111], [112], [126],
[128], [129], [130], [136], [131], [132], [133], [135], [141], [143], [160], [193], [194], [206], [207], [218]. The heton
idealization is also used when analysing the dynamics of tropical cyclones and hurricanes in the atmosphere
[150], [149], [166], [199], [61], [170], surface temperature anomalies [37], [38], [39], [40], Mediterranean intra-
thermocline lenses (meddy) [98], [164], [198] in the ocean, and instability of boundary currents [177].

Sections 3–4 focus on studying hetons in a two-layer medium (with constant density values in
equal-thickness layers), since the two-layer model [102], [167] is known to exhibit the major features of
the large-scale (mesoscale)1 dynamics of the atmosphere and ocean. Section 5 presents generalizations
of the model to the cases of multi-layer (mostly three-layer) and continuously stratified media. Sec-
tion 6 is devoted to the analysis of specific features, the degree of universality of the heton theory, and
its range of its applications. Consideration is given in particular to its future application in describing
the dynamic phase of the development of deep ocean convection and in contributing to the solution of
the parameterization problem of vortical heat transport in atmospheric and oceanographical mesoscale
processes.

The present paper is a translation of an extended version of the paper published in Russian [85].

1According to meteorological and oceanographical terminology.
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Fig. 1. Schematic representation of a distributed heton with a vertical (a) and a tilted axis (b).

2. Basic model equations

We consider the quasi-2D motion of a two-layer ideal, incompressible fluid rotating with an angular
velocity of Ω and having constant densities of ρ1, ρ2 (ρ1 6 ρ2), and undisturbed depths of h1 and h2 for
the top and bottom layers, respectively. In the case where adiabatic motion takes place in the absence
of external forces and under conditions allowing the quasi-static and Boussinesq approximation, the
asymptotic theory [102], [167], [67] is widely used. This theory is based on the conservation law of the
quasi-geostrophic potential vorticity Πj :

DjΠj

Dt
= 0, (2.1)

where
Πj = ∇2pj + Fj (p3−j − pj) , j = 1, 2. (2.2)

Here Dj()/Dt ≡ (̇) + uj (∂()/∂x) + vj (∂()/∂y) and ∇2() ≡ ∂2()/∂x2 + ∂2()/∂y2 are two-dimensional
operators of the total derivative with respect to time and the Laplacian operator; a dot above a variable
means a partial derivative with respect to time; uj , vj are components of the velocity vector of fluid
particles of the jth layer along the axes x and y of the orthogonal coordinate system, respectively;
Fj = 4ρ∗Ω2D2hj/g(h1 + h2)∆ρ, ρ∗ — is the mean density, ∆ρ = ρ2 − ρ1, D — is a characteristic
horizontal linear scale, g is the acceleration of gravity, p1 and p2 are anomalies (with respect to
the equilibrium hydrostatic state) of hydrodynamic pressure in the layers, related to the velocity
components by geostrophic relationships

uj = −∂pj

∂y
, vj =

∂pj

∂x
. (2.3)

In (2.3) and hereafter it is assumed, without special mention, that subscript j takes on values 1 and 2.
From (2.3) it follows that introducing denotation J (z, w) ≡ (∂z/∂x) (∂w/∂y) − (∂z/∂y) (∂w/∂x)
(Poisson brackets for the Jacobian) allows equations (2.1) to be written as

Π̇j + J (pj ,Πj) = 0. (2.4)

The structure of equations (2.4) suggests an analogy with the equation of a vortex in classical
two-dimensional hydrodynamics; here the potential vortex corresponds to the vorticity2. Equa-

2The analogy here and below is understood as the formal identity of the equations for the evolution of vorticity
and potential vorticity. The physical essence of the problems is different, as can be seen in the difference between the
equations relating stream function and pressure in the classical two-dimensional hydrodynamics and in quasi-geostrophic
GH-approximation.
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tions (2.1)–(2.4) are given in a dimensionless form. Conversion to dimensional variables can be made
by using the relationships

(x′, y′) = D (x, y) ; (u′, v′) = D (u, v) ; t′ = (D/U) t; Π′j = (U/D)Πj ;
p′1 = 2Ωρ∗UDp̃1 − ρ1gz; p′2 = 2Ωρ∗UDp̃2 − ρ1gh1 − ρ2g(z − h1), (2.5)

where p̃j is the complete (dimensionless) pressure in the jth layer, primed letters are dimensional
values, capital letters, as before, denote the scales of the respective variables, and variable z is measured
from the undisturbed surface of the upper layer toward the gravity centre. Equations (2.1)–(2.3) were
derived based on the assumption that U/(2ΩD) = ε ¿ 1 and (p

′
2 − p

′
1)/[g∆ρ(h1 + h2)] = ε.

Let as assume that the potential vorticity, which is an unknown function, is nonzero only in
a multiply connected two-layer domain S = S1 ∪ S2 (subscripts indicate layer numbers). Now the
inversion of operators in the reduced (after separation of variables) right-hand parts of equations (2.2)
yields formal integral relationships for pressure values in the layers as follows:

pj =
∫∫

Sj

[hjG(r) + h3−jG0(r)] Πj

(
x′, y′, t

)
dx′dy′+

∫∫

S3−j

h3−j [G(r)−G0(r)] Π3−j

(
x′, y′, t

)
dx′dy′ (2.6)

where r =
√(

x− x′)2 + (y − y′
)2, G(r) = (1/2π) ln γ∗r, γ∗ = 1/Lreg (Lreg is a regularizing scale of

length)3, G0(r) = −(1/2π)K0(γr), Kn(x) is a modified Bessel function of the nth order, and

γ =
√

Fj/h3−j = D/λ, (2.7)

where λ =
√

4 g ∆ρ h1 h2 /ρ∗Ω2 (h1 + h2) — is the Rossby scale [167].
Integral invariants can be readily seen to exist (total potential vorticity, components of momen-

tum, and angular momentum):

Q =
2∑

j=1

hj

∫∫

Sj

Πj dx′dy′, Px =
2∑

j=1

hj

∫∫

Sj

x′Πj dx′dy′,

Py =
2∑

j=1

hj

∫∫

Sj

y′Πj dx′dy′, M =
2∑

j=1

hj

∫∫

Sj

[
(x′)2 + (y′)2

]
Πj dx′dy′. (2.8)

Expressions (2.6) can be simplified based on the assumption that functions Πj are piecewise constant.
Thus, let us assume that Πj = Π1

j ∪Π2
j ∪ . . . ∪ΠNj

j , where all Πα
j are constants on finite supports Sα

j :

Sj = S1
j ∪ S2

j ∪ . . . ∪ S
Nj

j , j = 1, 2; α = 1, 2, . . . , Nj . Here Nj is the number of vortices in the jth
layer. Hereafter, Greek letters are used to number vortices within each layer. Now, instead of (2.6)
we have

pj(x, y) =
Nj∑

α=1

Πα
j

∫∫

Sα
j

[hjG(r) + h3−jG0(r)] dx′dy′+

N3−j∑

α=1

h3−jΠα
3−j

∫∫

Sα
3−j

[G(r)−G0(r)] dx′dy′. (2.9)

3For example, in the problems of vortex dynamics on a sphere, Lreg is proportional to its radius [18], [19]; in problems
taking into account the effects of the two-dimensional compressibility of the medium or free surface, it is proportional
to the Oboukhov–Rossby scale [71].
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Expressions (2.8) can be simplified in a similar manner. Equations (2.9) show that when con-
stants Πα

j are known, the pressure anomalies (and, according to (2.3), the velocities in the layers as
well) are completely determined by only the geometry of the evolving domains Sα

j (x, y, t). This fact
forms the basis of the contour dynamics method [220], developed for the case of a two-layer fluid in
[119]. Thus, the Stokes theorem allows the passage in (2.9) from surface integrals to contour integrals:

pj(x, y) =
Nj∑

α=1

hjΠα
j

∮

Cα
j

w

[
W (r) +

h3−j

hj
W0(r)

]
dν+

+
N3−j∑

α=1

h3−jΠα
3−j

∮

Cα
3−j

w [W (r)−W0(r)] dν. (2.10)

Here, Cα
j are the contours of domains Sα

j , and notations

w =
(x′ − x)(∂y′/∂ν)− (y′ − y)(∂x′/∂ν)

r2
, W = r2

4π

(
ln γ∗r − 1

2

)
,

W0 = 1
2πγ2

[γrK1(γr)− 1]

are introduced; here ν is a linear parameter measured counterclockwise along each contour Cα
j .

Formulas (2.3) and (2.10) can also be used to express the equations for the velocity components
of fluid particles in terms of contour integrals. Without going into the details of the algorithm, we
note that, within the context of CDM, the problem is reduced to the numerical solution of equations
of motion of marker particles belonging to contours Cα

j of domains Sα
j .

The case of discrete vortices with intensities of κα
j will be obtained as the limit

lim
Sα

j
→0

Πα
j
→∞

Πα
j Sα

j = κα
j ,

where Sα
j is an undisturbed circular domain. Now

Πα
j = κα

j δ
(
x− xα

j

)
δ
(
y − yα

j

)
, (2.11)

and (2.9) transforms to

pj (x, y) =
hj

2π





Nj∑

α=1

κα
j

[
ln γ∗r −

h3−j

hj
K0(γr)

]
+

Nj∑

α=1

h3−j

hj
κα

3−j [ln γ∗r + K0(γr)]



 , (2.12)

where r =
√(

x− xα
j

)2 +
(
y − yα

j

)2; α = 1, 2, . . . , Nj ; j = 1, 2, and, since now we have only one
linear scale (Rossby radius), we have to take D = 1 in (2.7). From (2.3) and (2.12), we can obtain the
equations of motion for the vortices:

ẋα
j = − hj

2π

{ Nj∑
β = 1
β 6= α

κα
j

yα
j − yβ

j(
rαβ
jj

)2

[
1 +

h3−j

hj
γrαβ

jj K1

(
γrαβ

jj

)]
+

+
N3−j∑

β=1

κα
3−j

h3−j

hj

yα
j − yβ

3−j(
rαβ
j(3−j)

)2

[
1− γrαβ

j(3−j)K1

(
γrαβ

j(3−j)

)]}
, (2.13)
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ẏα
j =

hj

2π

{ Nj∑
β=1
β 6=α

κα
j

xα
j − xβ

j(
rαβ
jj

)2

[
1 +

h3−j

hj
γrαβ

jj K1

(
γrαβ

jj

)]
+

+
N3−j∑

β=1

κα
3−j

h3−j

hj

xα
j − xβ

3−j(
rαβ
j(3−j)

)2

[
1− γrαβ

j(3−j)K1

(
γrαβ

j(3−j)

)]}
. (2.14)

Here, rαβ
ij =

√(
xα

i − xβ
j

)2
+

(
yα

i − yβ
j

)2
.

Equations for integral invariants (2.8) take the form

Q =
2∑

j=1

hj

Nj∑

α=1

κα
j , Px =

2∑

j=1

hj

Nj∑

α=1

xα
j κα

j ,

Py =
2∑

j=1

hj

Nj∑

α=1

yα
j κα

j , M =
2∑

j=1

hj

Nj∑

α=1

[(
xα

j

)2 +
(
yα

j

)2
]
κα

j .

System (2.13)–(2.14) can be rewritten in the Hamiltonian form

q̇α
j = ∂H

∂pα
j

≡ J
(
qα
j , H)

, ṗα
j = − ∂H

∂qα
j

≡ J
(
pα

j , H)
, (2.15)

where qα
j = xα

j — are generalized coordinates, pα
j = yα

j κα
j /2 are generalized momenta, and the

Hamiltonian

H = − 1
2π

2∑

j=1

hj

{ Nj∑
α,β=1
α6=β

κα
j κβ

j

[
ln γ∗r

αβ
jj −

h3−j

hj
K0

(
γrαβ

jj

)]
+

+
Nj , N3−j∑

α, β=1

h3−j

hj
κα

j κβ
3−j

[
ln γ∗r

αβ
j(3−j) + K0

(
γrαβ

j(3−j)

)]}
, (2.16)

coincides with the energy of interaction of the vortices.
Problems for both discrete and finite-core two-layer vortices with equal layer thicknesses h1 =

= h2 = 1/2 are considered in (Sections 3, 4) below, and the effects of the non-equivalence of the layers
are discussed in Section 5.

