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One of the principal objectives of studying biogeochemical cycles is to obtain precise estimates of the main fluxes, such as

total, new and export oceanic productions. Since models can incorporate the a priori knowledge of the most important

processes, they are increasingly used for this purpose. However, biogeochemical models are characterized by a large number of

poorly known parameters. Moreover, the available data are rather sparse in both time and space, and represent concentrations,

not fluxes. Therefore, the major challenge is to constrain the relevant fluxes using information from a limited number of

observations and from models incorporating poorly known internal parameters.

The present study attempts to meet this challenge. In a 1D framework at the DYFAMED station (NW Mediterranean Sea),

near-monthly nitrate and chlorophyll profiles and daily surface chlorophyll concentrations are assimilated in a coupled

dynamical–biological model using the tangent linear and adjoint models. Following sensitivity analyses that show that some

parameters cannot be recovered from the data set used, assimilation of observed 1997 data is performed. The first inversion

considered clearly shows that, in agreement with previous studies, (1) the data impose a C/Chl ratio that varies with depth (i.e.

light) and (2) the ‘‘initial’’ conditions (e.g. winter nitrate profile) strongly constrain the annual biogeochemical fluxes. After

assimilation of the 1997 data, the agreement between the data and the model is quantitatively improved in 1995 and 1996,

which can be considered a good validation of the methodology. However, the order of magnitude of the biogeochemical fluxes,

and especially of the particulate export and regenerated production, are not correctly recovered. An analysis of the simulations

shows that this result is associated with a strong decrease in zooplankton concentrations. An additional constraint of maintaining

acceptable levels of zooplankton is therefore added. The results are improved, but remain unsatisfactory. A final inversion,

which takes into account the a priori estimates of the major annual fluxes, is then performed. This shows that there is no
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inconsistency between the NO3 and chlorophyll data, the order of magnitude of the fluxes and the model. The work therefore 
demonstrates that recovering biogeochemical fluxes from available data of concentrations and stocks is not a straightforward 
exercise: the coverage and type of observations, and the nonlinearities of the biogeochemical model all contribute to this 
difficulty.

Keywords: Biogeochemical model; Parameter optimization; DYFAMED

1. Introduction

Together with ocean dynamics, the main biogeo-

chemical fluxes such as total, new and export pro-

ductions, control the total inorganic content of the

mixed layer, which in turn affects carbon dioxide

exchanges between the ocean and the atmosphere.

The study of biogeochemical cycles endeavours to

estimate these fluxes accurately. Modeling ap-

proaches have the advantage of being able to make

use of a priori knowledge, and are increasingly used

for such purposes. But the solutions of biogeochem-

ical models depend to a large extent on the values of

the biological parameters. These parameters are not

only numerous, but most of them are also poorly

known since they often represent unmeasurable var-

iables used in the parameterization of complex

exchanges between biological compartments. More-

over, these compartments represent the averaged

behavior of different biological species. Traditionally,

the parameters are tuned until the best agreement

between model results and data is reached. Data

assimilation techniques provide a powerful means

to achieve this tuning, and are becoming a manda-

tory step in model development. However although

theoretically appealing, the practical use of data

assimilation is a difficult task, and exploratory stud-

ies are needed before data assimilation can be

routinely used in 3D biogeochemical models.

The available biogeochemical data are rather

sparse in time and space, and often represent con-

centrations and not fluxes. Indeed, biogeochemical

fluxes are difficult to measure on a routine basis.

Primary production measurements require in situ

incubations, while export measurements are gener-

ally evaluated from the deployment of sediment

traps. Moreover, the error associated with these

measurements is quite high (Richardson, 1993;

Buesseler et al., 1992, 2000). Nitrate and chlorophyll

data, on the other hand, are more accessible, more

widespread, and more precise.

The major challenge is therefore to try to con-

strain the biogeochemical fluxes using information

from a limited number of stock observations and

nonlinear models associated with poorly known

internal parameters. Such an attempt is presented in

this study. In a 1D framework at the DYFAMED

station, near-monthly nitrate and chlorophyll profiles

and daily surface chlorophyll concentrations are

assimilated in a coupled dynamical–biological model

using the tangent linear and adjoint models.

They are several reasons why the DYFAMED

station, located in the Northwestern Mediterranean

Sea, is an interesting test case. First, several biogeo-

chemical production regimes that take place in the

world ocean are found here. Deep convection occurs

during winter, leading to a spring bloom. Oligotrophy

prevails during summer while perturbations in the

meteorological forcing generate a secondary bloom in

fall. Secondly, the station is far enough away from the

Ligurian Current to be sufficiently protected from

lateral transport, thereby permitting a 1D study. More-

over, DYFAMED is a JGOFS time-series station,

which means that a data set of biogeochemical and

physical parameters is available to carry out and

validate simulations. A final reason for using the

DYFAMED station is that it is relatively well known

(Deep-Sea Res., Part 2, special issue, 29 (12), 2002, in

press), and has been the subject of previous model

studies (Lévy et al., 1998a; Mémery et al., 2002).

Several inverse methods have been applied to the

estimation of biogeochemical parameters. These

methods are all based on the minimization of a cost

function that depends on the parameters to be esti-

mated and measures the distance between the obser-

vations and the corresponding values calculated by
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the model. But as pointed out by Athias et al. (2000),

the result of the assimilation may depend on the

choice of the inverse method used to find the minima

of the cost function. It is thus of primary importance

to choose an adequate method and test its perform-

ance. Most previous studies have used a variational

data assimilation approach, based on a linearization

of the cost function around an a priori solution

(Prunet et al., 1996a,b), and a gradient descent

method (Fennel et al., 2001; Gunson et al., 1999;

Lawson et al., 1995, 1996; Schartau et al., 2001;

Spitz et al., 1998, 2001). Other studies have used

nonlinear optimization techniques (Evans, 1999;

Fasham and Evans, 1995) or global optimization

algorithms such as simulated annealing (Athias et

al., 2000; Hurtt and Armstrong, 1996, 1999; Matear,

1995).

Mathematical arguments favor the choice of non-

linear techniques. Indeed, the inverse parameter esti-

mation problem is always a nonlinear problem, even

in the case of linear dynamics (Evensen et al., 1998).

Therefore, the cost function may possess different

local minima. There are, however, three reasons why,

in our opinion, the optimal control method, often

referred to as the adjoint method, is promising. First

of all, global optimization algorithms require a large

number of cost function evaluations and this does not

seem possible using a full three-dimensional model,

which is the final goal of ocean color data assimila-

tion. Secondly, the adjoint method is already being

used with some success in ocean global circulation

models, which is a first step towards its implementa-

tion in 3D biogeochemical models. Thirdly, the a

priori parameter values or ‘‘first guess’’ values

required in the adjoint method are not completely

unknown, even if they are attributed large error bars.

It therefore seems natural to treat the inverse problem

locally around these a priori values. The ideas and

mathematical concepts of optimal control theory were

formalized about 30 years ago (Lions, 1971) and have

since received a lot of attention with respect to their

applications in meteorology (Le Dimet and Tala-

grand, 1986; Courtier and Talagrand, 1987; Talagrand

and Courtier, 1987) and oceanography (Long and

Thacker, 1989a,b; Luong et al., 1998).

For simplicity, most previous biogeochemical

data assimilation studies have considered 0D model

set-ups, in which biogeochemical variables corre-

spond to mixed-layer values. This approach is

suitable when most biogeochemical activity occurs

within the mixed layer. This is the case in the

spring phytoplankton bloom, provided that the

upload of nutrients is correct. It is, however, not

the case for oligotrophic regimes, where the chlor-

ophyll maximum is below the mixed layer. The

novelty of our approach is in the use of the adjoint

technique in a 1D context to assimilate observed

data, as well as the first use of the DYFAMED data

set for data assimilation purposes.

