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Abstract 

 We apply eco-cultural niche modeling (ECNM), an heuristic approach adapted 

from the biodiversity sciences, to identify habitable portions of the European territory for 

Upper Paleolithic hunter-gatherers during the Last Glacial Maximum (LGM), 

circumscribe potential geographic extents of the Solutrean and Epigravettian 
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technocomplexes, evaluate environmental and adaptive factors that influenced their 

distributions, and discuss this method’s potential to illuminate past human-environment 

interaction. Our ECNM approach employed the Genetic Algorithm for Rule-Set 

Prediction (GARP) and used as input a combination of archaeological and geographic 

data, in conjunction with high-resolution paleoclimatic simulations for this time frame. 

The archaeological data consist of geographic coordinates of sites dated by Accelerator 

Mass Spectrometry to the LGM and attributed to the Solutrean and Epigravettian 

technocomplexes. The areas predicted by ECNM consistently outline the northern 

boundary of human presence at 22,000–20,000 cal BP. This boundary is mainly 

determined by climatic constraints and corresponds well to known southern limits of 

periglacial environments and permafrost conditions during the LGM. Differences 

between predicted ecological niches and known ranges of the Solutrean and Epigravettian 

technocomplexes are interpreted as Solutrean populations being adapted to colder and 

more humid environments and as reflecting influences of ecological risk on geographic 

distributions of cultures. 

 

Introduction 

The idea of modeling past human-environmental interactions is by no means new. 

Researchers have used archaeological and environmental data sets, and diverse methods, 

to interpret prehistoric hunter-gatherer behavior in ecological contexts. Well-known 

European examples concern prehistoric population distributions during Oxygen Isotope 

Stages 2 and 3 (Gamble et al., 2004; Van Andel and Davies, 2003), as well as the 

resettlement of regions following severe climatic episodes (Gamble et al., 2005; Straus et 
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al., 2000). These studies were based on spatial distributions of radiometrically dated sites 

and generalized climatic reconstructions. Others have used a similar approach to estimate 

population size and kinetics (Bocquet-Appel and Demars, 2000; Bocquet-Appel et al., 

2005). More detailed attempts to examine population distributions and human tolerances 

with respect to environmental variability also exist (Binford, 1999, 2001; Davies et al., 

2003; d’Errico and Sanchez Goni, 2003; d’Errico et al., 2006; Sepulchre et al., 2007). 

However, no agreement yet exists on how best to evaluate influences of environmental 

factors on prehistoric human populations and their responses to climatic variability. 

One common limitation is the use of coarse-scale climatic data (i.e., simulations 

with resolutions of 3–5° in latitude and longitude) and imprecise chronological data (i.e., 

reliance on old conventional ages with large sigmas) that make evaluation of human 

responses to rapid-scale climatic variability, with adequate resolution, difficult. Another 

shortfall of previous studies is that they have incorporated environmental data into 

analyses only passively, such that these data are used as backdrops against which the 

archaeological record is interpreted. While these studies have obvious value, they are 

limited in their ability to evaluate prehistoric hunter-gatherer responses to the abrupt 

climatic and environmental changes of the last glacial period. The need for robust 

methods with which to evaluate more precisely how past human and animal populations 

responded to these changes is critical. 

An important recent advance in the study of biological diversity has been the 

development of biocomputational architectures for predictive modeling of complex 

biodiversity phenomena (Guisan and Zimmermann, 2000; Soberón and Peterson, 2005). 

Such tools can be used to predict species’ range (i.e., ecological niche) expansion or 
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contraction in response to real or simulated climatic changes (Peterson et al., 2002). The 

ecological niche of a species can be defined as the range of environmental conditions 

within which it can persist without immigrational subsidy (Grinnell, 1924; Hutchinson, 

1957). Such methods have considerable potential for reconstructing niches of past human 

populations and for illuminating the complex mechanisms that regulated the interactions 

between past hunter-gatherer populations and their environments, which in turn helped 

shape cultural, genetic, and linguistic geographies. These methods, and related concepts, 

recently have been termed Eco-Cultural Niche Modeling (ECNM) (Banks et al., 2006) 

when applied to prehistoric human populations. Our application of ECNM interactively 

integrates climatic, geographic, and archaeological data via a machine-learning genetic 

algorithm, described below. Comparable work is being pursued by others to analyze 

North American Paleoindian (Anderson and Gillam in Banks et al., 2006) and Far 

Eastern Paleolithic (Gillam and Tabarev, 2006) data and have shown promising results. 