3. Dynamics of discrete hetons

Let us denote the total number of vortices by N (i. e., N = N1 + N2). It can be readily shown that
invariants M , H, and the combination (P 2

x + P 2
y ) are pairwise involutory. Hence, in the case of three

vortices in a two-layer fluid, as in the case of a homogeneous medium [20], [120], [2], [4], [5], [7], [22],
[23], [24], [25], the problem will always have a regular solution. In a barotropic fluid where N = 4,
the problem is non-integrable in the general case [225], [120], [148], [158], [159]. As shown in [20], [9],
[56], at

Q = Px = Py = 0 (3.1)

the problem can be reduced to one of three vortices. Hence the problem of four vortices under condi-
tions (3.1) is always integrable. This result does not depend on the specific form of the Hamiltonian
and hence holds for the two-layer case as well. In contrast to the case of a homogeneous fluid, where
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a large number of special cases of integrability of the vortex problem are known at N > 3 [20], [120],
[148], [147], few results are available for layered media [84], [96], [97], [186], [187].

Some results from studying the motion of four vortices in a two-layer fluid are given below in 3.3.
Let us now consider certain problems regarding the motion of two-layer heton-type vortices (i. e.,

at Q = 0).

3.1. The case of two vortices: N = 2

This class of motion has been examined in numerous studies [71], [96], [186], [187], [219]. The possible
variants include a) N1 = 2, N2 = 0 or N1 = 0, N2 = 2,4 and b) N1 = N2 = 1. Equations (2.13)–(2.14)
yield:
a)

u1
1 = −κ2

1

4π

y1
1 − y2

1(
r12
11

)2

[
1 + γr12

11K1

(
γr12

11

)]
, u2

1 = −κ1
1

4π

y2
1 − y1

1(
r12
11

)2

[
1 + γr12

11K1

(
γr12

11

)]
;

v1
1 =

κ2
1

4π

x1
1 − x2

1(
r12
11

)2

[
1 + γr12

11K1

(
γr12

11

)]
, v2

1 =
κ1

1

4π

x2
1 − x1

1(
r12
11

)2

[
1 + γr12

11K1

(
γr12

11

)]
; (3.2)

b)

u1
1 = −κ1

2

4π

y1
1 − y1

2(
r11
12

)2

[
1− γr11

12K1

(
γr11

12

)]
, u1

2 = −κ1
1

4π

y1
2 − y1

1(
r11
12

)2

[
1− γr11

12K1

(
γr11

12

)]
;

v1
1 =

κ1
2

4π

x1
1 − x1

2(
r11
12

)2

[
1− γr11

12K1

(
γr11

12

)]
, v1

2 =
κ1

1

4π

x1
2 − x1

1(
r11
12

)2

[
1− γr11

12K1

(
γr11

12

)]
, (3.3)

respectively. In the general case, the vortices execute circular motions with angular velocities of
a)

ω =
κ1

1 + κ2
1

4π
(
r12
11

)2

[
1 + γr12

11K1

(
γr12

11

)]
, (3.4)

b)

ω =
κ1

1 + κ1
2

4π
(
r11
12

)2

[
1− γr11

12K1

(
γr11

12

)]
(3.5)

relative to the centres of vorticity with coordinates
a)

(
xc, yc

)
=

κ1
1

(
x1

1, y1
1

)
+ κ2

1

(
x2

1, y2
1

)

κ1
1 + κ2

1

, (3.6)

b)

(
xc, yc

)
=

κ1
1

(
x1

1, y1
1

)
+ κ1

2

(
x1

2, y1
2

)

κ1
1 + κ1

2

. (3.7)

4Formulas (2.13) and (2.14) show that, under the above assumption that the layers are of equal thickness, these
variants yield identical results, which implies that only one may be considered, e.g., the first.
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A combination of two vortices belonging to different layers and rotating (3.5) around a centre (3.7)
at κ1

1 + κ1
2 6= 0 will be referred to as a two-tier top.

Formulas (3.2)–(3.7) indicate a specific feature of the two-layer model: vortices in the same
layer and vortices in different layers interact according to different laws [71]. This can be seen most
distinctly in the cases of one-layer and two-layer vortex pairs, when we have κ1

1 = −κ2
1 ≡ κ in case a)

and κ1
1 = −κ1

2 ≡ κ in case b), and clearly the centre of vorticity lies at the infinite point, and angular
velocities (3.4) and (3.5) are zero.

Suppose that at the initial moment of time, both vortices lie on the x-axis at a distance of l from
one another. Now formulas (3.2)–(3.3) yield equations for the velocities of vortex pairs as follows:
a)

u1
1 = u2

1 = 0;

v1
1 = v2

1 = ± γκ

4πL
[1 + LK1(L)] ≡ ±γκ

4π
f1(L); (3.8)

b)

u1
1 = u1

2 = 0;

v1
1 = v1

2 = ± γκ

4πL
[1− LK1(L)] ≡ ±γκ

4π
f2(L), (3.9)

where L = γl. Here at κ > 0, the upper (lower) sign refers to the case where the vortex with positive
intensity occupies the left (right) location; at κ < 0, the pair of vortices inverse their direction of
motion.

Formulas (3.8)–(3.9) and figure 2 illustrate the behaviour of functions f1(L) and f2(L) (note how
they are different from function f(L) = 1/L). It should be mentioned that heton velocity (3.9) exhibits
a nonmonotonic dependence on the distance between vortices, and

f2(L) ∼ −L ln L → 0 at L ¿ 1, f2(L) ∼ 1/L → 0 at L À 1

and f2(L∗) = max f2(L), where L∗ = 1.114 is the solution of the equation

f
′
2(L) = K0(L) + 1

L
K1(L)− 1

L2
= 0.

Thus, a heton that has a vertical axis is always immobile, while a heton with a tilted axis moves
translationally with a velocity attaining its maximum at l = L∗/γ.

3.2. The case of three vortices: N = 3

Let us consider variants 1) N1 = 3 and 2) N1 = 1, N2 = 2 (the cases of N2 = 3 and N1 = 2, N2 = 1,
respectively, are equivalent to these due to symmetry). Equations (2.13), (2.14) yield:

1)

uα
1 = − 1

4π

3∑
β=1
β 6=α

κβ
1

yα
1 − yβ

1(
rαβ
11

)2

[
1 + γrαβ

11 K1

(
γrαβ

11

)]
, (3.10)

vα
1 = 1

4π

3∑
β=1
β 6=α

κβ
1

xα
1 − xβ

1(
rαβ
11

)2

[
1 + γrαβ

11 K1

(
γrαβ

11

)]
, (3.11)

α = 1, 2, 3.
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Fig. 2. Relationships (3.8) and (3.9) for f1(L) and f2(L).

2)

u1
1 = − 1

4π

2∑

α=1

κα
2

y1
1 − yα

2(
r1α
12

)2

[
1− γr1α

12 K1

(
γr1α

12

)]
,

uα
2 = − 1

4π

{
κ3−α

2

yα
2 − y3−α

2(
r
α(3−α)
22

)2

[
1 + γr

α(3−α)
22 K1

(
γr

α(3−α)
22

)]
+

+κ1
1

yα
2 − y1

1(
rα1
21

)2

[
1− γrα1

21 K1

(
γrα1

21

)]
}

, (3.12)

v1
1 = 1

4π

2∑

α=1

κα
2

x1
1 − xα

2(
r1α
12

)2

[
1− γr1α

12 K1

(
γr1α

12

)]
,

vα
2 = 1

4π

{
κ3−α

2

xα
2 − x3−α

2(
r
α(3−α)
22

)2

[
1 + γr

α(3−α)
22 K1

(
γr

α(3−α)
22

)]
+

+κ1
1

xα
2 − x1

1(
rα1
21

)2

[
1− γrα1

21 K1

(
γrα1

21

)]
}

, (3.13)

In (3.12) and (3.13), α = 1, 2.
We assume that κ1

1 = −2κ, κ2
1 = κ3

1 = κ for variant 1), while for variant 2), following [188, 189],
we have restricted our consideration to two cases: 2a) κ1

1 = −2κ, κ1
2 = κ2

2 = κ; 2b) κ1
1 = κ2

2 = −κ,
κ1

2 = 2κ, with the assumption that κ > 0.

3.2.1. Zero total momentum: Px = Py = 0

Under these conditions, the three vortices have to lie on a straight line, the two vortices with the same
sign lying symmetrically on both sides of a strong central core with opposite-sign intensity.
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1) In this case, the centre of rotation coincides with the central vortex. Analogous symmetrical
vortical structures of this type in a homogeneous fluid are widely known as tripolar vortices (or tripoles)
[116], [117], [138], [31], [32], [33], [34], [35], [57], [95], [89], [90], [91], [109], [110], [137], [147], [152],
[161], [162], [163], [165], [202], [208], [211], [212], [213], [214], [215], [216] rotating with a constant
angular velocity around the central vortex in the direction determined by the sign of its vorticity. In
this case, (3.10)–(3.11) yield the following expression for the angular velocity of peripheral vortices

ω = − κγ2

4πL2

{
L [K1(2L) + 2K1(L)] + 3

2

}
. (3.14)

This expression differs from the formula for the angular velocity of a tripole in a barotropic medium
(under the rigid-lid condition for the surface) by a factor of 1/2, equal to layer thickness, and by
members containing McDonald functions. The latter characterize the effect of the lower (for the
upper layer) free interface between layers.

2a) In this case, the central core, which coincides with the centre of rotation, and the peripheral
vortices belong to different layers. The latter, as in the barotropic case, rotate along circular orbits
with a constant angular velocity. In [185], [189] this structure was referred to as a roundabout. From
(3.12)–(3.13), we derive the following expression for the angular velocity:

ω =
κγ2

4πL2

{
L [K1(2L) + 2K1(L)]− 3

2

}
. (3.15)

Here, L = γl, where l — is half the distance between the peripheral vortices.
By equating angular velocity (3.15) to zero, we find the unique solution to this equation L =

= L∗∗ = 0.8602. Thus, at L > L∗∗, the vortices in the lower layer, as in the barotropic case, rotate in
an anticyclonic direction, induced by the upper-layer vortex, and we have an ordinary roundabout. At
L < L∗∗, the interaction between the cyclonic vortices becomes predominant and, notwithstanding the
anticyclonic spin-up due to the central vortex, they move counterclockwise along a circular trajectory
(inverse roundabout). At L = L∗∗, we have an unstable steady state, in which the bottom-layer
vortices are immobile.

Figure 3a gives the initial locations of vortices, and figure 3b shows the trajectories of vortices
within a short time interval for the cases with L > L∗∗, L = L∗∗, and L < L∗∗ (left to right). Here,
and in Figs. 4, 6 and 7, a triangle-shaped marker denotes the upper-layer vortex with an intensity
of κ1

1, while the lower-layer vortices with intensities of κ1
2 and κ2

2 are denoted by the circles and boxes,
respectively. The sizes of the markers are proportional to the absolute values of the vortex intensities
(|κ1

1| = 2κ, |κ1
2| = |κ2

2| = κ).
2b) Peripheral vortices belong to different layers and hence experience different influence from

the central vortex. The centre of rotation lies in the segment between the top-layer vortex and the
central vortex, belonging to the bottom layer at a distance of

Lc = L− 2L2K1(L)
LK1(2L) + 3/2

. (3.16)

from the former vortex. This type of solid-state vortical structure will be referred to as eccentric
roundabout5. The angular velocity is

ω =
κγ2

4πL2

[
LK1(2L) + 3

2

]
, (3.17)

and its sign always coincides with that of the vorticity of the strong vortex. Figure 4a gives the initial
locations of vortices, and figure 4b shows the trajectories of vortices within a short time interval for

5An analogue of a two-vortex two-tier top, which, however, has zero total intensity.
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Fig. 3. Case 2a): Diagram of initial vortex locations — (a); initial parts of vortex trajectories — (b). Segments
connect the locations of vortices for the initial and final (calculated) time moments.

Fig. 4. Case 2b): Schematic representation of vortex motion — (a); initial parts of vortex trajectories — (b).

the cases when the variable Lc, represented by (3.15) satisfies the conditions Lc < L/2, Lc = L/2 and
Lc > L/2.

Note on choreographies. The above-mentioned vortical structures of the roundabout type with a periodic
motion of all vortices along circular trajectories exemplify the so-called absolutely complex choreographies. The
notion choreography was introduced not long ago (2000) by Simó [178] to describe the motion of three bodies
with Newtonian interaction potential along closed orbits in celestial mechanics problems.

Choreographies can be

• absolute — if the trajectories are closed in a fixed coordinate system;

• relative — if the trajectories become closed in a coordinate system that rotates uniformly around the
centre of rotation (or moves with a constant translational velocity if the centre of rotation is at infinity);

11



• simple — when all bodies (or vortices) move along the same trajectory;

• complex — if at least one body moves along an individual trajectory.

The first attempt to apply the notion of choreography to vortex dynamics in a homogeneous fluid on a
plane and a sphere was made by Borisov and Mamaev [21].