The biogeochemical model used in this study

comprises six nitrogen compartments. In a study

where data from the Bermuda Atlantica Time Series

(BATS) station are assimilated, Spitz et al. (2001)

warn that data cannot be satisfactorily assimilated if

the structure of the biogeochemical model is not

adequate. We follow the procedure adopted by Spitz

et al. (2001) and use the results of a first assim-

ilation attempt to modify the model. We show that a

significant improvement in model performance is

obtained when the C/Chl ratio is allowed to vary in

the vertical, and also when the winter nitrate upload

is estimated.

The paper is organized as follows: after a presen-

tation of the model and the method, sensitivity anal-

yses are carried out to determine which parameters

can be recovered from the data set used. Then an

assimilation of observed data for the year 1997 is

performed. After the assimilation, some of the fluxes

(e.g. particulate export production) are shown to be

very poorly estimated.

An analysis of the simulation shows that zoo-

plankton values have fallen to a very low level,

which would explain this result. An additional con-

straint is then added: the zooplankton stock during

the post bloom regime (Andersen and Prieur, 2000).

Although the results are improved, they are still not

satisfactory. The method is then validated using

independent data from years 1995 to 1996. A final

inversion is then carried out that also takes into

account the a priori estimates of the major annual

fluxes (total and new productions, and particulate

and dissolved exports). This inversion shows that

there is no inconsistency between the nitrate and

chlorophyll data, the estimates of the fluxes and the

model used. The difficulty of recovering the bio-

geochemical fluxes from real data assimilation of
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concentrations and stocks (nitrate, chlorophyll, and

eventually zooplankton) is then discussed.

2. Description of the model and data

2.1. Model description

The biogeochemical model used in this study is a

NNPZD-DOM model (Nitrate, Ammonium, Phyto-

plankton, Zooplankton Detritus, Dissolved Organic

Matter), qualitatively calibrated for DYFAMED by

Mémery et al. (2002). Compared to other more

complete models (Fasham et al., 1990; Lévy et al.,

1998a), its relative simplicity is a trade-off to obtain

a first approximation of the basic biogeochemical

fluxes with a minimum number of prognostic vari-

ables. Nitrate and ammonium allow the estimation of

new and regenerated production, zooplankton mor-

tality and detrital sedimentation feed the particle

export flux, and winter mixing of accumulated

semi-refractory DOM is associated with the dis-

solved export flux, which can be the major export

flux in the Mediterranean Sea (Copin-Montégut and

Avril, 1993). A schematic representation of the

model is shown in Fig. 1, and the basic equations

are presented below. More details about the modeled

biogeochemical processes can be found in Mémery

et al. (2002) and in Lévy et al. (1998a).

The biogeochemical model is embedded in a 1D

physical model, which simulates the evolution over

time of velocity, temperature, salinity and turbulent

kinetic energy (TKE). As for dynamical processes,

the only one taken into account is vertical diffusion.

The mixing coefficient, KT, is obtained diagnostically

from TKE, with a 1.5 closure scheme in the Mellor

Yamada nomenclature (Gaspar et al., 1990). The

model covers the first 400 m of the water column,

with a vertical discretization of 5 m.

The biogeochemical tracers are vertically mixed

with the same diffusion coefficient as temperature

and salinity. A specific reaction term, FC, is added to

the diffusion equation. Tracers are expressed in terms

of their nitrogen contents (mmol N m� 3). For each

of the state variables, NO3, NH4, P, Z, D and DOM,

the prognostic equation reads as follows:

BC

Bt
� B

Bz
KT

BC

Bz

� �

¼ FC ð1Þ

where C is the tracer concentration.

Fig. 1. Schematic representation of the compartments and processes of the NNPZD-DOM surface layer model.
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For the surface layers (0–150 m), the reaction

terms read as follows:

FNO3
¼ �lpLILNO3

Pþ lnNH4 ð2Þ

FNH4
¼ �lpLILNH4

Pþ fnðclpLIðLNO3
þ LNH4

ÞP

þ lzZþ ldDÞ � lnNH4 þ ldmDOM ð3Þ

FP ¼ ð1� cÞlpLIðLNO3
þ LNH4

ÞP� Gp � mpP ð4Þ

FZ ¼ apGp þ adGd � mzZ
2 � lzZ ð5Þ

FD ¼ ð1� apÞGp � adGd þ mpP� ldD� vd
B

Bz
ð6Þ

FDOM ¼ ð1� fnÞðclpLIðLNO3
þ LNH4

ÞPþ lzZ

þ ldDÞ � ldmDOM ð7Þ

The parameters are presented in Table 1.

The formulation of phytoplankton growth takes

into account limitation by both nutrients and light.

Nutrient limitation follows the Hurtt and Armstrong

(1996) kinetics:

LNH4
¼ NH4

kn þ NH4

ð8Þ

Based on the hypothesis that the total limitation

follows the same law, i.e.

LNO3
þ LNH4

¼ NO3 þ NH4

ðkn þ NO3 þ NH4Þ
ð9Þ

we obtain,

LNO3
¼ knNO3

ðkn þ NH4Þðkn þ NO3 þ NH4Þ
ð10Þ

Light limitation is expressed as follows:

LI ¼ 1� expð�PAR=kparÞ ð11Þ

The photosynthetic available radiation (PAR) is

predicted from surface irradiance and phytoplankton

pigment content according to a light absorption

model. Two different wavelengths are considered

and the absorption coefficients depend on the local

phytoplankton concentrations:

PARðz; PÞ ¼ PARrðz; PÞ þ PARgðz; PÞ ð12Þ

Table 1

Parameter values

Parameter Name Value Unit

Half-saturation const. for

nutrients

kn 0.01 mmol m� 3

Carbon/chlorophyll ratio rc 55 mg C mg Chla� 1

Phyto. exudation fraction c 0.05

Zoo. nominal preference

for phyto. food

r 0.7

Max. specific zoo.

grazing rate

gz 8.68e� 6 s� 1

Half-saturation const. for

grazing

kz 1 mmol N m� 3

Non-assimilated phyto.

by zoo.

ap 0.3

Non-assimilated detritus

by zoo.

ad 0.5

Zoo. specific exudation

rate

lz 1.16e� 6 s� 1

Phyto. mortality rate mp 9.027e� 7 s� 1

Zoo. mortality rate mz 1.0e� 7 mmol N m� 3 s� 1

Detritus breakdown rate ld 1.04e� 6 s� 1

Detritus sedimentation

speed

vd 5.8e� 5 m s� 1

Max. phyto. growth rate lp 2.31e� 5 s� 1

Light half-saturation const. kpr 33.33 W m� 2

Decay rate below the

euphotic layer

s 5.80e� 5 s� 1

Ratio of inorganic

exudation

fn 0.8

Nitrification rate ln 3.81e� 7 s� 1

Slow remineral. rate of

DOM to NH4

ldm 6.43e� 8 s� 1

Coeff. for Martin’s

remineralization profile

hr � 0.858

Pigment absorption

in red

krp 0.037 m� 1

(mg Chl m� 3)� lr

Pigment absorption

in green

kgp 0.074 m� 1

(mg Chl m� 3)� lg

Power law for absorption

in red

lr 0.629

Power law for absorption

in green

lg 0.674

Contribution of Chl to

absorbing pigments

rpg 0.7
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PARgðz; PÞ ¼ PARgðz� Dz; PÞð1� expð�kgDzÞÞ
ð13Þ

PARrðz; PÞ ¼ PARrðz� Dz; PÞð1� expð�krDzÞÞ
ð14Þ

kg ¼ kgo þ kgp
12Prd

rpgrc

� �lg

ð15Þ

kr ¼ kro þ krp
12Prd

rpgrc

� �lr

ð16Þ

where kgo = 0.0232 m� 1 and kro = 0.225 m� 1 are

the water absorptions in green and red.