We argue that ECNM is a powerful approach and, when paired with high-resolution 

climatic simulations, allows one to overcome many limitations of previous studies and 

evaluate prehistoric human-environment interactions at regional scales. 

Here, we apply ECNM to human populations at the Last Glacial Maximum 

(LGM) in Europe, a well-studied and dated climatic phase known to have had profound 

impacts on human populations, with three primary objectives: (1) to determine the limits 

of the potential human range during the LGM, (2) to define the eco-cultural niches of the 

two main archeological cultures present in Europe at that time (the Solutrean and 

Epigravettian technocomplexes), and (3) to identify environmental and cultural factors 

that shaped their geographic ranges. 
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Environmental and Cultural Context 

 The last glacial period was marked by dramatic and rapid climatic variability 

(Dansgaard et al., 1993; Johnsen et al., 1992), with the LGM representing a unique suite 

of climatic conditions (Ditlevsen et al., 1996; Peryon et al., 1998). This period, centered 

on 21 kyr cal BP, is characterized by the maximum volume of the ice sheet over 

Scandinavia and northern Europe, along with cold and generally arid conditions in 

northern and Western Europe. The LGM archaeological record is characterized by a 

relatively small number of sites and large gaps in the archaeological record for many 

regions (cf. Soffer and Gamble, 1990; Straus, 2005; Street and Terberger, 1999). Such a 

pattern has been interpreted to be the result of the human abandonment of northern 

Europe and a contraction of the human range to southern regions that served as refugia. 

Such contraction and consequent demographic reduction is known to have produced a 

bottleneck in human genetic diversity (Barbujani et al., 1998:490; Torroni et al., 1998; 

Torroni et al., 2001). 

In Western Europe, between ca. 22 kyr and 20 kyr cal BP, human groups 

responded to LGM environmental conditions by developing a suite of new technologies 

characterized by a variety of diagnostic projectile points and knives produced by bifacial 

retouch (Figure 1A), which define the Solutrean (Mortillet, 1873; Smith, 1966). Straus 

(2005) proposed that Solutrean populations employed more specialized subsistence 

systems, relative to earlier Upper Paleolithic technocomplexes, to exploit regions rich in 

game but under harsh climatic conditions. 

 In the regions of southeastern Europe, hunter-gatherers of the LGM produced a 
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different lithic technology, termed the early Epigravettian (Laplace, 1964; Mussi, 2001), 

characterized by shouldered and backed projectile points produced by unifacial retouch 

(Figure 1B). Leaf-shaped points are rare and have been recovered from only a few sites in 

northern Italy (Palma di Cesnola, 1990). Contrary to the Solutrean, which appears as a 

novel technology, the Epigravettian toolkit is interpreted as being derived from the 

preceding Gravettian technocomplex (Otte, 1990; Palma di Cesnola, 2001).  

 

Materials and Methods 

For ECNM, we employed a machine-learning genetic algorithm originally 

developed for determining the ecological niches of plant and animal species (Stockwell, 

1999; Stockwell and Peters, 1999). This software application, termed the Genetic 

Algorithm for Rule-Set Prediction (GARP), has been applied to topics as diverse as habitat 

conservation, effects of climate change on species’ distributions, the geographic potential 

of species’ invasions, and anticipation of emerging disease transmission risk (Adjemian et 

al., 2006; Martinez-Meyer et al., 2004; Peterson et al., 2004; Sanchez-Cordero and 

Martinez-Meyer, 2000; Soberón and Peterson, 2004). It is available for download at 

http://www.lifemapper.org/desktopgarp/. 

GARP requires as input the geographic coordinates where the target species has 

been observed and raster GIS data layers summarizing environmental variables that may 

be involved in limiting the geographic distribution of the species. In our application, the 

occurrence data were the geographic coordinates of radiometrically dated and culturally 

attributed archaeological sites. These archaeological data were obtained from a database, 

compiled by FdE and MV, that contains the geographic coordinates, recorded 
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stratigraphic levels, associated cultural affiliations, and > 6000 radiometric ages from ca. 

1300 archaeological sites in Europe.  