The two-layer character of the vortical structures discussed in this work makes the presence of chore-
ographies even more important. As will be shown below, situations are possible where vortices have common
trajectories but belong to different layers.

Without going into a systematic study of choreographies, we will, however, indicate each case where this
special class of vortex motion exists.

3.2.2. Nonzero total momentum

In this case the relative motion of vortices is conveniently studied in the so-called trilinear coordinates
(t1, t2, t3) [2], [5], [172], [173], [188], [189] — see Fig. 5. We restrict our consideration to the example
of case 2a), where the trilinear coordinates take the form

t1 = −3κ2
(
r21
22

)2

P 2
6 0, t2 =

6κ2
(
r21
21

)2

P 2
> 0, t3 =

6κ2
(
r11
21

)2

P 2
> 0,

t1 + t2 + t3 = 3, P 2 = P 2
x + P 2

y , (3.18)

and the ’physical area’ is defined by the expression

12t1 +
(
t2 − t3

)2 6 0. (3.19)

Fig. 5. Scheme of trilinear coordinates (3.18) and the phase portrait for the problem of motion of three vortices
in the ‘physical area’ (3.19): case a). Thick lines represent separatrices dividing subareas {1}, {2} and {3}.

A characteristic phase portrait is shown in figure 5. The black area represents a ‘nonphysical
area’, where the distances between the vortices fail to satisfy the triangle inequalities. During the
motion of vortices, the image point in the phase plane executes a periodic motion along the respective
trajectory and is periodically reflected from the boundary (at this moment, the vortices are collinear),
which reverses its motion. Analysis of the phase portrait yields the following results:

• All relative motions are periodic, and within every period, the system passes twice through
collinear states. This means, in particular, that in order to exhaustively study the properties of
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absolute motions it is sufficient to consider only the initial conditions with a collinear location
of the three vortices (such initial conditions are used in all examples discussed below).

• Relative motions are finite.

• Three types of motion are possible, differing with respect to the interaction between the vortices:

– Type {1} — the interaction between vortices in the lower layer dominates, and the motion
can be conventionally defined by the scheme

(
1
2

)(
2
2

)
+

(
1
1

)
,

where notation
(

i
j

)
refers to a vortex with the intensity of κi

j ;

– Type {2} — one of the vortices in the lower layer is seized by the vortex in the upper layer,
and the situation is described by one of the formulas:

(
1
1

)(
1
2

)
+

(
2
2

)
or

(
1
1

)(
2
2

)
+

(
1
2

)
,

– Type {3} — both vortices in the lower layer are involved in an anticyclonic motion induced
by vortex

(
1
1

)
: (

1
1

)(
1
2

)(
2
2

)
.

Examples of absolute motion for the three types are given in figure 6.

• The phase portrait has three elliptic (stable) singular points and one hyperbolic (unstable)
singular point. One of the elliptic points (at t1 = 0) corresponds to the case when the vortex
system forms a pair (heton) from merged lower-layer cyclones and the upper-layer anticyclone.
The other two elliptic points correspond to nontrivial collinear states representing a uniformly
moving vortex triplet. Such a structure was called a triton in [188], [189], [190], [191]. The
existence condition for a triton is specified by the dispersion equation

A2 − 2AL + 4L2

2AL(2L−A)
= K1(A) + K1(2L−A) + K1(2L), (3.20)

and the velocity of its motion by the equality

V =
κγ

4π

{
1
A
−K1(A)−

[
1

2L−A
−K1(2L−A)

]}
≡ κγ

4π
F

[
A(L)

]
. (3.21)

The meaning of the variable A is apparent from figure 7a. Figure 7b shows the dispersion curve
A(L), as the solution of (3.20), and the function F from (3.21). Full (dashed) curves represent
branches for which A < L (A > L). Figure 7 shows, in particular, that no solutions of the triton
type exist at L < L∗∗.

The hyperbolic point in the phase plane corresponds to the vortex configuration in the form of
an isosceles triangle with the upper-layer vortex in the apex. The length of the lateral side and
the angles at the base of the triangle are related by the dispersion equation

1 + 2L| cosφ|K1(2L| cosφ|)
cos2 φ

= 4
[
1− LK1(L)

]
, (3.22)
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Fig. 6. 1. Examples of motion types {1} — (a), {2} — (b) and {3} — (c). The solid line represents the
trajectory of the vortex in the upper layer

(
1
1

)
, the long-dash line the trajectory of the first vortex in the lower

layer
(
1
2

)
, and the short-dash line that of the second vortex in the lower layer

(
2
2

)
. Markers, spaced a half

period apart, fix the synchronous (collinear) locations of the vortices; 2. The respective relative choreographies
in the coordinate system that moves uniformly in the negative y-direction. Markers show the initial locations
of vortices. Vortices in the lower layer have common trajectories in fragments 2a and 2c.

and the velocity of the uniform motion of the vortex structure in the direction parallel to the
triangle base is expressed by the formula6

V = −κγ sinφ

4πL

[
1− LK1(L)

]
. (3.23)

• All vortex motions are associated with relative choreographies in a coordinate system moving
with a constant translational velocity.

Trajectories of absolute motion of a stable triton configuration and an unstable triangular config-
uration with dispersion relationships (3.20) and (3.22) holding true are given in Figs. 8.1.a and 8.1.b,
respectively. In the first case, the collinearity is permanent and the segments passing through all
three vortices are drawn only for the initial and final calculation time moments. In the second case,
the vortices form either a collinear configuration or a triangle after every quarter-period, and in both
situations, the lower-layer vortices change places after every half-period (if the translational motion
of the entire vortex system is not taken into account). Clearly the image point in the phase plane in
this experiment ’slips’ from the saddle location into area {3}. Obviously the relative choreography for
the triton constitutes three fixed points (figure 8.2.a).

6In the case of a homogeneous fluid [208], the stationary solution of the (3.22) type is associated with an isosceles
triangle with sides of arbitrary length. Expressions (3.20) and (3.22) are a particular case of more general relationships
obtained in [73] for continuous stratification conditions and with allowance made for differential (nonuniform) rotation
at a triangular configuration of vortices, two of which (with the same signs) are on one horizon, and the third on the
other.
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Fig. 7. Diagram of initial vortex location for the collinear structure triton - (a); dispersion curve A(L) and
function F (3.21) characterizing the translational velocity of the triton - (b). The sloping short-dash line g = 2L

is an asymptote for the dispersion curve (A ∼ 2L), and the vertical line is determined by the equality f = L∗∗,
where L∗∗ is the solution of equation ω = 0 from (3.15) for the extreme case of zero total momentum (A = L).

3.3. The case of four vortices with zero total intensity and momentum

The properties of interaction between four discrete vortices in a two-layer fluid that satisfy conditions
(3.1) have been adequately studied [96], [219], [84], [186], [187] for the special case of N1 = N2 = 2.
Here, we present the principal results of these works. Equations of motion (2.13)–(2.14) in this case
take the form:

uα
j = − 1

4π

{
κ3−α

j

yα
j − y3−α

j(
r
α(3−α)
jj

)2

[
1 + γr

α(3−α)
jj K1

(
γr

α(3−α)
jj

)]
+

+
2∑

β=1

κβ
3−j

yα
j − yβ

3−j(
rαβ
j(3−j)

)2

[
1− γrαβ

j(3−j)K1

(
γrαβ

j(3−j)

)]}
, (3.24)

vα
j = 1

4π

{
κ3−α

j

xα
j − x3−α

j(
r
α(3−α)
jj

)2

[
1 + γr

α(3−α)
jj K1

(
γr

α(3−α)
jj

)]
+

+
2∑

β=1

κβ
3−j

xα
j − xβ

3−j(
rαβ
j(3−j)

)2

[
1− γrαβ

j(3−j)K1

(
γrαβ

j(3−j)

)]}
, (3.25)

where j, α = 1, 2. Thus, (3.24)–(3.25) constitute a system of eight equations. Now let us suppose that
κ1

1 = κ2
1 = −κ1

2 = −κ2
2 = −κ < 0.

As stated above, when conditions (3.1) are valid, reduction to the three-vortex problem is possible,
where the properties of relative motion can be analysed with the use of trilinear coordinates. However,
in the particular case of zero total momentum of the four-vortex system, such analyses can be made
in the common orthogonal coordinates as well.
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Fig. 8. 1. Stationary trajectories of three vortices in (a) a stable condition (triton — an elliptic singular point)
and (b) unstable condition (in the form of an isosceles triangle — hyperbolic singular point). 2. Respective
relative choreographies in a coordinate system moving uniformly in the negative y-direction. Markers show the
initial vortex locations. In the fragment 2b, lower-layer vortices have common trajectories.

3.3.1. Zero total angular momentum: M = 0

Complete analysis of the relative motions yields the phase portrait (isolines of the Hamiltonian on
plane (γx, γy)) in figure 9a, obtained for the first time in [96]. An equivalent phase portrait in trilinear
coordinates is also shown in figure 9b.

Fig. 9. Phase portraits of the problem of four vortices with zero total momentum in rectangular — (a) and
triangular — (b) coordinates.

In this case, the axes of the trilinear coordinate system

t1 = 3κ2
(
r12
22

)2 > 0, t2 = 3κ2
(
r11
21

)2 6 0, t3 = −3κ2
(
r22
21

)2 6 0,

at t1 + t2 + t3 = 0, (3.26)
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Fig. 10. Trajectories of motion of types {1}, {2} and {3} of four vortices (two hetons with tilted axes) with
zero total momentum.

having the same orientation as in figure 5, cross at point (0, 0, 0), and the “physical area” is specified
by inequalities (3.26).

In addition to the areas {1}7, which exist also for vortex interactions in a homogeneous fluid
[11, 127], areas {2} and {3} also appear in the two-layer case. Geometrically, areas {1} and {2}
represent infinite relative motions, while areas {3} represent finite ones. From the dynamic viewpoint,
interaction between vortices from different layers dominates in motions of types {1} and {2}, and
interaction between vortices in the same layer dominates for motions of type {3}. If the locations
of vortices at the initial time moment allow the hetons to move towards one another, the mutual
approach of two-layer pairs in area {2} is accompanied by a continuous decrease in the tilt of their
axes (i. e., the distances between the upper and lower vortices) down to zero; after that, the vortices in
each heton exchange places (in the view from above), and the pairs start a reverse motion: the heton
behaviour resembles an elastic collision at a distance, with the subsequent movement of the hetons in
opposite directions. Otherwise, i. e., if the hetons have vertical axes at the initial time moment, only
the second part of this scenario will be observed. In this case, area {2} will only correspond to those
locations for which the distance c between the vertical axes satisfies the inequality c > C∗/γ, where
C∗ = 1.4332. In the case of inverse inequality, we find ourselves in area {3}. In area {3}, the upper
and lower vortices move in opposite directions along finite O-shaped (according to the terminology
used in [96]) overlapping trajectories. Clearly, motions of type {3} in this case correspond to absolutely
simple choreographies. In virtue of the invariance of M , both axial and mirror symmetry of vortex
locations will take place at any moment (this means that at any time moment, the two vortices in each
layer are situated at the ends of an imaginary segment with a centre in the origin of coordinates). The
trajectories are quasi-circular near the origin, and away from it they assume the form of a four-point
star with stagnation points in its acute angles (these are the intersection points of separatrixes shown
in the figure by boxes).

Assuming for these points

xα
j = x3−α

3−j = −x3−α
j = −xα

3−j = yα
j = y3−α

3−j = −y3−α
j = −yα

3−j = b/2,

we obtain from (3.24)–(3.25) a transcendent equation in B = γb

1
B

= 2

[
K1(B) + 1√

2B
K1

(√
2B

)
]

(3.27)

which has the solution B = B∗ = 1.5947.
7These domains correspond to the opposite motion of pairs with subsequent exchange of partners. The only difference

from the barotropic case is that each pair has a two-layer structure, i. e., represents a heton with a tilted axis.
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It should be mentioned that, unlike in the case of three vortices, where the consideration of
only collinear initial states was sufficient for the complete analysis of all possible motions, this is not
sufficient in this case (since some phase trajectories do not reach the boundary of the ’physical area’).
Therefore, in addition to the collinear conditions, it is necessary to consider, for example, the initial
locations of vortices in the vertices of squares with a side greater than B∗.

Examples of motions of types {1}, {2} and {3} are given in Figs. 10a, 10b and 10c, respectively.
Here, circular (square) markers denote anticyclonic (cyclonic) vortices of the upper (lower) layer.
Shaded (hollow) markers denote the vortices that were located in the upper (lower) part of the figure
at the initial time moment. Larger markers correspond to the initial locations of vortices. The
calculation time intervals are chosen so as to allow the demonstration in 10b of the process of the
motion of each vortex along the straight line coinciding with the initial trajectory of its partner from
the other layer, and in 10c, its motion up to the moment that the trajectories overlap.