Grazing of phytoplankton and detritus is formu-

lated following Fasham et al. (1990):

Gp ¼
gzrP

2Z

kzðrPþ ð1� rÞDÞ þ rP2 þ ð1� rÞD2
; ð17Þ

Gd ¼
gzð1� rÞD2Z

kzðrPþ ð1� rÞDÞ þ rP2 þ ð1� rÞD2
: ð18Þ

Other modeled biogeochemical interactions in-

clude phytoplankton mortality, phytoplankton exu-

dation, zooplankton mortality (considered as large

particles which are supposed to be instantaneously

exported below the productive layer and reminer-

alized in the water column), zooplankton exudation,

fecal pellet production, detritus sedimentation, detri-

tus breakdown, nitrification, and dissolved organic

matter remineralization (Fig. 1).

Below a depth of 150 m (referred to as zbio
hereafter), remineralization processes are preponder-

ant and the surface model does not apply. Instead,

decay of phytoplankton, zooplankton and detritus

in nutrients, and a vertical redistribution of zoo-

plankton mortality according to Martin and Fitzwa-

ter’s (1992) profile parameterize remineralization

below the surface layer. This parameterization con-

serves total nitrogen.

FNH4
¼ �sNH4 ð19Þ

FNO3
¼ sðNH4 þ Pþ Zþ Dþ DOMÞ þ Bf

Bz
ð20Þ

FP ¼ �sP ð21Þ

FZ ¼ �sZ ð22Þ

FD ¼ �sD� vd
BD

Bz
ð23Þ

FDOM ¼ �sDOM ð24Þ

The remineralization of the export flux due to

zooplankton mortality (large particles) is expressed as:

f ðzbioÞ ¼
Z zbio

0

mzZ
2dz ; ð25Þ

f ðzÞ ¼ f ðzbioÞðz=zbioÞhr : ð26Þ

Stating that no deposition occurs on the ocean

floor, a further condition is added:

f ðzbottomÞ ¼ 0: ð27Þ

2.2. The DYFAMED simulation set-up

The model set up is the same as in Mémery et al.

(2002). The standard run consists of a spin-up period

of two repeated years (1995), followed by two more

years, 1995 and 1996. The end of year 1996 is the

restart point for the working year 1997. A complete

description of seasonal and interannual variability is

documented in Mémery et al. (2002). The simulation

is forced with ECMWF atmospheric data, which give

the wind stresses and heat fluxes every 6 h. Although
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the DYFAMED station can be considered, at a first

approximation to behave like a 1D vertical system

(Lévy et al., 1998a; Andersen and Prieur, 2000), deep

convection in winter involves barotropic–baroclinic

instabilities, which are three-dimensional processes

(Madec et al., 1991; Lévy et al., 1998b). In winter,

therefore these 3D processes must be parameterized.

We use a crude parameterization consisting of restor-

ing temperature, salinity and dissolved tracers (nitrate

and DOM) towards homogeneous profiles in February

when convection is at its peak and the mixed-layer is

deepest. For example, the NO3 reaction term, FNO3
,

becomes FNO3
+ a(Nr–NO3). N

r is the restoring pro-

file, and a equals 1/7 day� 1 in February and 0

otherwise. For temperature and salinity, we use the

February data as restoring profiles, since they are

fairly homogeneous. For nitrate, the only available

winter profile is not homogeneous. Therefore, we

construct a homogeneous profile with the a priori

averaged nitrate value below 200 m (6 mmol N

m� 3). This restoring profile can be seen as the nitrate

initial condition or preconditioning, since it deter-

mines to a large extent the amount of nitrate made

available to the system. For DOM, restoring is carried

out towards zero, which implicitly assumes that all the

semi-labile DOM is exported in winter through con-

vection.

In this work, as well as in the previous studies

carried out at DYFAMED (Lévy et al., 1998a; Mém-

ery et al., 2002), advection is neglected. This might

result in a crude approximation in summer during

strong wind events. Indeed, Andersen and Prieur

(2000) and Chifflet et al. (2001) suggest that Ekman

pumping may be responsible for an upward advective

shift of the nitracline and the deep chlorophyll max-

imum (DCM) of the order of 10 to 15 m.

2.3. The DYFAMED data set

The data used in this study are monthly chlorophyll

and nitrate profiles collected for the years 1995–1997

at the DYFAMED station, and surface fluorescence

data measured by the Carioca buoy (Hood and Merli-

vat, 2001) moored at DYFAMED in 1997 (Figs. 2–

4).We also make use of various annual estimates of

new production, regenerated production, dissolved

and particulate export (estimated from disparate meas-

urements undertaken in the 1990s), and of the zoo-

plankton content estimated during a special cruise in

May 1995 (Andersen and Prieur, 2000).

The evolution over time of the chlorophyll and

nitrate profiles (Figs. 3 and 4) reflects the seasonal

variability at DYFAMED. Winter mixing brings

nutrients to the surface, but the short residence time

Fig. 2. Surface chlorophyll (mg Chla m� 3) for year 1997. Crosses are the surface observations. Squares are the surface measurements taken

from the chlorophyll profile set (Fig. 3). The first guess, Case 1, Case 2a and Case 2b runs are represented according to the legend above.
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Fig. 3. Chlorophyll profiles (mg Chla m� 3) for year 1997. Depth in meters. The observed profiles as well as the first guess, Case 1, Case 2a and

Case 2b profiles are represented according to the legend above.
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of algae in the euphotic layer, swept along by strong

vertical motions, prevents the development of bio-

mass. As the year progresses, the surface layer

becomes more stable, thus allowing the winter

nutrient enrichment to be utilized continuously. As

a consequence, the algae bloom. From mid-May to

November, the situation remains fairly stable with

the upper layer nutrient content very low, and the

system mainly oligotrophic and characterized by a

deep chlorophyll maximum. It may be noticed that

the nitrate profiles show strong variability below 100

m. This variability cannot be attributed to biological

processes since these occur closer to the surface, and

it is therefore most likely due to advection. It cannot

therefore be captured by the model. During the

oligotrophic period, the location of the nitracline

and the DCM is fairly constant. This may be an

indication of the absence of strong Ekman pumping

Fig. 4. NO3 profiles (mmol N m� 3) for year 1997. Depth in meters. The observed profiles as well as the first guess, Case 1, Case 2a and Case 2b

profiles are represented according to the legend above.
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and a crude justification for the neglect of vertical

advection.

Estimates of total production (TP) vary consider-

ably. Minas (1970), using in situ measurements,

estimated the Northwestern Mediterranean TP to be

about 78 g C m� 2 year� 1, whereas Antoine et al.

(1995) obtained a value of 157.5 g C m� 2 year� 1

from satellite data and Marty and Chiavérini (2002) an

average value of 156 g C m� 2 year� 1 over the 1990s

from C14 incubations (although they warn that this

value should be considered as in the upper range).

Estimates of new production (NP) range from 20

(Bethoux, 1989) to 42 g C m� 2 year� 1 (Marty and

Chiavérini, 2002). This latter value is based on nitrate

uptake (NU) and does not therefore correct for nitri-

fication, which explains the difference with the

Bethoux (1989) estimate. With regard to export

fluxes, the DOC export flux has been estimated by

Copin-Montegut and Avril (1993), based on 1991

DOC data, to be around 14.8 g C m� 2 year� 1, while

sediment trap data from 1987 (Miquel et al., 1993)

predict a particulate export at 200 m of 4 g C m� 2

year� 1.

The data assimilation period is restricted to 1997,

when all three types of synoptic data are available.

For coherence with the model set-up strategy, the

non-homogeneous February nitrate profile is not

accounted for in the assimilation. Data from years

1995 and 1996 are kept for validation.

In order to compare model results and data, calcu-

lated phytoplankton concentrations are converted to

mg Chla m� 3 using a constant (in time, space and

during parameter optimization) Red field ratio C/N of

rd = 6.625, and a C/Chl ratio (rc in Table 1) that will be

optimized. A linear relationship is assumed between

fluorescence and chlorophyll concentrations. The pro-

portionality coefficient was chosen so that surface

fluorescence data and monthly chlorophyll profiles

were coherent with one another.