The raster GIS data consisted of landscape attributes and high-resolution climatic 

simulations for the LGM. The landscape variables included slope, aspect, elevation, and 

compound topographic index (a measure of tendency to pool water) from the Hydro-1K 

dataset (U.S. Geological Survey's Center for Earth Resources Observation and Science - 

http://edc.usgs.gov/products/elevation/gtopo30/hydro/index.html).  

  Typically, climatic simulations for specific periods of time are produced by 

forcing general circulation models (GCMs), which reconstruct past, present, and future 

climates globally typically at resolutions where grid squares measure 100–200 km on a 

side. For instance, the LGM and the mid-Holocene have been the focus of coordinated 

experiments in the framework of the Paleoclimate Modelling Intercomparison Project 

(Harrison et al., 2002; Joussaume and Taylor, 1995; PMIP, 2000). In an effort to use 

climatic data that approach the same scale of resolution as our geographic data, we use in 

the present study a regional climatic simulation with a grid box size over Europe of ~ 60 

km on a side, which was run at the Laboratoire des Sciences du Climat et de 

l’Environnement, Gif-sur-Yvette, France.  

This high-resolution LGM atmospheric simulation followed the PMIP1 protocol 

(http://www-lsce.cea.fr/pmip), with sea-surface temperatures and sea ice cover as 

prescribed from the CLIMAP (1981) data set and the ice-sheets from the Peltier (1994) 

ICE-4G reconstruction. Atmospheric CO2 concentration was lowered to 200 ppmv 

according to the ice-core record (Raynaud et al., 1993) and orbital parameters adjusted to 

21,000 cal BP values (Berger, 1978). The results of this simulation have been compared 
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to pollen-based climatic reconstructions, with fairly close agreement for summer and 

annual mean temperatures but some underestimation of winter cooling and drying over 

Western Europe and the Mediterranean (Jost et al., 2005). From this simulation, we 

derived the following variables for input into GARP: warmest month temperature, coldest 

month temperature, mean annual temperature, and mean annual precipitation (Figure 2). 

The values of warmest and coldest months refer to the warmest/coldest month in a 

climatic cycle averaged over 10 yr of simulation.  

In GARP, geographic locations of archaeological sites are resampled randomly by 

the algorithm to create training and test data sets. An iterative process of rule selection is 

then performed within the program’s functioning, in which an inferential tool is chosen 

from a suite of possibilities (e.g., logistic regression, bioclimatic rules) and applied to the 

training data to develop specific rules (Stockwell 1999). These rules maximize predictivity 

by using independent data to evaluate them. Predictive accuracy is evaluated based on the 

known presence data and a set of pseudoabsence points (i.e., points sampled randomly 

from among points across the region of study where the species has not yet been detected) 

(Stockwell 1999). This evaluation process is used to develop a rule-set that defines the 

distribution of a species in ecological space (i.e., an ecological niche) (Soberón and 

Peterson, 2005), which can be projected onto the landscape to predict a potential 

geographic distribution (Peterson, 2003:421; Stockwell, 1999; Stockwell and Peters, 

1999). GARP has undergone extensive improvement and testing in recent years, including 

detailed sensitivity analyses (Peterson and Cohoon, 1999; Stockwell and Peterson, 2002a, 

2002b; Anderson et al., 2002). 

We applied GARP to archaeological sites dated by AMS to the LGM, in an effort 
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to minimize the possibility of incorporating sites for which radiometric determinations 

are underestimates of true ages, as has been shown to be common for older Upper 

Paleolithic technocomplexes that date to the temporal limits of radiocarbon methods 

(d’Errico and Sanchez-Goni, 2003; Van der Plicht, 1999; Zilhão and d’Errico, 1999). The 

lack of agreement between conventional and AMS ages has been attributed by these 

authors to ineffective sample treatments, and the application of conventional 14C counting 

methods to samples that fall near the limits of this dating method. While these factors 

should have a lesser impact concerning sites dated to the LGM, they still may be a source 

of error considering this period’s relatively narrow time window. Figure 3, presenting 

distributions of conventional and AMS ages from sites attributed to the Solutrean, 

indicates that such sources of error are present for ages during the LGM: conventional 

ages are slightly younger relative to AMS ages, suggesting that some underestimate the 

true age of their sites. 