3.3.2. Nonzero total angular momentum: M 6= 0

In this case, the characteristic phase portrait in trilinear coordinates

t1 =
3κ

(
d22

21

)2

M
> 0 (6 0), t2 = −3κ

(
d11

21

)2

M
6 0 (> 0), t3 = −3κ

(
d21

21

)2

M
6 0 (> 0),

where M > 0 (M < 0), and t1 + t2 + t3 = 3 (3.28)

in the ’physical area’

t1t2 6 9
4 (3.29)

is determined by figure 11, whence it can be seen that the relative motions, as in the previous case,
can be divided into three qualitatively different types. However, in contrast to the case of M = 0, all
vortex trajectories now have only central symmetry.

Trajectories of four vortices for cases {1}, {2} and {3} are shown in Figs. 12a, 12b and 12c,
respectively (to avoid overloading the diagram, markers in the latter figure denote only the initial
locations of vortices). Clearly, motions of types {1} and {2} represent the cases of noncentral, head-
on collision of hetons. In the first case, the pairs of vortices exchange partners, while in the second,
each heton remains an indivisible two-layer pair in the process of interaction.

Let us now consider in more detail the properties of finite captured motions of type {3} which are
the richest in content within the context of this problem. These motions consist of the anticyclonic
rotation of the upper vortices and cyclonic (or anticyclonic) rotations of the lower ones, depending
on the degree of asymmetry in the initial construction of vortices. Moreover, it turns out that all
trajectories of this type in the system of coordinates, rotating in the same direction as the lower
vortices, are associated with relative choreographies. The transition boundary from one regime to the
other is associated with an absolute choreography — see figure 13.

The structure of the obtained choreographies suggests the following general properties of the
motions associated with them:

• Upper vortices rotate along quasi-elliptic orbits in an anticyclonic direction and always remain
at the opposite ends of the same diameter of the figure.

• The two lower vortices execute synchronous cyclonic rotations with respect to two centrally
symmetrical peripheral fixed points.

• After every quarter period, the vortices form alternating collinear and rhomb-shaped configura-
tions (the latter is observed in the moments when the respective image point in the phase plane
crosses the axis of symmetry of the ‘physical area’).
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Fig. 11. Phase portraits in trilinear coordinates for the problem at M > 0 (top) and M < 0 (bottom).
Orientation of axes and the coordinates of the singled-out point are shown.

Fig. 12. Trajectories of motion of types {1} — (a), {2} — (b) and {3} — (c) of four vortices with nonzero total
angular momentum.
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Fig. 13. Trajectory of motions of type {3} for four vortices with a nonzero total angular momentum — (a)
and the respective choreographies — (b). 1) refers to relative motions in system of coordinates rotating in a
cyclonic direction; 2) refers to absolute motion; 3) refers to relative motions in system of coordinates rotating
in a anticyclonic direction.

• The ratio of the revolution periods of upper and lower vortices is 1:2.

• The choreographies characterize the stationary (and presumably stable) solution of system
(3.24)–(3.25).

• The properties mentioned above refer to relative motions in cases 1) and 3) and to absolute
motions in case 2) — figure13.

The hyperbolic stationary point marked by a box in the upper part of figure 11 in this case corresponds
to four vortices located in the four vertices of the rhomb, which rotates with an angular velocity of

ω =
κγ2

2πB2

[
1−BK1(B)− 1 + 2B| sinφ|K1

(
2B| sinφ|)

4 cos2 φ

]
, (3.30)

where B now is half the rhomb side, and φ is half its acute angle. Instead of (3.27) we have

8
[
1−BK1(B)

]
=

1 + 2B| sinφ|K1

(
2B| sinφ|)

sin2φ
+

1 + 2B| cosφ|K1

(
2B| cosφ|)

cos2φ
. (3.31)

In the particular case of a rhomb degenerated into a square (φ = π/4), (3.31) reduces to (3.27), by
virtue of which (3.30) yields ω = 0.

3.4. Case N > 4

3.4.1. Integrable cases

A system of vortices with N > 4 allows integration when it has additional symmetries [155], [12], [3],
[148], [114]. For example, if N1 = N2 = n, and hetons in the initial moment are located in the vertices
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of a regular n-polygon, the equations of relative motion can be reduced to equations describing the
evolution of an equivalent heton. The method reducing Hamiltonian systems in this way is described
in [3], [148] within the context of a model of two-dimensional vortices.

Following [3], we will search the solution of (2.13)–(2.14) in the form

xα
j = r(t) cos

(
φj +

2π(α− 1)
n

)
, yα

j = r(t) sin
(

φj +
2π(α− 1)

n

)
, (3.32)

where
(
r, φj

)
are polar coordinates, j = 1, 2 is the number of the layer, α = 1, 2, . . . , n is the

number of the heton. Now, assuming that κα
j = −κα

3−j , we obtain reduced equations

ṙ = − κj

4πr

{
n
2 s (0, nφ)− γr

[
n−1∑

α=1

s (α, 0)S (α, 0) +
n−1∑

α=0

s (α, φ) S (α, φ)

]}
, (3.33)

φ̇ =
κj

4πr2

{
−1

2 + γr

[
n−1∑

α=1

S (α, 0) +
n−1∑

α=0

S (α, φ)

]}
, (3.34)

for an equivalent heton. Here φ = φ3−j − φj and

s
(
a, b

)
=

sin
(

2πa
n + b

)

1− cos
(

2πa
n + b

) , S
(
a, b

)
=

∣∣∣∣sin
(

πa
n + b

2

)∣∣∣∣K1

(
2γr

∣∣∣∣sin
(

πa
n + b

2

)∣∣∣∣
)

.

The condition for the Hamiltonian invariance takes the form

Φ (r, φ, n) = ln

[
r

n−1∏

α=1

∣∣∣∣sin
(

πα
n +

φ

2

)∣∣∣∣
]

+ K0

(
2γr

∣∣∣∣sin
φ

2

∣∣∣∣
)
−

n−1∑

α=1

{
K0

(
2γr

∣∣∣sin πα
n

∣∣∣
)
−K0

[
2γr

∣∣∣∣sin
(

πα
n +

φ

2

)∣∣∣∣
]}

= const. (3.35)

Figure 14 gives examples of phase portraits (level lines of function (3.35)) for the relative motion
of three and six hetons, which have three and six radial axes of symmetry, respectively. In this case,
areas {3} take the form of hexagonal stars in the former case and dodecagonal stars in the second
(this is analogous to the case of two hetons, where such an area has the form of a four-point star —
figure 9a). It should be mentioned that in this case, the phase curves are constructed in the axes (x, y)
at different values of γ (see the figure caption), and changing to coordinates (γx, γy) will double the
linear scale in figure 14b.

Solutions of type {1} are still represented by motions in which hetons ’collide at a distance’ and
then move in opposite directions. Solutions of type {2} imply pairwise exchange of partners between
hetons that originally moved along adjacent axes of symmetry. Examples of these two types of motion
for n = 6 are given in figure 15. The calculation time intervals in this case are chosen so that the
final coordinates of each vortex in figure 15a coincide with the initial coordinates of its partner, and
in figure 15b represent its own mirror image with respect to an axis of symmetry that is individual for
each heton. Stable solutions of type {3} are associated with the rotation of vortices (in the anticyclonic
direction in the upper layer and cyclonic direction in the lower layer). At any moment, the vortices
in both layers lie in the vertices of regular n-polygons with periodically varying side lengths. The
side lengths are minimum at the moments when the respective polygons coincide in the planar view
(in this case we observe n hetons with vertical axes), and maximum when the vortices form a regular
2n-point structure (that is, one of the polygons is turned through π/2n with respect to the other). The
angular velocity of each n-polygon, conversely, attains its maximum in the first case and minimum in
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Fig. 14. Phase portraits (contours of the Hamiltonian) in axis (x, y) for a system of three (γ = 1) — (a) and
six (γ = 2) — (b) hetons uniformly distributed over a circumference. Notations {1}, {2} and {3} are the same
as in figure 8. Box markers denote the intersection points of separatrices.

the second. However, purely periodic solutions of this type exist only for n = 2 (i. e., at N = 4, when,
with the condition of zero total intensity of vortices, the system is integrable); only quasi-periodicity
is possible at n > 2. Moreover, as will be shown in section 3.4.2, solutions of type {3} can even be
unstable.

Saddle-type unstable stationary states of the vortex system are shown in figure 14 by points
marked by shaded squares. The polar coordinates of the saddles can be found by equating the right-
hand parts of equations (3.33)–(3.34). Thus, from (3.33), we have

φ = π/n,

and (3.34) can be reduced to a transcendent equation

1
2R

= S
(
0, π

n

)
+

n−1∑

α=1

[
S

(
α, 0

)
+ S

(
α, π

n

)]
, (3.36)

where R = γr. Let the solution of (3.36) for any fixed n be denoted by RS
max; then an equation

for RS
min (the distance from the centre to the nearest point of the separatrix) can be derived from

the condition that the respective image points should lie in the same phase curve, i. e., equating the
values of function Φ from (3.32) at R = RS

max and R = RS
min. In figure 16 the values RS

max(n)
and RS

min(n) are represented by hollow circles and triangles, respectively. It is worth mentioning that
both RS

max and RS
min are virtually linear functions of n. Shaded dots and triangles show the locations

of RN
max(n) and RN

min(n), respectively (the maximum and minimum distance from the centre to the
instability domain boundaries). The region of ‘regular splitting’ in this figure relates to type {1}
and {2} motions, while the region of ‘confinement’, to finite quasi-stable solutions of type {3}. This
figure will be discussed in more detail in section 3.4.2 below.

The heton analogies of von Kármán streets [79], [80], [84] (see figure 17) provide an example of an
integrable heton system comprising an infinite number of vortices. The streets consist of two parallel
vortex rows with a period of a. One row is in the upper layer, and the other in the lower. The vortices
belonging to different layers have opposite signs. The rows are separated by b. In the antisymmetric
street (figure 17b), vortices from the lower layer are off set by a half period relative to those from the
upper layer. The accurate integrability of equations in this case is due to the invariance with respect
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Fig. 15. Trajectories of motion of types {1} — (a), and {2} — (b) for a heton system with initial coordinates
specified by formulas (3.29) at n = 6, r = 9, φ = π/24 — (a) and φ = π/18 — (b). The initial locations of
vortices are specified by large markers (the circle is for the upper layer, and the box for the lower), and the final
locations by small markers.

Fig. 16. The state diagram of an n-symmetrical heton configuration with initially vertical axes for n =
= 2, 3, . . . , 12. The inclined dashed lines are ‘continuations’, into the origin of coordinates, of imaginary curves
that pass through RS

min(n) and RS
max(n). The locations of crosses correspond to the calculation parameters

presented in figure 19. Other explanations for the figure are given in the text.
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Fig. 17. Schematic representation of the geometry of vortical heton paths: (a) — symmetrical; (b) — antisym-
metrical paths.

to a shift in the period along the street. As shown in [79], [80], von Kármán heton streets move with
a constant velocity in the direction of the street axis. The velocity of a symmetrical street for models
with equal layer thickness is given by the equation

u = κ
4a

coth πb
a − κγ

4π

[
K1(γb) + 2

∞∑

α=1

b√
(αa)2 + b2

K1

(
γ
√

(αa)2 + b2
)]

, (3.37)

and the velocity for an antisymmetric streets, by:

u = κ
4a

tanh πb
a − κγ

4π

∞∑

α=1

2b√
(a/2 + αa)2 + b2

K1

(
γ
√

(a/2 + αa)2 + b2
)

. (3.38)

The streets move without changing their shape because the velocity induced by other vortices in the
point of location of each vortex is equal to the translation velocity of the street as a whole. The first
term in (3.37)–(3.38) accounts for the barotropic interaction between vortices, and the second term
for the baroclinic interaction. The barotropic term dominates at large distances between the rows,
and street velocity coincides with that of classical von Kármán streets for this limit. As the period
a tends to infinity, the velocity of the symmetrical street tends to that of an individual heton (3.9).
Figure 18 demonstrates the dependence of stratification σ = γa and the relative thickness of the layers
on asymmetry parameters k = b/a. A diagram of state which classifies the existence domains of heton
streets at different values of k, as well as a complete analysis of limiting cases, is given in [79], [80].