2.4. An initial simulation

A first run is carried out using the a priori param-

eter set and without any data assimilation (Figs. 3–5).

The seasonal variability is well reproduced, but the

spring bloom appears to be too strong and the tran-

sition towards oligotrophy poorly represented. On the

other hand, and because the parameters have been

tuned for this purpose (Lévy et al., 1998a), this ‘‘first

guess’’ run predicts reasonably good fluxes: 110.6 g C

Fig. 5. Three smallest eigenvalues and corresponding eigenvectors of the Hessian for the 25-parameter optimization case.
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m� 2 year� 1 for TP, 22.5 g C m� 2 year� 1 for NP,

13.2 g C m� 2 year� 1 for DOC export and 5.2 g C

m� 2 year� 1 for particulate export.

3. Method

3.1. Control variables and cost function

The variational data assimilation method mainly

consists in finding an optimal control minimizing a

cost function which measures the distance, in a

weighted least-squares sense, between the model’s

solution and the observations. In the current literature,

authors usually consider the biological parameters as

being the control variables. It is therefore assumed

that the discrepancy between the model and the

observations can be attributed mainly to these poorly

known quantities. However, implicitly assuming that

the model equations are perfect except for the

unknown parameters may be a problem (Evensen et

al.,1998). Firstly, minimization may lead to an optimal

parameter set attempting to correct for errors other

than those related to the particular parameterizations.

Secondly, the tuning of the parameters may not be

sufficient to fit real observations and it may be

necessary to introduce more degrees of freedom in

the model equations.

In our case, the winter restoring terms present in

the equations are clearly crude parameterizations

made to take into account 3Dprocesses which are

not explicitly resolved. The restoring value of 6

mmol N m� 3 for NO3 was chosen empirically on

the basis of the DYFAMED data. The NO3 restoring

term is particularly important in the biological

dynamics (Mémery et al., 2002). It can be regarded

as an initial condition from which we want to start at

the end of winter. It can also be regarded as a

particular form of a model error term, and we may

need to control it.

The 1D formulation of the model as well as a first

real data assimilation experiment (Case 1, Section

4.4.1) also lead us to consider a C/Chl ratio rc that

varies with depth. We have therefore considered

different cases in this study. Case 1 is classical: the

cost function depends on the biological parameters,

which are undistributed, or constant in time and space.

In Case 2, the cost function depends on all the

previous parameters but rc can vary with depth. It

also depends on the NO3 restoring profile, N r, which

is also space-distributed.

As shown in Table 1, the biological parameters

have very different orders of magnitude. To avoid any

numerical difficulties which might arise from this

during the minimization, we adimensionalize the

parameter vector K, dividing each parameter Ki by

its first guess value Ki
0, ki =Ki/Ki

0. In the same way, we

consider the dimensionless NO3 restoring profile,

nr=(ni
r)i = 1,. . .nz =N

r/6, where nz is the number of space

discretization points. Such a non-dimensionalization

procedure can be regarded as a preconditioning for

minimization.

To sum up, in Case 1, the control variable is x = k

of size p, where p is the number of parameters, and k

is dimensionless. In Case 2, the control variable is

x=(k̃,rc,n
r ) of size ( p� 1) + nz + nz, where k̃ repre-

sents the parameter vector without rc and nr. In both

cases, the first guess value for x is x0=(1,. . .,1).

The model-data misfit part, J0, of the cost function

can be written as the sum of three terms:

J0ðxÞ ¼ JscðxÞ þ JpcðxÞ þ JpnðxÞ:

Jsc is related to the ncs surface chlorophyll observa-

tions, dcs.

JscðxÞ ¼
1

2

X

ncs

i¼1

wcsð/csðxÞi � dcsiÞ2:

Jpc is related to the ncp chlorophyll profile observa-

tions, dcp (mcp measurement points on the vertical).

JpcðxÞ ¼
1

2

X

ncp

i¼1

X

mcp

l¼1

wcpð/cpðxÞi;l � dcpi;lÞ2:

Jpn is related to the nnp NO3 profile observations, dnp

(mnp measurement points on the vertical).

JpnðxÞ ¼
1

2

X

nnp

i¼1

X

mnp

l¼1

wnpð/npðxÞi;l � dnpi;lÞ2:

More simply we have,

J0ðxÞ ¼
1

2
hW ð/ðxÞ � dÞ; ð/ðxÞ � dÞiNobs:

h.,.iN obs denotes the euclidian scalar product in IR
N obs,

with N obs = ncs + ncp�mcp + nnp�mnp. / is the
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direct operator which, to an admissible control variable

x, associates the model equivalents to the data. d is the

data. W is a weighting diagonal matrix. The weights

wcs, wcp and wnp are composed of the square of the

assumed a priori observation errors and of a scaling

factor accounting for the number of each type of

observation. Therefore, we have wcs ¼ 1
ncs�r2cs

;wcp ¼
1

ðncp�mcpÞr2cp
; and wnp ¼ 1

ðnnp�mnpÞr2np
:

We also add penalty terms to J0. The first term,

JpðkÞ ¼
1

2

X

p

i¼1

wiðki � k0i Þ
2

accounts for the a priori parameter values and their

standard deviations, ri ¼ 1
ffiffiffiffi

wi
p , given in Table 2. This

term enables the minimization to avoid biologically

absurd optimal parameter values.

The second term, which only applies in Case 2, is a

Tikhonov regularization term (Tikhonov and Arsenin,

1977).

JrðnrÞ ¼
1

2
w
X

nz

i¼1

B
2nr

Bz2

� �2

i

This is added to avoid instability phenomena inherent

in such inverse problems. Its role is to smooth the

space-distributed control nr. The choice of the weight

w is not straightforward, as a compromise has to be

found between numerical stability and the quality of

the minimization of J0. In practice, w was chosen so

that the data misfit part of the cost and its regulariza-

tion part are balanced. The same regularization term is

added for the distributed parameter rc.

3.2. Automatic differentiation

To minimize the cost function J, we applied the

quasi-Newton algorithm implemented in the n1qn3

Fortran subroutine of Gilbert and Lemaréchal (1989).

The computation of the gradient of J with respect to

control variables is required at each step of the

minimization. This gradient results in one integration

of the adjoint model. The tangent and adjoint codes

were obtained using the automatic differentiation

program Odyssée (Faure and Papegay, 1997; Grie-

wank, 2000), which is an efficient tool for obtaining

adjoint codes since it enables the automatic produc-

tion of adjoint instructions. However, codes produced

by automatic differentiation do not usually use com-

puter memory in a very efficient way. Saving the

direct model trajectory is the major problem. A differ-

entiation program has to follow systematic methods to

provide the evaluation trajectory. Thus, Odyssée sys-

tematically uses a local calculation and storage tech-

nique for the trajectory. Automatically differentiating

a 3D model and using the adjoint code directly seems

impossible. This problem partially disappears using a

1D model, so that the work to be done on the

automatically produced adjoint routines is more rea-

sonable. In this study, we used an integration period of

1 year, the choice being made to cover a whole annual

cycle of biological activity when all three types of

data were available. Moreover, it involves affordable

computer memory resources and acceptable calcula-

tion times. An adjoint run is about 10 times more

expensive than a direct run in terms of memory

requirements and CPU time.

3.3. Sensitivity analysis method

As was highlighted in Fennel et al. (2001), a

sensitivity analysis should be an integral part of any

attempt to optimize the parameters of a biological

model. Fennel et al. identified different inconsisten-

Table 2

A priori parameter errors r, reference parameter set k0 (adimen-

sionalized with Table 1 values) and perturbed parameter set k0+ dk

Parameter A priori

error r

k
0 First guess

error dk

kn 1 1 0.4

rc 2 1 0.4

c 1 1 0.4

r 0.5 1 0.2

gz 0.3 1 0.3

kz 0.9 1 � 0.4

ap 1 1 0.3

ad 1 1 0.4

lz 0.25 1 � 0.1

mp 0.4 1 � 0.6

mz 1 1 0.5

ld 0.5 1 0.2

vd 1 1 0.4

lp 0.5 1 � 0.5

kpr 0.5 1 0.2

s 0.5 1 0.2

fn 0.2 1 0.2

ln 1 1 0.4

ldm 1 1 � 0.2
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cies in the formulation of their inverse problem such

as parameters which could not be determined inde-

pendently.

The a priori approach consists in using a sensitivity

analysis based on twin experiments, that is in the case

where the global minimum of the cost function is

known, to help determine the most sensitive and

consequently the most important parameters to opti-

mize in order to solve a numerically well-posed

inverse problem.

Let us consider that the cost function only depends

on parameter k and that no penalty term is added:

JðkÞ ¼ 1

2
< W ð/ðkÞ � dÞ; ð/ðkÞ � dÞ >Nobs : ð28Þ

A small perturbation h on parameter set k induces a

perturbation on /,

/ðk þ hÞ � /ðkÞc/VðkÞh

/V(k) is the sensitivity matrix, of size N obs� p. It

can easily be calculated by p integrations of the

tangent linear model, perturbing the parameters one

after another. The ith integration leads to the ith

column of matrix /V(k) that represents the influence

of parameter ki on the model’s output used to calculate

the cost function. Then, if we expand J in its Taylor

series about the optimal solution k
0 and ignore terms

of a higher order than two, we obtain the following, as

the first derivative vanishes:

Jðk0þhÞcJðk0Þþ 1

2
< /Vðk0ÞTW/Vðk0Þh; h >p

þ 1

2
<W/Wðk0Þðh; hÞ; ð/ðk0Þ� dÞ>Nobs :

In the context of twin experiments, where data are

generated by a model run using k
0 as the parameter

set, the formula reduces to

Jðk0 þ hÞc 1

2
< /Vðk0ÞTW/Vðk0Þh; h >pc

1

2
hTHh;

where H =/V(k0)TW/V(k0) is the Hessian of the cost

function in this particular case. H is easily calculated

once /V(k0) has been obtained. It may be noted that H

does not depend on the quality of the data but only on

the intrinsic properties of the model structure, or in

other words on the way in which the parameters are

mutually related in the conceptual representation of

the biological phenomena. The Hessian matrix pro-

vides a good approximation of the covariance matrix

for the model parameters (Thacker, 1989).

Its diagonal element hii gives the sensitivity of the

cost function to change in parameter ki, whereas its

off-diagonal elements indicate the degree to which

pairs of model parameters are correlated. In fact, all

the needed information is contained in the eigenvalues

and vectors of H. The condition number, kmax/kmin

gives an indication of the degree of singularity in the

problem. Small eigenvalues correspond to large

uncertainties in the identification of the parameters

that make a significant contribution in the related

eigenvectors. Such an analysis provides a systematic

method for determining parameters which may be

difficult to identify.

4. Results

4.1. Description of the experiments

This short subsection briefly presents all the differ-

ent numerical experiments which follow in the text.

Let us first remember that in Case 1 the cost function

is assumed to depend on constant parameters, whereas

in Case 2 it is assumed to depend on constant

parameters and on two parameters (nr and rc) allowing

vertical variability. We first conduct a sensitivity

analysis based on a twin experiment identical to Case

1 (Section 4.2). A synthetic data set is created with the

model, by running the reference 1997 simulation with

the parameter set k0. These synthetic data have the

same spatio-temporal distribution as the real 1997

data. We then conduct twin experiments for both Case

1 (Section 4.3.1) and Case 2 (Section 4.3.2). Once

these validation steps have been successfully com-

pleted, we come to the assimilation of real (i.e.

observed) data. Section 4.4.1 deals with Case 1

optimization. Case 2 is divided into Case 2a in Section

4.4.2 and Case 2b in Section 4.4.3. As explained in

Introduction, in Case 2b zooplankton data is added to

the cost function, and in Case 2c annual flux estimates

are also assimilated.
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4.2. Twin experiment sensitivity analysis

We apply the sensitivity analysis methodology

described in Section 3.3 to the twin experiments to

ensure that we are not trying to solve an ill-posed

inverse problem. Within this framework, the cost

function is defined without any penalty term (Eq.

(28)). The Hessian, H, is calculated at the optimal

point k0, and then its eigenvalues and eigenvectors.

If the cost function is assumed to depend on the 25

parameters in Table 1, the condition number of its

Hessian is 1.149� 1017, indicating that the inverse

problem is extremely ill-conditioned. The three smallest

eigenvalues, k25 = 8.804� 10� 15, k24= 5.405 � 10� 5

and k23 = 2.061�10� 4 and their corresponding

eigenvectors, v25, v24 and v23 are plotted in Fig. 5.

v25 has contributions mainly for krp, kgp and rpg. As the

associated eigenvalue is almost 0, these parameters

cannot be determinedwith the data under consideration.

All of them belong to the optical model formulation

(Eqs. (12)–(16)). Eigenvaluek24 = 5.405� 10� 5 is still

quite small, and the important contributions in v24 again

correspond to the optical parameters. These parameters

enter the model only in the combinations kgp(12rd/

rpgrc)
lg and krp(12rd/rpgrc)

lr (Eqs. (15) and (16)). It is

therefore not surprising that these parameters appear to

be dependent on one another. As a considerable

improvement is needed in the condition number of H,

we will not try to estimate the five optical parameters in

all of the following experiments. Their values are kept

fixed at the initial guesses. Only the C/Chl ratio rc will

therefore play a role in the calculation of light limitation

LI during the optimization procedure.

Under this new assumption, the condition number

of the Hessian matrix falls to 7.489� 106 which is

much more acceptable and comparable to the con-

dition number values presented in Fennel et al.

(2001). The worse resolutions are observed for hr, c

and mz. The coefficient for Martin’s remineralization

profile, hr, only concerns the remineralization model

(below 150 m), and is kept constant in the following

sections.

Finally, the chosen formulation includes 19

parameters. The condition number of the Hessian is

9.108� 105. Eliminating two or three additional

parameters, such as c, mz or kn, which are the least

sensitive (Fig. 6), does not considerably improve the

conditioning of the problem and may, on the con-

Fig. 6. Three smallest eigenvalues and corresponding eigenvectors of the Hessian for the 19-parameter optimization case.
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trary, deprive the model of useful degrees of free-

dom.

4.3. Twin experiment data assimilation

4.3.1. Case 1

The second and final validation step before assim-

ilation of observed data is to conduct twin experi-

ments. Synthetic data are produced by the model

using the first guess parameter vector k0 containing

the 19 selected parameters. In order to fully test the

possibility of recovering these parameters from the

synthetic data, no penalty term is added. The varian-

ces assumed are as follows:rcs = 0.3 mg Chla m� 3,

rcp = 0.1 mg Chla m� 3, and rnp = 0.4 mmol N m� 3.

This provides a good balance between the three terms

of J0. Different first guesses for the parameter vector

were obtained by perturbing k
0 within the a priori

error deviation ranges given in Table 2. All the

corresponding optimizations converged to the mini-

mum of the cost function, J(k0) = 0.

The results of this experiment are shown in Fig. 7.

Table 2 presents the first guess parameter set k0 + dk.

The convergence criterion (NjJNV e, where e is a

small value) is satisfied after 129 iterations. A cost

function value of 7.35e� 11 is obtained, indicating

that it has reached its global minimum. All the 19

parameters have been recovered. In the first 20

iterations, the cost function decreases rapidly then

enters a long period of more gradual decline. This

corresponds to the rapid recovery of the most sensi-

tive parameters, followed by a difficult search for the

optimal values of the less sensitive parameters (kn, c,

and mz).