In the barotropic limit σ → ∞, the conditions of street linear stability are similar to the classi-
cal [127]. Screening of vortices (finite values of σ) increases the stability of streets. This effect, within
the context of approximation based on the equivalent-barotropic model, was studied in [139]. The
stability of solutions of (3.37)–(3.38) in a complete formulation has not been studied.

Although the range of problems that allow exact integration, is clearly not exhausted by the
examples considered, it is limited and fails to give a comprehensive notion of the behaviour of heton
systems.

3.4.2. Quasi-regular and chaotic heton dynamics

Systems with n > 2 hetons in a general location are not integrable, since they do not have a sufficient
number of integrals of motion (the total number of vortices that form hetons is N > 4). The dynamics
of heton populations reflects a complex coexistence of regular and chaotic regimes [97], [129], [55],
[43], [44], [84]. The realization of one or another regime depends on the problem parameters and
boundary conditions. The simplest examples of nonintegrable situations arise even with a stochastic
disturbance of the initial heton locations in the case of the n-symmetric heton configurations discussed
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Fig. 18. Velocity C of symmetrical (Sd) and asymmetrical (Ad) von Kármán heton vortex streets, standardized
by κ/2a, as a function of parameter k at different values of parameters σ = γa and δ = h1/(h1 + h2).

above. Indeed, numerical experiments show that the introduction of small random disturbances (white
noise) εα (max εα 6 0.01) in the coordinates of vortices

Rα
j

∣∣
t=0

= R̄ + εα (3.39)

results in an instability of the symmetric solution of (3.32) within interval R̄ ∈ [
RN

min, RN
max

]
, where

RN
max 6 RS

min (see ’nonregular splitting’ region in figure 16).
Analysis of numerical experiments shows that instabilities of two types occur:

• At n ∈ [3; 5], the instability is due to the baroclinic interaction between vortices from different
layers (the equivalent-barotropic subsystem of vortices in each layer is stable [74]). In this case,
the instability zones in the phase plane belong to area {3} — their external boundaries are
located at a finite distance from separatrices - and hence the layer of stochasticity, which forms
near the points of separatrix intersection, has almost no effect on the behaviour of the vortex
system.

• With an increase in n (at n > 6), in addition to the interaction between layers, the role of
barotropic instability increases, associated with the interaction between vortices within a layer.
As shown in figure 16, the outer boundaries of the instability areas belong to a circumference,
which reaches as far as the points of separatrices with the minimal distance of RS

min from the
centre. The internal boundary of the irregular scattering domain at n > 7 runs along an
asymptote (shown by the horizontal dashed line in the figure), determined by the value of RS

min

for n = 2.

Note that the coexistence of the chaotic and quasi-regular motions in a problem with an analogous
formulation was mentioned in [97] at n = 6. The boundaries of the instability domains established in
[97] coincide up to ε with those shown in figure 16.
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Some results of calculations for n = 3, n = 6 and n = 10 are given in figure 19. It should
be mentioned that, as stated in the list of features of instability types, at n = 3, motions of finite
character (figure 19.4.a) are observed at R̄ ∈ [

RN
max; RS

min

]
, i. e., beyond the local region of nonregular

splitting. However, the motion instabilities are quasi-ordered within the region (figure 19.2.a, 19.3.a).
The upper part of figure 20 shows a segment of vortex trajectories for the second of these cases, for a
short stage of the passage the splitting regime after all vortices have made two complete revolutions
around the closed star-shaped trajectories. The initial and final moments of this time interval are
denoted by T1 and T2, respectively. The lower part of the figure gives more detailed configurations of
the vortex triplets in both layers in the initial, intermediate, and final moments. The future motion
of the vortex pair in the upper part of the figure will be virtually rectilinear, while the two two-layer
pairs in the lower part will move in the opposite direction, taking part in the ‘reshuffle’ of vortices.

The analysis of behaviour of an n-symmetrical heton configuration in the instability domain is,
in general, a problem that has not been solved yet8.

Numerical experiments [97] with 37 hetons (N = 74), which originally are uniformly distributed
over a hexagonal domain, at different values of γ, also suggest the possible formation of both chaotic
and quasi-ordered (at least in the initial stage of evolution) two-layer structures.

The evolution of a heton population uniformly distributed within a circle or an ellipse has been
studied by Legg and Marshall [129] while Danilov et al. [43], [44] have studied its evolution within a
fixed-width band, and Doronina, Gryanik, et al., [55], [84] on a circle.

It should be emphasized that the behaviour of sufficiently complex heton-type vortex structures
(at least for N > 4) may feature both finite and infinite types of motion. In the latter case, interaction
results in the splitting of hetons with tilted axes. An individual heton, as shown in section 3.1, moves
uniformly along a straight line. Estimates and calculation results show that, in the case of several
hetons moving away from one another, their velocities are almost constant (in this case, the interaction
between different hetons basically determines the directions in which they split). Thus, with a vortex
system that behaves regularly, we can accept with complete confidence that the law of barocline vortex
spreading is linear (with respect to time). This law also turns out to be valid in the stochastic regime.
Confirmation of this observation was obtained in [43], [44], [55], [84].

4. Finite-core hetons

The model of discrete vortices considered above is extremely idealized. True vortices always have
a finite horizontal scale. The next step towards reality can be the model of vortex patches — finite
domains with constant vorticity, which where discussed in section 2. Finite-core vortices are distinct
from discrete ones in two principal ways. First, they are characterized by instability (even for a solitary
heton) [119], [10], [14], [15], [16], [17], [100], [166], [93], [186]; second, a tendency towards merging of
like-sign vortex patches that are located close to one another [174], [32], [99], [147], [186], [203], [210],
[209].

Generally it is considered that, if several finite-size vortices are far enough away from one another,
their interaction would differ only slightly from the interaction of equivalent discrete vortices. Analysis
of numerous concrete calculations shows this to be the case. Moreover, it has been found that in many
cases, within relatively wide ranges of external parameters, the behaviour of finite-core vortices that
are close enough to one another can be quite adequately described within the context of a simple
singular model. In fact, there are no general recommendations with respect to the applicability of the
discrete approach. However, in each specific case, it may be chosen by using numerical experiments,
as was done, in particular, in [186], [189]. The discrete vortex method [13] is widely used and known

8In the limit at γ → 0, i. e., ∆ρ →∞, there is almost no interaction between vortices located in different layers, and
we have the problem [127], [113], [148], [74], [12], [155], [121], [122] of the evolution of n-polygonal vortex structures —
anticyclonic in the upper layer and cyclonic in the lower layer.
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Fig. 19. Trajectories of hetons with initially vertical axes, localized in vicinities of vertices of regular n-polygons
with random disturbances in their radial coordinates in accordance with equations (3.39), when their average
distance from the centre is R̄ = r + ∆r(i − 1), where i is the number of the column in the figure: (a) n = 3,
r = 0.7, ∆r = 0.15; (b) n = 6, r = 0.9, ∆r = 0.5; (c) n = 10, r = 0.7, ∆r = 1.01 (these parameters correspond
to the locations of crosses in figure 16).

Fig. 20. Top: detailed presentation of the process of passing to the infinite regime for a three-heton system
according to the scenario in figure 19.3.a. Bottom: a set of synchronous triangular configurations constructed
on vortices from the upper (solid line) and lower (dashed line) layers. Arc arrows show the respective directions
of rotation at the stage preceding the scattering of vortices.
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Fig. 21. Neutral stability curves for different modes — (a), and increments in their growth for the case of
equal-thickness layers — (b).

to yield applicable results. This approach, in particular, allows modelling the dynamics of an isolated
finite-size vortex through the choice of an optimal set of a specified number of discrete vortices.

We will use a more efficient and, in our opinion, more convenient contour dynamics method
(CDM). The CDM was used in [181], [182], [186], [187], [189] to consider a series of problems involving
heton interaction. Here we will take a quick look at two problems — the stability of an axially
symmetric heton (in the context of the problem of splitting two-layer vortices) and interaction between
two finite-core hetons which initially had vertical axes.

4.1. Evolution of a solitary heton

Consider a finite-core heton which, in the undisturbed state, has an axially symmetric form: a two-
layer structure comprising round vortex patches of unit radius located exactly one under the other.
This state is a stationary solution of the conservation equations of potential vorticity (2.1), and the
question of the stability of this solution naturally arises.

4.1.1. On the linear analysis of heton stability

Let fluid lines coinciding with the external boundaries of the vortices be described by the parametric
relationships

r = fj

(
θ, t; α

)
, α = fj

(
θ, 0; α

)
, j = 1, 2, (4.1)

where parameter α characterizes the radial Lagrangian coordinate of points belonging to contours,
and θ is a polar angle. Let us present the function in the form

fj

(
θ, t; 1

)
= 1 + εj exp

[
i m (θ − δmt)

]
, |εj | ¿ 1, j = 1, 2, m > 1, (4.2)

where m is the number of the azimuthal mode, and i is the imaginary unit. Clearly condition Im δm > 0
must hold for unstable modes.

The algorithm for examining stability was described in [119]. In essence, the problem reduces to
the analysis of the solution of a system of linear algebraic equations in εj .
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Fig. 22. Evolution of an unstable heton with regular initial disturbances of contours at γ = 14. The solid line
corresponds to the contours of the upper vortex patches, and the dashed line to the lower ones.

Fig. 23. Evolution of an unstable heton with random initial disturbances of contours at γ = 14. Synchronous
configurations of the vortex patches in the upper and lower layers are shown in the upper and lower lines of the
frames, respectively.
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Figure 21 shows the of neutral stability curves of unstable modes in the plane (h1, γ) and the
increments in these modes at h1 = h2 = 1/2 (the calculations discussed below have been made for this
case). In figure 21a, the instability domain of each of the modes corresponds to the part of the plane
above the respective neutral curve. Obviously, modes with m > 2 can be unstable, and the minimum
stability margin is characteristic of the case of equal-thickness layers. The number of unstable modes
increases with increasing γ (compare with the example in section 3.4, where an increase in γ for
discrete hetons, uniformly distributed over a circumference, was accompanied by a transfer from finite
to infinite motions, which is analogous to the decay of an unstable vortex structure).

4.1.2. Modeling the nonlinear phase of heton instability

Calculations made in [119], [186] show that linear analysis of stability correctly predicts the initial
phase of instability development, that is, the maximum-instability modes derived from this analysis
are, as a rule, those that occur in reality.

If we begin the CDM-based study of the evolution of an unstable vortex from its undisturbed state,
the transition to its decay phase will sooner or later take place due to the so-called ’computational
noise’ caused by errors inevitable in any numerical calculations. The transition to the nonlinear
instability stage can be facilitated by introducing small (regular or random) disturbances in the vortex
contours. However, if the growth increments of several unstable modes are close to one another, the
artificial initial disturbances can bring about the development of instability in a mode other than the
most unstable one. Such a case is illustrated by figure 22, where the decay of a heton is shown for
a situation where, theoretically, the sixth mode exhibits maximum instability, but where the small
disturbances (with an amplitude of 0.02), introduced into the heton contour at the initial time moment,
corresponded to m = 10 with the result that the tenth mode formed. The time corresponding to each
fragment is shown beneath it (the dimensionless time unit is half the rotation period of a fluid particle
belonging to the boundary of the undisturbed vortex). Figure 23 gives an example of the evolution of
an unstable heton at γ = 14 for the initial conditions where 120 uniformly distributed marker points
were specified at each contour and the fluid particles were subjected to random shifts in radial direction
with an amplitude of 0.05. Decay obviously takes place in an essentially asymmetrical regime. To
make the figure more comprehensible, the configurations of the vortical patches in the upper and lower
layers are artificially offset in relation to one another.

4.2. On the interaction of two finite-core hetons

Different cases of interaction between two finite-core hetons with tilted axes, whose initial locations are
symmetrical with respect to one of the axes, have been studied in [181], [182], [186], [187]. However,
in order to demonstrate the principal differences with respect to the discrete vortex model we will
consider a particular case involving hetons with vertical axes.