4.3.2. Case 2

We are now concerned with the optimization of

18 space- and time-constant parameters and 2

space-dependent parameters, rc (the C/Chl ratio)

and nr (the NO3 winter preconditioning). This

greatly increases the number of control variables

from 19 to 178. However, the problem still remains

overdetermined as the control dimension does not

exceed the number of data. Nevertheless, this does

not mean that it is possible to recover the model

controls given the set of data we have for year

1997 at the DYFAMED station. Some controls may

not have a real influence everywhere on the simu-

lation results. Moreover, the method has to be able

to distinguish between wrong biological parameter

values, wrong C/Chl ratios and wrong NO3 pre-

conditioning to explain the discrepancy between

Fig. 7. Convergence of the 19 parameter set from k
0 + dk to k

0.
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model and data. To check this, a twin experiment is

conducted in which no penalty term is added to the

cost function relating to the constant parameters. A

Tikhonov regularization term is used for the two

distributed controls rc and nr.

JðxÞ ¼ J0ðxÞ þ JrðnrÞ þ JrðrcÞ

Exact equivalents of year 1997 DYFAMED data

were created using the reference a priori k
0 vector

for the 18 parameters, the distributed rc ratio and

the distributed nr profile plotted in Fig. 8. First

guess control variables consist of a profile nr

homogeneous on the vertical with value nr= 1 and

the parameter set k
0 + dk in Table 2, except for rc

which is also chosen to be homogeneous in the

vertical. The first guess for rc is 1. Below 200 m,

this value is the same as that used to generate the

data. This choice was made because below 200 m

rc can take any value without influencing the

simulation or, therefore, the cost function value.

The twin experiment proved to be successful, with

all biological parameters, as well as rc, completely

recovered and the restoring profile, nr, also very

well reproduced. The rc and nr used to generate the

data, first guess and recovered values, are plotted in

Fig. 8. It takes 543 iterations for the optimization to

converge. This increase in the number of iterations

required compared with Case 1 is due to the

increase in the size of the control vector.

4.4. Assimilation experiments using real (observed)

data

4.4.1. Estimation of constant parameters—Case 1

A real data assimilation experiment is performed

using nitrate and chlorophyll data from the

DYFAMED station. The first guess is chosen as

k
0, which corresponds to the parameter values

Fig. 8. Left: rc, first guess (long dashes), reference (continuous line) and optimal (short dashes superimposed on the reference). Right: nr, first

guess (long dashes), reference (continuous line) and optimal (short dashes). The reference values, Rc = 55 mg C mg Chla� 1 and Nr = 6 mmol N

m� 3, are used for adimensionalization.
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commonly used in this area (Lévy et al., 1998a;

Mémery et al., 2002), and the data used are those

described in Section 2.2. A penalty term is added to

the cost function of the twin experiments:

JðkÞ ¼ J0ðkÞ þ JpðkÞ ð29Þ

This regularizes the inverse problem and the

optimization converges in 33 iterations. The optimal

parameter set, kopt, is given in Table 3, and the

overall quality of the optimization is quantified by

the normalized cost related to each type of data in

Table 4.

Correlation coefficients have also been computed

to measure the shift between the model and the

data. For surface chlorophyll, a time correlation

coefficient is defined by:

rt ¼

X

ncs

i¼1

ð/csðkoptÞi � /opt
cs Þðdcsi � dcsÞ

X

ncs

i¼1

ð/csðkoptÞi � /opt
cs Þ

2
X

ncs

i¼1

ðdcsi � dcsÞ2
!1=2

ð30Þ

where /opt
cs and dcs denote the mean values. In the

same way, space correlation coefficients are com-

puted for each profile.

The largest change in the parameter set is obtained

for rc, the C/Chl ratio, which is used to convert

phytoplankton into chlorophyll units. While the first

guess for rc is 55 mg C mg Chl� 1, the optimal value

is 135 mg C mg Chl� 1.Other important changes

concern parameters related to detritus, and thus with

the export. Detritus breakdown rate, ld, decreases

from 1.04e� 6 s� 1 to 4.524e� 7 s� 1, while detritus

sedimentation speed, vd, increases from 5 to 8.7 m

s� 1. These changes in parameters have the effect of

Table 4

Optimization results

Data type First

guess

cost

Optimal

cost

(Case 1)

Optimal

cost

(Case 2a)

Optimal

cost

(Case 2b)

Optimal

cost

(Case 2c)

Surface

chlorophyll

1 0.059 0.029 0.027 0.027

Chlorophyll

profile

1 0.170 0.100 0.134 0.126

NO3 profile 1 0.626 0.525 0.554 0.717

Costs are normalized.

Table 3

First guess and optimal adimensionalized parameters in Case 1, 2a, 2b and 2c optimizations

Parameter First

guess k0
Optimal set kopt

(Case 1)

Optimal set kopt

(Case 2a)

Optimal set kopt

(Case 2b)

Optimal set kopt

(Case 2c)

kn 1 0.964 0.992 0.992 0.746

rc 1 2.452

c 1 1.086 1.073 1.065 1.299

r 1 0.950 0.962 0.896 0.897

gz 1 0.920 0.944 0.965 0.937

kz 1 1.285 1.245 1.172 1.291

ap 1 1.209 1.235 0.915 1.110

ad 1 1.029 1.022 1.015 1.117

lz 1 1.039 1.028 1.001 1.049

mp 1 1.010 1.113 1.080 1.092

mz 1 1.001 0.993 0.992 1.058

ld 1 0.435 0.597 0.557 1.149

vd 1 1.732 1.556 1.160 0.709

lp 1 0.727 0.806 0.795 0.880

kpr 1 1.081 1.050 1.040 1.009

s 1 0.900 1.035 1.036 0.961

fn 1 0.951 0.971 0.970 0.936

ln 1 0.880 0.967 0.960 0.793

ldm 1 0.895 0.893 0.860 0.757
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decreasing the chlorophyll concentrations and of

increasing the export.

Globally, the assimilation resulted in a consider-

able improvement in the model/data match, compared

to the first guess experiment (Table 4). Bloom inten-

sity is divided by a factor of three, in agreement with

the observations (Fig. 2), and the time correlation

coefficient increases from 0.87 to 0.92, indicating that

the starting date and bloom duration are simulated

more accurately. Chlorophyll profiles during the

bloom (dates 02/23, 03/02 and 03/21 in Fig. 3) also

show a better fit with the data. These improvements

are mainly associated with the change in the C/Chl

ratio. As with chlorophyll, nitrate is also better simu-

lated and this is particularly apparent above the

nitracline (Fig. 4). Nitrate concentrations at the sur-

face were overestimated, and are now reduced. The

reduction in nitrate concentrations is essentially

achieved through the change in parameters ld and

vd, and the associated increase in export. It may be

noticed that the cost with respect to nitrate is globally

higher than that relative to chlorophyll (Table 4). This

is due to the poor fit between simulated and observed

nitrate concentrations below the nitracline, where

advective events seem to be important.

Despite the improvements noted above, however,

certain problems remain. First, there is no improve-

ment in summer, during the oligotrophic regime. The

model has difficulties in reproducing the subsurface

chlorophyll maximum. On 09/01, the space correla-

tion coefficient falls from 0.865 to 0.061, indicating a

substantial shift between observations and model

results in terms of subsurface maximum depth. Sec-

ond, the exported flux is too large by almost one order

of magnitude (Table 5).