Let the vertical axes of two two-layer unit-radius vortices, each consisting of two round vortex
patches (in the upper and lower layers), be separated by space b. Figure 24 shows their possible states
in this part of the plane of parameters (γ, b/2). Here, the dashed line denotes the boundary, defined
by the solution of equation (3.27), dividing the plane into parts with finite (on the left) and infinite
(on the right) behaviour of discrete vortices. As can be seen, this line matches the case of finite-core
vortices between domains S3 and S1 quite adequately. It is important to note that this effect was also
obtained in [203], where calculations were made with the help of the differential pseudo-spectral code
with allowance made for dissipation (biharmonic friction)9. It is clear, however, that the interaction of
finite-core vortices is far more complicated and has many differences. We will restrict our consideration
to three examples, relating to S2, S1, and U1 types, represented in the diagram by circle markers (here

9Legras and Dritschel [134] compared the calculation results using the pseudo-spectral method and CDM and found
them to be qualitatively similar. However, the authors of [134] believe the CDM to be more convenient for studying the
processes of vortex filament formation, and vortex merging and division.
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Fig. 24. Diagram of possible regimes of two finite-core hetons consisting of round unit-radius vortex patches,
which initially had vertical axes separated by b in the rectangular domain (γ ∈ (0; 3]; b/2 ∈ [1; 3]). Denotations
for regime subdomains: S1 corresponds to the motion of hetons in opposite directions along the straight line
passing through their centres in the initial time moment (an analogue of type {2} motions for discrete vortices);
S0 is the same regime as S1 but after temporary merging of vortex patches in layers and their subsequent sep-
aration; S2 corresponds to merging of originally round patches into quasi-elliptical vorticity structures rotating
in opposite directions; S3 corresponds to layer-by-layer rotation of vortex patches in opposite directions (an
analogue of type {3} motions for discrete vortices); U0 corresponds to heton merging and subsequent division
into more than two hetons moving away from one another; U1 correspond to the moving of two hetons away from
one another accompanied by their decay with the formation of four new hetons; U2 corresponds to the decay
of hetons with the formation of non-compensated two-layer vortices, subsequent merging of vortex patches and
re-formation of hetons; U3 corresponds to the decay of hetons into two-layer vortices moving away from one
another without subsequent merging.

Fig. 25. Example of formation of an S2 type vortex structure (γ = 0.6; b = 1.5).

the distance between the centres of vortex patches is fixed, and the stratification parameter γ takes
of different values).

Figure 25 shows the evolution of a configuration in the case when the vortex patches in both layers
merge to form quasi-elliptic vortices while rotating in opposite directions. Note that no evolution takes
place in the system within the time interval from 2 to 5 dimensionless time units, when the centre
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Fig. 26. Example of formation of S1 type vortex structure (γ = 0.7; b = 1.5)

Fig. 27. Example of formation of U1 type vortex structure (γ = 1.8; b = 1.5)

of each vortex lies in the neighborhood of a fixed saddle point (stagnation point) — the respective
marker in figure 24 is very close to the boundary between the finite and infinite motion domains.

Figure 26 shows the formation of hetons with tilted axes and their subsequent divergence. The
fact that an insignificant difference in parameter γ between this and the previous experiment makes
the results essentially different suggests that the solutions to the respective system of equations are of
a ‘rigid’ nature.

An interesting example of interaction between hetons under the conditions where they are unstable
is shown in figure 27 for the case of a relatively weak stratification (or small deformation radius). At
the initial stage, the hetons start moving away from one another; however, in doing so, each heton
divides into two two-layer pairs, such that one continues moving in the same direction, and the other
in the opposite direction. Next, the vortex patches of the hetons involved in the movement towards
one another merge temporarily in each layer, then break down, and the newly formed two-layer pairs
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move away in the normal direction. If we compare the resultant effects of the interaction of two hetons
in this and previous figures, without going into detail regarding intermediate processes, we see that
two two-layer pairs moving away from one another form in the first case, and four such pairs form in
the second.

The examples considered above, though illustrating only certain features of the interaction be-
tween finite-core vortices, demonstrate, in our opinion, the wide diversity of vortex interaction. Dif-
ferent types of interaction between finite-core hetons are discussed in more detail in [181], [182], [186],
[203], [204], [205].

5. Other heton theories and the range of applications of the
two-layer model with layers of equal thickness

Most of the results in this paper pertain to the case of equal h1 and h2. The effect of different
layer thicknesses in a two-layer fluid (in particular, for hetons, when h1

∑N1
α=1 Πα

1 + h2
∑N2

α=1 Πα
2 = 0)

has been studied in [71], [119], [44], [219]. An important effect of layers of different thickness is the
increased stability of a solitary axially symmetric heton (N1 = N2 = 1) with a vertical axis. Thus,
it can be seen from figure 21a that a heton where h1 = h2 has the minimum stability reserve for all
unstable modes.

The dynamical consequences of the condition h1 6= h2 are similar to those found in multilayer and
continuously stratified models, where they are most impressive. We will now consider such models.

5.1. Multilayer model

In multilayer models, the dynamics of discrete vortices, for which the potential vorticity takes the
form (2.11) with j = 1, 2, . . . , M (M is the number of layers), is described by Hamiltonian equations
of the form 2.15 with the Hamiltonian

H = − 1
4π

M∑
j=1
m=1

Nj , Nm∑
α=1
β=1

hj

[
Uj1U

−1
1mκα

j κβ
m ln γ∗r

αβ
jm −

M−1∑

k=1

UjkU
−1
kmκα

j κβ
mK0

(
γkr

αβ
jm

)]
. (5.1)

Here γk are eigenvalues of the potential vortex operator, such that 0 = γ0 < γ1 < γ2 < . . . <
γM−1, and Ujm is a matrix with dimensions of M ×M , composed of the respective eigenvectors. The
structure of the flow induced by vortices is characterized by several Rossby scales (Lk = 1/γk). The
potential vortex can be distributed either uniformly over the thickness of each layer or within several
layers.

A hierarchy of hetons exists in the multilayer model [86], [88]. The integral vorticity of each
heton is zero. The vertical vorticity distribution follows the structure of the baroclinic modes of the
potential vortex operator. Therefore, it is natural to call such baroclinic vortex structures m-modal
hetons (m = 1, 2, . . . , M − 1)10.

The case of M = 2, corresponding to a two-layer model, involves only one baroclinic mode, i. e.,
a mere heton. At M > 2, only the first of m-modal hetons is very close to a two-layer one (figure 28).
However, even in this case, the structure of the velocity field induced by the heton, and hence the
velocity of its propagation, depend on more than only the first Rossby baroclinic radius. When all
the vortices lie along the same vertical, this m-modal heton will be considered, as before, to have a
vertical axis, whereas when the vortices are offset in relation to the vertical, it will be considered to
have an arc-like axis.

10In our opinion, the term modon, which was applied to such vortices in [86], [183], would be more suitable. However,
in the oceanographical literature, the term modon has already been associated with finite-core dipole vortex structures
[195], [107], [103]).
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Fig. 28. Schematic representation of a finite-core heton with a vertical axis — (a), with tilted axis — (b), and
with arc-wise axis — (c) in the case of a three-layer fluid with layers of equal thickness: 1) 1-modal heton;
2) 2-modal heton.

For example, in the case of a model with three equal-thickness layers h1 = h2 = h3 = h and
∆ρ1 = ∆ρ2 = ∆ρ, we have γ1 = 0, γ2 =

√
F = γ, γ3 =

√
3F = γ

√
3, where F = ρ∗Ω2/gh∆ρ. If the

distance between the vortices is l, then, by introducing the dimensionless distance L = l
√

F = lγ, we
find that the propagation velocity of a 1-modal heton with κ1

1 = −κ1
3 = κ, κ1

2 = 0 (figure 28.1.b)11,
a non-zero momentum, and zero angular momentum is

v =
γκ

3πL

[
1−

√
3LK1

(√
3L

)]
(5.2)

(compare with (3.9)).
A 2-modal heton with an arc-like axis, comprising vortices with intensities of κ1

1 = κ1
3 = κ,

κ1
2 = −2κ (see figure 28.2.c), moves with a velocity of

v =
γκ

6πL

[
1− 3L

2 K1(L) +
√

3L
2 K1

(√
3L

)]
. (5.3)

Comparison of (5.2) and (5.3) shows that the velocity of an m-modal heton decreases with in-
creasing m because of the increasing degree of localization in the horizontal direction.

However, when a 2-modal heton has zero momentum (figure 28.2.b), it has no translational
motion, and the angular velocity of its rotation is

ω =
γ2κ

6πL2

[
3
2 − 2

√
3LK1

(√
3L

)
+ 3

2LK1(2L)−
√

3
2 LK1

(
2
√

3L
)]

. (5.4)

Note that vortex structure (5.4) incorporates the properties of a heton (zero total intensity) and
an analogue of an ordinary (two-tier) roundabout. Therefore, it is natural to call this structure a
three-tier roundabout.

Let us consider several more examples of solutions describing uniformly rotating vortex structures
in a three-layer fluid:

11Discrete vortices are meant in this case, and the references to this figure pertain to the locations of the centres of
vortex patches.
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• A tripole, localized in the upper
(
κ1

1 = −2κ, κ2
1 = κ3

1 = κ
)

or lower
(
κ1

3 = −2κ, κ2
3 = κ3

3 = κ
)

layer, the peripheral vortices of which rotate with an angular velocity of

ω =
γ2κ

6πL2

[
3
2 + 3LK1(L) +

√
3LK1

(√
3L

)
− 3

2LK1(2L)−
√

3
2 LK1

(
2
√

3L
)]

. (5.5)

• A tripole, localized in the middle layer
(
κ1

2 = −2κ, κ2
2 = κ3

2 = κ
)
, with an angular velocity of

ω =
γ2κ

6πL2

[
3
2 + 4

√
3LK1

(√
3L

)
− 2

√
3LK1

(
2
√

3L
)]

. (5.6)

• A roundabout, comprising vortices with intensities of κ1
1 = κ2

1 = κ in the upper layer (or κ1
3 =

= κ2
3 = κ in the lower layer) and the central vortex κ1

2 = −2κ in the middle layer. The angular
velocity is

ω =
γ2κ

6πL2

[
3
2 − 2

√
3L

(
K1

(√
3L

)
+ K1

(
2
√

3L
))]

. (5.7)

• A symmetric inverse roundabout, comprising two vortices in the middle layer κ1
2 = κ2

2 = κ and
one vortex in the upper κ1

1 = −2κ (or lower κ1
3 = −2κ) layer. In this case the angular velocity is

ω =
γ2κ

6πL2

[
3
2 − 2

√
3LK1

(√
3L

)
− 3

2LK1(2L)−
√

3
2 LK1

(
2
√

3L
)]

. (5.8)

• A symmetric roundabout, comprising a vortex κ1
1 = −2κ in the upper layer (or κ1

3 = −2κ in the
lower layer) and two vortices with intensities of κ1

3 = κ2
3 = κ in the lower layer (or in the second

case, κ1
1 = κ2

1 = κ , two vortices in the upper layer). The angular velocity is

ω =
γ2κ

6πL2

[
3
2 − 3LK1(L) +

√
3LK1

(√
3L

)
+ 3

2LK1(2L)−
√

3
2 LK1

(
2
√

3L
)]

. (5.9)

• Vortex structure with tilted axis, complementing (5.2), for which κ1
1 = κ1

3 = κ, κ1
2 = 0, and

determining a top with an angular velocity of

ω =
γ2κ

3πL2

[
1− 3L

2 K1(L) +
√

3L
2 K1

(√
3L

)]
. (5.10)

We note also the existence of heton nonmodal structures with tilted axes, localized either in the two
upper layers (κ1

1 = −κ1
2 = κ, κ1

3 = 0) or in the two lower layers (κ1
3 = −κ1

2 = κ, κ1
1 = 0), moving with

a velocity of
v =

γκ

6πL

[
1−

√
3LK1

(√
3L

)]
, (5.11)

and associated nonmodal structures of the top type (κ1
1 = κ1

2 = κ, κ1
3 = 0 and κ1

3 = κ1
2 = κ, κ1

3 = 0),
rotating with an angular velocity of

ω =
γ2κ

3πL2

[
1−

√
3LK1

(√
3L

)]
. (5.12)

The properties of hetons (5.11) were studied in [88], [46].
Studies condacted in [86] showed the interaction between 1- modal hetons (figure 28a) to be

analogous to the heton interaction in the two-layer model (see figures 9 and 10). In the case of the
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interaction of 2-modal hetons (figure 28a, right), type {2} trajectories become asymmetrical about
the y-axis because of the asymmetry that appears in the inter-layer interaction. However, a 2-modal
heton with an arc-wise axis forms asymptotically (at t →∞), see figures 28c and (5.3). Such a heton
is the simplest example of a quasi-stationary vortex cluster, if the vortex centres in the upper and
lower layers are offset with respect to one another by a small distance a. At a ¿ l, the interaction
between the upper and lower vortices results in their mutual rotation, i. e., the formation of a vortex
top, the interaction of which with an inversely rotating vortex in the middle layer brings about the
movement of the vortex system as a whole, i. e., a heton cluster. Heton clusters are typical examples
of a vortex structure in multilayer models [86], [88].

The possible existence of four discrete vortices was mentioned by Marshall [139] for the case of a
medium comprising four layers of equal thickness. The effects of both stratification and the finite size
of the vortex core in the generation of a chaotic state in the case of four and more layers are examined
in [139].

The dynamics of finite-core vortices within the context of a three-layer CDM-model was studied
in [183], [184], [185]. Here the stability of axially symmetric three-layer (and, in particular, modal)
vortex structures was examined and the numerical calculation results were shown to be in agreement
with the experiment [180]. It was shown also that disturbances of the upper and lower interfaces
between the layers with density jumps ∆ρ1 and ∆ρ2 such that ∆ρ1 À ∆ρ2 (which is typical of the
ocean) generate the development of low and high unstable modes, respectively. This corroborates an
analogous statement in [179] regarding the stability analysis of a three-layer flow in a channel.

The problem of stability and dynamics of finite-core three-layer modons (vortices with dipole
barotropic and axially symmetric baroclinic components) on β-plane is considered in [107].

5.2. Model of a continuously stratified fluid

Adiabatic quasi-geostrophic flows in a continuously stratified fluid are described by the potential vortex
equation Π(x, y, z, t) [102], [167]

DΠ
Dt

= 0, (5.13)

Π = ∇2Ψ + ∂
∂z

[
f2

Ñ2

∂Ψ
∂z

]
, (5.14)

where Ψ is the stream function and Ñ is the Brunt–Väisälä frequency.
The horizontal u = (u, v) and vertical w velocities, pressure anomalies p, and the density ρ are

related to the stream function by equations

u = −∂Ψ
∂y

, v = ∂Ψ
∂x

, (5.15)

w =
f

Ñ2

[
∂
∂t

∂Ψ
∂z

+
(
Ψ, ∂Ψ

∂z

)]
, (5.16)

p = fρ0Ψ, (5.17)

ρ =
fρ0
g

∂Ψ
∂z

. (5.18)

In this case, the potential vorticity is specified as localized along three coordinates

Π(x, y, z) =
N∑

α=1

Γαδ(x− xα) δ(y − yα) δ(z − zα), (5.19)
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Fig. 29. The velocity of an individual three-dimensional heton C(b, d) vs. the horizontal distance between
vortices b at vertical distances of 1) d = 0.25, 2) d = 0.5, 3) d = 0.75, 4) d = 1.

Fig. 30. Results of numerical experiments on the degeneration of a temperature anomaly, which are represented
by heton distributions in different time moments (a)–(c). Heton trajectories for a fixed time interval (d).

where Γα is the intensity of the vortex with the number α. This distinguishes the continuously stratified
models from multilayer models where the potential vorticity is assumed to be uniformly distributed
over the layer thickness.

The flow induced by three-dimensional point anomalies of potential vorticity (5.19) in a uniformly
stratified fluid with horizontal boundaries and a thickness of H, which can be described by Brunt-
Väisälä frequency Ñ , is characterized by the stream function

Ψ(x, y, z) =
N∑

α=1

ΓαG(x, y, z; xα, yα, zα). (5.20)
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Fig. 31. Numerical experiments with equilibrium temperature anomaly represented by heton distributions in
different time moments (a)–(c). Heton trajectories for a fixed time interval (d).

Fig. 32. Time dependence of the mean radius of temperature anomaly at different relative thicknesses of the
mixed layer: 1. hmix/H = 1/4; 2. hmix/H = 1/2; 3. hmix/H = 3/4; 4. hmix/H = 1, where H is the total depth.
The averaging was carried out over 10 realizations.

Green’s function G(x, y, z; x0, y0, z0) = G(r, z, z0) is specified as

G(r, z, z0) =
+∞∑

m=−∞

[
G0(r, z − z0 + 2Hm) + G0(r, z + z0 + 2Hm)

]
, (5.21)

G0(r, z) = − Ñ
4πf

(
r2 + Ñ2

f2
z2

)−1
2

, (5.22)

where G0(r, z) is Green’s function in an unlimited medium and r =
√

(x− x0)2 + (y − y0)2.
Calculating the energy of heton interaction H by using (5.19)–(5.22) and applying the standard

procedure for deriving the motion equations [71], we obtain the Hamiltonian equations of motion
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Fig. 33. Time dependence of 〈Rfr〉 for γ = 14 — 1; γ = 10 — 2.

for the horizontal coordinates of vortices. These equations coincide with (3.15) with intensities κ
replaced by Γ. The dependence of the Hamiltonian on the vertical coordinates zα in these equations
is parametric because the dependence of the evolution equation on the potential vortex in the quasi-
geostrophic approximation is also parametric. The system of equations obtained has integrals of
motion — momentum and angular momentum — which also coincide with the traditional analogues
with intensities κ replaced by the respective intensities Γ.

The closest to the two-layer model with layers of equal thickness (both in terms of kinematic and
dynamic properties) is the model of a continuously stratified fluid with a constant Brunt-Väisälä fre-
quency where quasi-three-dimensional hetons are composed of vortices with anticyclonic circulation
Γaα < 0 and coordinates xaα, yaα, zaα = H/4 and vortices with cyclonic circulation Γcα > 0 and
coordinates xcα, ycα, zcα = 3H/4 (symmetric model). The Hamiltonian of the heton system in this
case takes the form

H = −
N∑

α,β=1
α<β

[
ΓaαΓaβG

(
raα,aβ, H

2 , H
2

)
+ ΓcαΓcβG

(
rcα,cβ, 3H

2 , 3H
2

)]
+

+
N∑

α,β=1

ΓaαΓcβG
(
raα,cβ, H

2 , 3H
2

)
. (5.23)

In this model, the vortices are located symmetrically about the middle of the layer and also sym-
metrically within the equivalent upper 0 < z < H/2 and lower H/2 < z < H layers. Since the
vertical coordinates of the vortices zaα = H/4, and zcα = 3H/4 do not change during their motion
(the dependence of the Hamiltonian (5.23) is only parametric), the kinematic correspondence with the
two-layer model with equal-thickness layers holds within any time interval. In the general case, the
model of a continuously stratified fluid enables studying flows induced by hetons with an essentially
asymmetrical vertical distribution of potential vorticity [84].

In the case of quasi-three-dimensional hetons composed of vortices with a cyclonic circulation
Γcα > 0 and coordinates xcα, ycα on the surface of the fluid zcα = 0 and with an anticyclonic circulation
Γaα < 0 and coordinates xaα, yaα within the water volume zaα = h, the Hamiltonian takes the form

H = −
N∑

α,β=1
α<β

[
ΓcαΓcβG

(
rcα,cβ, 0, 0

)
+ ΓaαΓaβG

(
raα,aβ, h, h

)]
+

+
N∑

α,β=1

ΓcαΓaβG
(
rcα,aβ, 0, h

)
. (5.24)

Solution of the equations of motion with the Hamiltonian (5.24) for the case of a single heton
shows that the three-dimensional heton moves in the same manner as the two-dimensional heton
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(uniformly and rectilinearly) but with a velocity

C = − ∂
∂b

G(b, 0, d) =
+∞∑

m=−∞

2b[
b2 + (d + 2m)2

]3/2
, (5.25)

where C is standardized by Γ/2πHλ̃, b = |rc−ra|/λ̃, and d = h/H are dimensionless distances between
the vortices in the horizontal and vertical directions, respectively, and λ̃ = ÑH/f is the Rossby radius
in the continuous model.

A notion of the common features of, and distinctions between, the dynamics of vortices in the
continuous and two-layer models can be derived from the comparison of expressions for the velocity
of motion of an individual three-dimensional heton (5.25) and a two-dimensional heton (3.9), as well
as from figures 29 and 2.

The velocity has a solitary maximum, the magnitude of which decreases with increasing distance
between the vortices along the vertical coordinate. At b2 + d2 ¿ 1, solution (5.25) has an asymptotic

C = 2b(
b2 + d2

)3/2
, (5.26)

describing hetons in a semi-infinite medium H →∞ or in the limit of a small heton vertical dimension
d → 0. At b ¿ d, we have

C = b

[
2
d3

+ 1
4ζ

(
3, d

2

)
+ 1

4ζ
(
3,−d

2

)]
, (5.27)

where ζ(q, z) is the Riemann function. The heton velocity is maximum at d ¿ 1:

Cmax(d) = 4
3
√

3
1
d2

, bmax = d√
2
. (5.28)

The velocity of hetons increases linearly with distance for small b values, attains its maximum,
and then decreases in accordance with the algebraic law ∼ b−2, if distance b between the vortices is
greater than the local Rossby radius Ñh/f but less than the conventional Rossby radius λ̃ = ÑH/f .

Thus, analysis of (5.25) shows that at r 6 λ̃, the dynamics of vortices in the continuous model
essentially differs from the respective dynamics in the two-layer and multi-layer models. To examine
the relationship between the continuous and multilayer models at scales r À λ̃, we write Green’s
function in an equivalent form

G(r, z, z0) = 1
H

[
g0(r) +

∞∑

m=1

gm(r)Zm(z)Zm(z0)

]
, (5.29)

gm(r) =





1
2π

ln
(

rec

2L∗

)
, m = 0,

− 1
2π

K0(λmr), m = 1, 2, ... ,

(5.30)

Z0 = 1, Zm = cos
(

πm
H

z

)
, m > 1, (5.31)

where λm = πm/L, c is Euler’s constant.
Although the structure of Green’s function in the general case depends on the Brunt–Väisälä fre-

quency profile Ñ(z) and boundary conditions, the asymptotic behaviour of Green’s function is universal
at both small and large scales and can be adequately approximated by expressions (5.22) and (5.30).
At small scales (r ¿ λ̃), the stratification can always be approximated by a linear velocity profile
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(constant Brunt–Väisälä frequency), and hence Green’s function is algebraic, see (5.21) and (5.29).
At large scales (r À λ̃), Green’s function has a universal barotropic (logarithmic) asymptotic and is
insensitive to the details of stratification, see (5.22) and (5.30).

Taking the first two terms (m = 1, 2) in expansions (5.22) and (5.30), we find that the vortex
interaction in the continuous model at scales r À λ̃ coincides with that described by the two-layer
model with the effective intensity of two-layer vortices κ = ΓH. Thus, for the velocity of a solitary
heton at b > λ−1

1 , we have

C = 2
b

[1 + λ1bK1(λ1b) cos (πd)] , (5.32)

with an estimate for the maximum velocity

Cmax(1) = 0.8, bmax = 1.11λ−1
1 . (5.33)

The velocities of a solitary heton and a heton in a two-layer fluid coincide exactly in the symmetrical
model, see (5.24). The expression for the velocity obtained within the context of the same approxi-
mation as (5.32) has the form

C = 1
b

[1− λ1bK1(λ1b)] , (5.34)

and after identifying λ−1
1 as the Rossby radius of the two-layer model and γ as κH, this equation

coincides with (3.9). Incorporating the next N terms m = 3, ..., N in the expansion of Green’s function
for the model of a continuously stratified fluid (5.29) yields modifications that have analogues only
in equivalent N -layer models. The aforementioned asymptotic equivalence of continuous and N -layer
models shows that the classification of stationary heton-type vortex structures for N -layer models
(reflected in Table 2) also holds in the case of a continuously stratified fluid. The solution for hetons
with arc-type axes and for triangular hetons is given in explicit form in [73].

The dynamics of hetons in the continuous model was examined in [72], [73], [79], [136]. A
number of exact solutions for a model of a semi-infinite medium were obtained in [72]. In [79], an
interpretation is given of the equations of motion for two hetons described by the Hamiltonian (5.29)
and the interaction of hetons randomly distributed over a circumference is examined. The dynamics of
a heton population is described in more detail in section 6.1 in the context of the problem of simulating
heat transfer during the development of deep convection in the ocean. The problem of the formation
of heton clusters is discussed in [136]. Lim and Majda [136] suggested a generalization of the theory
[72], [79] through the incorporation of surface temperature anomalies. This generalization, however,
is merely terminological, since, in according to the Bretherton theorem [29], it does not cause any
new effects because the properties of surface temperature anomalies coincide, both kinematically and
dynamically, with the properties of potential vorticity anomalies, when the latter are located on the
surface. This equivalence is accounted for implicitly in models [72], [79].

The effect of the finite vortex size in the continuous model can be taken into account, for example,
within the context of the distributed ellipsoidal vortex approximation. In this case, the potential
vorticity is assumed to be uniform within the ellipsoid and zero outside it [221], [222], [223], [224], [146],
[197]. The equations of motion for the centres of ellipsoids and their axes form a closed Hamiltonian
system of equations [222], [146]. As shown in [222], [197], assuming that the ratio of the ellipsoid size to
the distance between ellipsoids is small, the equations of motion of centres coincide with the equations
of motion of discrete vortices. The same conclusion also holds for arbitrary localized three-dimensional
anomalies of potential vorticity with a finite carrier [73].