To address these shortcomings, the model is modi-

fied as follows. In order to better represent the

chlorophyll subsurface maxima, the C/Chl ratio is

allowed to vary on the vertical. Indeed, this ratio is

known to be highly dependent on the photosynthetic

available radiation (PAR) (Geider et al., 1997). In the

Mediterranean Sea, it can vary from 30 to 200 mg C

mg Chl� 1. Moreover, earlier optimization studies

have already emphasized the need for a variable C/

Chl ratio (Hurtt and Armstrong, 1996, 1999; Schartau

et al., 2001; Spitz et al., 2001). The amount of NO3

present in the model is very dependent on the winter

preconditioning profile (Mémery et al., 2002). In

order to improve the match between observed and

simulated NO3 profiles without excessively increasing

the export, a space-distributed NO3 winter precondi-

tioning profile is introduced in the control vector.

4.4.2. Estimation of parameters allowing vertical

variability—Case 2a

Using the space-dependent rc and nr described

above as control variables improves all three parts

of the cost J0 (Table 4). Compared to Case 1, the

summer chlorophyll profiles are better represented

and improvements are also noted during other periods

of the year (Fig. 3). Nitrate profiles are also in better

agreement with the observations (Fig. 4).

Fig. 9 shows the retrieved rc and nr profiles. The rc
ratio is high (up to 143 mg C mg Chl� 1) near the

surface, and rapidly decreases with depth (45 mg C

mg Chl� 1 at about 40 m). Due to the regularization

term, Jr(rc) in the cost function, rc remains close to its

first guess value (55 mg C mg Chl� 1) below 50 m.

This decrease in rc with depth is realistic and physi-

cally related to the interdependence of rc and PAR.

Obviously, allowing rc to vary only with depth is an

oversimplification, since it does not account for the

seasonal variations of PAR. However, this experiment

clearly shows that the approximation already greatly

improves the results in relation to the constant rc case.

As for the optimal nitrate preconditioning profile,

this is approximately homogeneous in the first 200 m

of the water column (Fig. 9), consistent with the fact

that the winter mixed layer is almost homogeneous

down to this depth. It contains less nitrate than the

Table 5

Flux data (from Marty and Chiavérini, 2002) and calculated fluxes

at 200 m

Flux Data First guess Case 1 Case 2a Case 2b Case 2c

NU 42F 15 43.8 42.1 39.5 36.7 43.9

NP 22.5 31.6 26.8 23.1 24.2

TP 156F 30 110.6 59.5 59.6 68.4 115.4

SF 3.6 17.8 12.6 8.3 1.6

ZF 1.6 10� 3 10� 2 0.3 0.3

PF 2F 0.8 5.2 17.8 12.6 8.6 1.9

DOMF 15F 5 13.2 13.1 13.1 13.2 13.7

Values are given in g C m� 2 year� 1. NU stands for NO3 uptake, NP

for new production (NU corrected from nitrification), TP for total

production, PF for total particulate export flux (SF, the sedimenta-

tion flux + ZF, the zooplankton mortality flux) and DOMF for DOM

export flux.
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first guess (4.9 compared to 6 mmol N m� 3), which

again indicates that there was too much nitrate in the

first guess experiment.

The optimal parameters are given in Table 3. They

do not differ greatly from those of Case 1, but it should

be noted that the parameters which were thought to

vary because of the presence of too much NO3 at the

surface (ld, vd) have optimal values closer to their first

guess value than was the case in Case 1. In other words,

the optimal values of these parameters do not suffer any

more from the excess of nitrate, and we may expect

them to be more representative of reality.

Regarding the fluxes, DOC export and NP are

barely modified by the assimilation, and keep their

acceptable first guess value. However, the detritus

flux is still too high, and TP too low (Table 5). TP

has fallen to 59.6 g C m� 2 year� 1, which is well

below the data range. The detritus flux is more than

three times too high (12.6 g C m� 2 year� 1) and

consists only of the sedimentation of slow sinking

particles. Export through sedimentation of fast sinking

particles (ZF), which is parameterized through the

zooplankton mortality term, has almost vanished,

whereas it represented one third of total particulate

export in the first guess experiment.

The question arises as to why the model chooses to

favor sedimentation of slow sinking particles over

zooplankton mortality fluxes. Globally, in Cases 1

and 2a, zooplankton concentrations, which are not

constrained by any data, are much weaker than in our

first guess run (Table 6). This explains the fall in ZF,

which behaves like Z2. Sensitivity studies show that

the measurements, which cause the zooplankton con-

centrations to decrease, are the surface values of the

chlorophyll profiles corresponding to the dates 03/21

and 04/15 (the two squares corresponding to days 80

and 105 in Fig. 2). These values impose a slow

decrease in surface chlorophyll after the bloom max-

imum. This decrease is much more rapid in the first

Table 6

Zooplankton content data and calculated values at 200 m, for May

1997, in mmol N m� 2

Data First guess Case 1 Case 2a Case 2b Case 2c

20F 10 33.7 1.9 3.1 17.9 22.7

Fig. 9. Left: first guess (dashed line) and optimal (continuous line) rc. Right: first guess (dashed line) and optimal (continuous line) nr. The

reference values, Rc = 55 mg C mg Chla� 1 and Nr = 6 mmol N m� 3, are used for adimensionalization.
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guess run. The data assimilation forces the model to

simulate relatively high surface chlorophyll values

until the month of April. This is achieved through a

strong decrease in grazing, mainly resulting from the

decrease in zooplankton concentrations. In Case 1, the

model runs right between the two abovementioned

post-bloom data (Fig. 2) and ZFc 10� 3 g C m� 2

year� 1, whereas in Case 2a the model runs below

these measurements and ZFc 10� 2 g C m� 2 year� 1.

Given the strong influence of these two post-bloom

measurements on the assimilation results, it may

intuitively be thought that the sampling frequency at

this period must play an important role. However, this

cannot be easily tested and generalized in a rigorous

manner. Twin experiments could be performed but

this was decided against as one of the objectives of the

study was to use the available DYFAMED data set.

4.4.3. Adding zooplankton information—Case 2b

The above observations all point to the need to

constrain zooplankton concentrations in some way.

Although no synoptic zooplankton data is available,

the zooplankton content was estimated to be 20 mmol

N m� 2 in May 1995 (Andersen and Prieur, 2000).

Simulated zooplankton concentrations in May in the

first guess experiment are consistent with this value,

but they are too low in Case 1 and Case 2a (Table 6).

We therefore added this zooplankton data to the cost

function and conducted a Case 2 type optimization,

referred to below as Case 2b.

As expected, zooplankton concentrations in May

(17.9 mmol N m� 2) are now more acceptable. The fit

between observed and simulated chlorophyll and

nitrate data is not altered much, except during the

post-bloom period (day 04/15, Fig. 3). Indeed, as

discussed above, the increase in zooplankton results

in an increase in the grazing pressure on phytoplank-

ton, particularly during the post-bloom. However, the

results are still much better than in Case 1 (Table 4).

The estimated C/Chl ratio, rc, and NO3 restoring

profile, nr, are very similar to those of Case 2a (Fig.

9). Observation of the other parameters shown in

Table 3 also reveals that modifications are only slight

compared with Case 2a. The most significant changes

concern the detritus sedimentation speed, which

decreases from 7.8 to 5.8 m day� 1, the assimilated

fraction of phytoplankton, which increases from 63%

to 72%, and the nominal preference for phytoplank-

ton, which decreases from 0.67 to 0.63. Zooplankton

grazing rate increases by only 2%, while the zoo-

plankton loss rates decrease by less than 1%. This

behavior emphasizes the strong nonlinearites in the

zooplankton equation.

Improvement in the zooplankton content benefits

the main fluxes (Table 5). The sedimentation of slow

sinking particles (SF) decreases in response to the

decrease in vd compared to Cases 1 and 2a. This leads

to a more realistic value for total particulate export

(EF), which now includes a weak contribution from

fast sinking particles (ZF). TP has increased to an

intermediate value between that of Case 2a and the

first guess experiment.

5. Discussion

5.1. Validation against independent data

To validate the methodology, the model is run for

years 1995 and 1996 with the optimal parameter set

and the C/Chl profile obtained after assimilation of

year 1997 data (Case 2b).

The inter-annual variability in winter conditions is

taken into account by not using the NO3 precondition-

ing profile estimated for 1997, to simulate years 1995

and1996. Instead, for each of the years 1995 and 1996

we set the parameters to their values observed in Case

2b and only estimate the NO3 preconditioning profile.

This results in a significant improvement of the model

fit to chlorophyll profiles for years 1995 and 1996

(Table 7, Figs. 10 and 11). Surface and subsurface

maxima in spring and summer are globally better

simulated, although several profiles in summer–fall

1995 (09/14/95, 10/05/95, 11/15/95) are not really

Table 7

Comparison of the first guess run and the validation run with

independent chlorophyll and NO3 profile data for year 1995 and

1996

Data type Year First guess

cost

Validation run cost

Chlorophyll profile 1995 1 0.278

Chlorophyll profile 1996 1 0.092

NO3 profile 1995 1 0.646

NO3 profile 1996 1 0.320

Costs are normalized.
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Fig. 10. Chlorophyll profiles (mg Chla m� 3) for year 1995. Depth in meters. The continuous line is the observation, the thin dashed line is the

first guess run and the bold dashed line is the Case 2b optimal parameter set run.
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improved. NO3 profiles are also closer to the data

(Table 7, Figs. 12 and 13). Compared to year 1997

(Table 4), the agreement between data and model is

globally better in 1996, but not as good in 1995. This

might be linked to the ocean dynamics. Atmospheric

forcing is characterized by much lower high fre-

quency variability in 1996 than in the other years,

which means that the evolution of the tracers over

time is smoother (Mémery et al., 2002): vertical

movements due to Ekman pumping or other dynam-

ical processes, which are not considered in these

simulations, could be weaker in 1996. The quantita-

tive improvement of the simulation results in 1995

and 1996 after assimilation of the year 1997 can be

considered a validation of the methodology.

5.2. Stock data and flux values—Case 2c

The series of numerical experiments conducted in

this work shows that the principal biogeochemical

fluxes can be significantly modified by the assimilation

of stock data. In addition, the experiments illustrate the

Fig. 11. Chlorophyll profiles (mg Chla m� 3) for year 1996. Depth in meters. The continuous line is the observation, the thin dashed line is the

first guess run and the bold dashed line is the Case 2b optimal parameter set run.
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impossibility of recovering correct fluxes from the

assimilation of NO3 and chlorophyll data alone (Case

2a). When a single zooplankton measurement is added

(Case 2b), flux prediction is improved. However, this

improvement is not sufficient, and leads to a slight

deterioration of the fit to chlorophyll data.

One possible reason for the lack of success in

retrieving the fluxes could be that the model structure

prohibits solutions consistent with both the stock data

and the order of magnitude of the fluxes. To test this

hypothesis, a final experiment was conducted in which

all types of data were assimilated: stock measurements

as well as the data on the four fluxes presented in Table

5, taken from Marty and Chiavérini (2002). This

experiment, referred to as Case 2c, proved to be

successful. Surface chlorophyll, chlorophyll and NO3

profile optimization results are comparable to those

obtained earlier (Table 4), while the zooplankton con-

Fig. 12. NO3 profiles (mmol N m� 3) for year 1995. Depth in meters. The continuous line is the observation, the thin dashed line is the first

guess run and the bold dashed line is the Case 2b optimal parameter set run.
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tent in May is 22.7 mmol N m� 2, which is the best we

obtain with the data (Table 6). More importantly, the

predicted fluxes are now correct (Table 5). The hypoth-

esis concerning the role of the model structure in the

lack of success in retrieving the fluxes can therefore be

rejected.

The estimated C/Chl ratio and NO3 preconditioning

profile are very similar to those found in Case 2a and

Case 2b.With regard to the other parameters, presented

in Table 3, the most striking changes compared with the

previous cases appear for kn, c, ld and vd. The half-

saturation constant, kn, and the exudation fraction, c,

were found to be among the less sensitive parameters in

Section 4.2 and, not surprisingly, were not greatly

modified by the data assimilation in Case 1, Case 2a

and Case 2b. This was no longer true in Case 2c where

production flux data seem to constrain these parame-

ters. Sedimentation speed, vd, for which the optimal

Fig. 13. NO3 profiles (mmol N m� 3) for year 1996. Depth in meters. The continuous line is the observation, the thin dashed line is the first

guess run and the bold dashed line is the Case 2b optimal.
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value was always found to be higher than the first guess

value, is now lower, an observation that can be related

to the decrease in the export flux imposed by the data.

Furthermore, detritus feeds the NH4 and DOM com-

partments at a higher rate ld.

Unlike for chlorophyll data, the relative cost of the

NO3 profiles is higher in Case 2c than in Case 2b

(Table 4). Unlike in the first guess, the flux that had to

be modified in Case 2c was particle export production

(Table 5). To achieve this new balance, the inversion

degraded the fit of the NO3 profiles. Although a bias

due to dynamical processes cannot be entirely dis-

counted, this finding could result from an underesti-

mation of particle export production, obtained from

shallow sediment traps (Buesseler, 1991).

6. Conclusions

The present study has demonstrated the feasibility

of using the adjoint data assimilation method to con-

strain the biological part of a one-dimensional coupled

physical–biogeochemical model with observed data

from the DYFAMED station in the Northwestern

Mediterranean Sea.

A preliminary sensitivity analysis showed that not

all parameters can be estimated and enabled the inverse

problem to be correctly formulated. The correctness of

the formulation was demonstrated using identical twin

experiments.

Real surface chlorophyll data as well as chloro-

phyll and NO3 profile measurements were assimilated

for the year 1997. The assimilation method required

choosing a judicious first guess. Different assimilation

exercises then led to a number of conclusions.

As with earlier modeling studies (Geider et al.,

1997), it was quantitatively shown that it is impossible

to simulate correct surface chlorophyll bloom intensity

together with a correct summer subsurface chlorophyll

maximum in an oligotrophic regime using a constant

C/Chl ratio. We used a C/Chl ratio allowing vertical

variability to improve data assimilation results.

It was also quantitatively demonstrated that in our

1DDYFAMED context, the optimization of winter

NO3 conditions is of prime importance to data assim-

ilation efficiency. The winter restoring profile governs

the quantity of nitrate present in the model and needs

to be controlled. Some estimated parameter values

appeared to be dependent on this quantity. Moreover,

NO3 concentrations below the surface layer are

largely imposed by this restoring profile.

Finally, a good improvement in the chlorophyll

model-data fit was obtained. As for NO3 data, the

improvement was less significant below a depth of

100 m where data are affected by 3D physics not taken

into account in the model. The method was then

validated using an independent data set for years

1995 and 1996, and a new simulation conducted. This

calculated acceptable fluxes and also predicted chlor-

ophyll and NO3 profiles more correctly than the first

guess simulation.

The last but perhaps most important point concerns

the simulation of production and export fluxes. It was

shown that, using a simple NNPZD-DOM model, it is

not possible to recover correct fluxes simply through

the assimilation of NO3 and chlorophyll stock data

alone, although the model was able to simulate correct

stocks together with correct fluxes. This failure was due

to the collapse of zooplankton in the model. Non-

linearities, particularly in the zooplankton conservation

equation, are certainly responsible for this behavior:

minor changes in the parameters can considerably

modify system evolution. Nevertheless, the addition

of zooplankton data to the cost function did not prove to

be entirely successful or enable the correct fluxes to be

recovered. As stocks result from a balance between

input and output fluxes, it may be that information a-

ssociated with stocks alone cannot constrain the differ-

ent fluxes independently. This conclusion implies that

it may be impossible to estimate the biogeochemical

fluxes accurately if a first guess of these fluxes is not

taken into account and assimilated. Further studies,

using other models and different data coverage, are

needed to determine whether this statement can be

generalized.
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