An illustrative example of a CDM application within the context of the model of a continuously
stratified fluid [115] is provided by Kozlov and Mazur [118], who studied the evolution of an ellipsoidal
vortex approximated by a set of infinitely thin fluid disks. The authors examined the process of the
breaking down of an unstable strongly elongated elliptic disk, thus demonstrating a possible mechanism
for the formation of the quasi-circular intra-thermocline lenses observed in the North Atlantic.
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Summarizing the results discussed in sections 5.1-5.2, we can conclude that the two-layer model
adequately reproduces the asymptotic dynamics of vortices in a multilayer fluid at scales greater
than the first Rossby scale but far smaller than the Oboukhov scale (L∗ À λ̃ > L1). The same
property [84] persists in continuous-stratification models for localized three-dimensional vortices [72],
[79], [84], [197], [136]. It should be remembered, however, that both the multilayer and continuously
stratified models can have solutions for which there are no direct analogues in the two-layer model,
for example, a two-mode heton (5.3) and a three-tier top (5.4).

6. Some applied aspects of heton theories

The heton concept is used in tropical meteorology for studying the mechanisms known to control the
dynamics of developed tropical cyclones (hurricanes), for example, their typical trajectories [61], in
oceanology for the examination of the mechanisms that characterize typical trajectories of Mediter-
ranean intra-thermocline [98] and deep-seated [197] lenses, and in the investigations of possible scenar-
ios of heat transfer by localized baroclinic vortices that form during the development of deep convection
in the ocean [128], [129], [141], [50], [43], [44], [84]. All the geophysical vortex structures mentioned
above have a number of features in common, such as their essentially baroclinic nature (since they
form in a stratified medium), their local character because of their generation due to the action of
local heat (or mass) sources, and, finally, their zero total potential vorticity due to the fact that heat
sources do not generate total angular momentum. Thus, the necessary conditions for the applicability
of heton theories are met.

6.1. Heton theories and the problem of heat transfer in deep convection

In its purest form, the heton theory is widely used in studying the dynamic phase of the development
of deep convection in the ocean [129], [130], [141], [84], [50], [44], [77], [78].

Deep convection develops when the ocean surface cools in a local area with the characteristic
dimensions greater than the Rossby radius. The cooling causes convective mixing of the top oceanic
layer and brings about the formation of a temperature anomaly. The downwelling of the cooled
fluid is controlled by rotation [51], [26], [27], [28], [59], [92], [141], [101], [30], [156], [217] with the
resulting formation of an anomaly of potential vorticity with a cyclonic circulation at the surface
and an anticyclonic circulation in the main water body, that is, with the formation of a heton [129].
The temperature anomalies with a strong horizontal heterogeneity are approximated by populations
of discrete hetons, while quasi-homogenous anomalies are approximated by finite-core hetons, which
can be quite adequately described by using CDM. Thus, studying the subsequent evolution of the
temperature anomaly reduces to the problem of nonlinear heton dynamics.

With larger potential vorticity anomalies, which satisfy the conditions of the development of
baroclinic instability, smaller hetons form at the boundary of the anomaly. These hetons separate
from the boundary and freely propagate through the water mass, where they execute horizontal
mixing. The heton formation phase can be adequately described by the linear instability theory (see
section 4.1.1), whereas the scatter phase is clearly illustrated by the problem of N discrete hetons,
uniformly distributed over a circumference (figures in section 3.4.2), and the problem of the breaking
down of an unstable finite-core heton (figures 22 and 23).

Examples shown in figures 30 and 31 demonstrate the evolution of a heton population in the
context of the model of a continuously stratified fluid with a constant vertical density gradient. The
initial distribution of hetons in figure 30 over the circumference is random, and their spreading simu-
lates the degradation of a temperature anomaly. The hetons in figure 31 are randomly generated on
a circumference. This model describes a stationary temperature anomaly, where the heat flux from
the surface is balanced by the heat flux carried by hetons [129]. The results of a large number of
numerical experiments [84] show that the mean radius of a degenerating temperature anomaly (at
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different values of the mixed layer thickness hmix) increases linearly with time (figure 32). Calcula-
tions for finite-core vortices (see section 3.1.2 in this paper) demonstrate that the degeneration of an
anomaly in the case of finite-core vortices, like the discrete vortices, can be described by a linear law.
This fact is corroborated by figure 33, which shows time dependencies of the mean front of vortex
motion 〈Rfr〉. The averaging was conducted both over the points (over the 10 fluid particles in each
layer that are furthest from the initial vortex centre) and over the realizations (10 realizations) for
each of the specified values of γ.

6.2. Parametrization problem of vortical heat transfer

Convective temperature anomalies have been shown to play an important part in the heat balance of
the ocean [141]. In ocean general circulation models, mesoscale heat transfer is commonly considered
to be of the diffusion type (proportional to the local temperature gradient) [217], [65], [160], [140]. In
models involving a constant diffusion coefficient, the mean radius of the temperature anomaly increases
as 〈R〉 ∼ t1/2. In models based on a nonlinear diffusion coefficient proportional to the temperature
gradient, the growth of the mean radius is even weaker: 〈R〉 ∼ t1/3. As follows from the results
discussed in sections 3 and 4, the heton theory and numerical experiments provide convincing evidence
of a linear law 〈R〉 ∼ t, which leads to more efficient heat transfer than the diffusion law. The problem
of constructing a physically based parametrization to take into account the non-diffusive character
of heat transport by hetons, has not yet been completely solved [128], [193], [84]. An approach to
this problem based on the description of dynamical and statistical processes was proposed in [49],
[50] within the context of the equilibrium statistical theory and in [84] within the context of the
inequilibrium kinetic theory.

7. Conclusion

The review of publications and the original results given in this paper show that, within a little more
than 20 years of its appearance, the theory of localized baroclinic vortices has evolved considerably
and contributed to many, sometimes surprising, results. At the same time, this theory has found fields
for application in both meteorology and oceanology. The concept of hetons — baroclinic vortices with
zero total intensity — has proved to be useful and has enabled the identification of a range of important
problems that can be treated completely and coherently within the context of the approximation of
quasi-geostrophic discrete and finite-core vortices. This success has been to the physical consistency
of the analytical heton theory and the simplicity of its implementation in numerical experiments. The
two-layer geostrophic heton model has shown itself to be a basic minimal model that takes into account
the baroclinic nature of vortices in a stratified uniformly rotating fluid in its simplest form.

The heton theory provides a basic for the classification of the types of stationary vortex structures
in a baroclinic fluid. Tables 1 and 2 synthesize the principal stationary states of heton structures
discussed in this paper.

The heton theory, when used within the range of its applications, adequately describes the es-
sentially nonlinear stages in the development of purely baroclinic flows (with a zero barotropic com-
ponent), which are naturally generated by thermal sources under real geophysical conditions and in
laboratory experiments. The model adequately reproduces:

• the vertical and horizontal structure of geophysical fields (temperature and velocity);
• the characteristic dimensions of both individual stable vortex structures and vortex clusters

(vortex ensembles);
• decay mechanisms of large vortex formations;
• the types of possible circulation regimes and the principles of their classification;
• asymptotic non-diffusion (ballistic) heat transfer laws.
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Table 1. Principal stationary states of vortex structures in a two- layer fluid

Vortex structure type Formula and explanation Figure
Finite-core heton with 1a

a vertical axis
Finite-core heton with 1b

a tilted axis
Non-compensated discrete two-layer (3.5) — angular velocity

vortex — (two-tier top) relative to the centre with coordinates (3.7)
Common heton (3.9) — translational 2

velocity
Three -vortex discrete structures

tripole (3.14) — angular velocity
common roundabout (3.15) — angular velocity 3b — left

relative to the central vortex (L > L∗∗)
inverse roundabout the same formula (L < L∗∗) 3b — right
eccentric roundabout (3.17) — angular velocity 4

stable structure triton (3.20) — dispersion equation, 7, 8a
(3.21) — translational

velocity
unstable triangular (3.22) — dispersion equation, 8b

configuration ((3.23) — translational
velocity

Four-vortex stationary
configuration composite roundabout 13b

von Kármán heton streets: Translational velocity
symmetric (3.37) 17a, 18a, 18b

antisymmetric (3.38) 17b, 18c, 18d

Promising directions for research into the generalization of the heton theory involve studying the
interaction between vortices and large-scale flows [87], [130], [218], [84], [52], [53], [54], [36], topography
[36], [45], [46], [50], [94], [125], [126], [175], [192], shore relief [45], and their interaction in closed
basins, as well as problems of solute transport [81], [53]. To apply to studying the effects of differential
rotation (even in the case of a homogeneous gradient - beta-plane approximation), however, would
require some essential modifications being made to it, mostly because of the need to allow for the
radiation of Rossby waves [76], [123], [171]. In the cases where Rossby wave radiation is suppressed
(eastward heton spreading), some exact solutions can be obtained for individual hetons [62], [73], [84],
[144] and von Kármán heton streets [79].

The concept of a hetonic quartet was introduced by Kizner [106] in relation to the problem of
transitions in baroclinic modons [107]. A heton quartet is a two-layer ensemble of four synchronously
translating quasi-geostrophic point vortices aligned perpendicularly to the axis of their translation.
A hetonic quartet can also be though of as an anti-symmetric pair of hetons with specially fitted
parameters, the strengths and separations of the hetons. Kizner [106] provided, a complete analysis
of the nonlinear stability of hetonic quartets to antisymmetric perturbations had been provided. Of
special interest are the quartets made up of overlapping hetons that are, generally, stable, but are
located relatively close to the border of the stability region in the parameter space. An overlapping
quartet represents a discrete model of a baroclinic modon with an overlap of the upper and lower
vorticity lumps [104], [105]. A hetonic quartets of this type, being subjected to prolonged action of
small perturbations, may make a transition to a pair of hetons travelling in opposite directions. After
getting rid of the overlap, the stronger heton accelerates and increases its separation. In terms of
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Table 2. Principal stationary states in discrete vortex structures in a three-layer fluid

Vortex structure type Formula and explanation Figure
Three-layer hetons: Translational velocity
1-modal heton with (5.2) 28b — left (taking

tilted axis into account footnote 11)
2-modal heton (5.3) 28b — right

with an arc-like axis
Rotating vortex structures Angular velocity

three-tier roundabout (5.4)
tripole in the upper or lower layer (5.5)

tripole in the middle layer (5.6)
roundabout, comprising a central (5.7)
vortex of the upper (lower) layer

and satellite vortices in the middle layer
roundabout, comprising a central (5.8)

vortex in the middle layer and satellite
vortices in the upper (lower) layer
roundabout, comprising a central (5.9)
vortex in the upper (lower) layer

and satellite
vortices in the lower (upper) layer

top comprising vortices in the upper
and lower layers (5.10)

top comprising two upper or (5.12)
two lower layers

Nonmodal heton in the two upper (5.11) — translational
or two lower layers velocity

modons, this corresponds to the transition to a non-overlapping quasi-elliptical modon state [107],
[108]. Kizner [106] discovered some similarity between his hetonic quartets and their transitions, on
the one hand, and the finite-core hetons and their break-down considered by Sokolovskiy and Verron
[186], on the other. At small separations, a finite-core heton splits up into two smaller baroclinic
pairs, whereas at a greater separation, the finite-core heton evolves towards a quasi-stable state.
These correspond well with Kizner’s results. In fact, small separation between the vorticity patches
means their considerable overlap, while a large separation makes the patches less overlapping, i. e.
more similar to point-vortex hetons.

The effects of equivalent two-dimensional compressibility of the medium on heton dynamics at
scales λ̃ > L∗ can be taken into account by rejecting the rigid-lid approximation on the top boundary,
which was used in deriving equations (2.1)–(2.2), and replacing it by the free surface condition [71].
In this limit, the barotropic mode is screened and the logarithmic Green function in (2.6) and (5.1)
must be changed to (−1/π)K0(r/L∗), where L∗ is the Oboukhov scale.

Additional effects of the emergence of cyclonic-anticyclonic asymmetry and the radiation of surface
waves by hetons can be examined within the context of the theory of rotating two-layer shallow water
[10], [32].

It is worth mentioning in conclusion that, although the quasi-geostrophic motions constitute a
considerable part of flows of geophysical nature, the requirement for the Rossby number to be small
(λ ¿ 1) is not satisfied universally. In the case of intense vortices λ ∼ 1, a cyclostrophic rather than
geostrophic balance can take place. Solutions for localized cyclostrophic vortices are shown in [32],
[75], [66], [68].
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This review should provide insights into solving these problems of geophysical hydrodynamics.
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