For this reason, the site samples used to create our Solutrean and Epigravettian 

ECNMs are composed primarily of sites radiometrically dated by AMS to the height of 

the LGM (defined here as 21 ± 1 kyr cal BP), and that contain diagnostic material 

assemblages associated with these technocomplexes (Table 1). AMS ages for sites 

assigned to the two technocomplexes of interest were calibrated using CALIB 5.0.2html 

(Reimer et al., 2004; Stuiver et al., 2005). The geographic coordinates of those sites that 

fell within our targeted time frame were used as occurrence points. We included 5 

undated sites in Italy reliably attributed to the early Epigravettian of the LGM based on 

their stratigraphic contexts and diagnostic material assemblages to increase sample size 

for this technocomplex.  
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The other exception to our site selection protocol is the Solutrean site of Buraca 

Escura. The conventional age from this site (Gif-4585) is very similar to the AMS ages 

from nearby Solutrean sites that, when calibrated, fall just outside the LGM timeframe. In 

all, geographic coordinates for 11 Epigravettian and 9 Solutrean sites were used as input 

to produce the GARP models. 

 We used the following specifications in GARP. Given the random walk nature of 

the method, we ran 1000 replicate runs, with a convergence limit of 0.01. Given the small 

size of the samples, we used ca. 80% of occurrence points for developing training rules in 

each analysis and reserved one point for model selection and one for evaluating model 

predictive ability. We then followed a protocol for selecting among the resulting models 

(Anderson et al., 2003), with omission error (i.e., failure to predict a known presence) 

measured based on the single reserved model selection point (see above), and models 

retained only when they were able to predict that single point (i.e., hard omission 

threshold of 0%). Commission error, conversely, is a measure of areas of absence that are 

incorrectly predicted present (Anderson et al., 2003:213). We followed recommendations 

of removing from consideration those 50 % of models that show extreme values of 

proportional area predicted present. The resulting final ‘best-subset’ models (N = 10 for 

each technocomplex) were then summed to produce a best estimate of the potential 

geographic distribution for each technocomplex. This same procedure was used with all 

sites combined, regardless of cultural affiliation, to predict potential human range during 

the LGM. 

 Predictive models such as ECNMs are just that—predictions. As such, ECNMs 

must be tested for predictive accuracy before they can be interpreted. Given low 
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occurrence data samples, we tested model predictions using the jackknife manipulation 

proposed by Pearson et al. (2007), which is the only robust test for evaluating models 

based on small samples. Here, we used the single point set aside for evaluating model 

predictivity: if N occurrence points are available, N -1 points are used to develop N 

jackknifed models. The success of each replicate model in predicting the single point that 

was omitted, relative to the proportional area predicted present, is then calculated using 

an extension to the cumulative binomial probability distribution (Pearson et al., 2007).  

To evaluate whether the two technocomplexes reflect adaptations to different 

ecological regimes, we compared their respective ecological niches. First, we performed 

a Principal Component Analysis using Statistica 7.1 on the climatic and geographic 

variables’ values for the grid squares with a predicted presence for all 10 GARP best-

subset models. Based on the results, described below, the values for mean annual 

precipitation, mean annual temperature, coldest month temperature, and warmest month 

temperature of these best-subset grid squares were plotted against all the available 

climatic data of the LGM simulation. 

 

Results 

 The model produced using both Solutrean and Epigravettian sites identifies a 

clear northern boundary for potential human range during the LGM (Figure 4), which is 

also reproduced in the models for each separate technocomplex (Figure 5). This boundary 

follows the Loire valley in France, excludes the Massif Central, includes the 

Mediterranean regions of France, follows the southern limit of the Alps, and the northern 

limits of the Carpathian range (Figure 4). 
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The territories predicted for the Solutrean and the Epigravettian are presented 

individually in Figure 5. The Solutrean model predicts potential presence of human 

groups associated with this culture in southwestern and southern France, northwestern 

portions of the Iberian Peninsula, the Ebro valley, and in disjunct areas of Cantabria, 

northwestern Italy, and the Balkans. The model for the Epigravettian predicts a potential 

presence of this culture in the Balkans, the Italian Peninsula excluding the most southerly 

regions, the Mediterranean regions of France as well as the Aude and Garonne corridors, 

and the Iberian Peninsula excluding its southern regions. That these models have high 

predictive power regarding potential human distributions is shown by the accuracy 

observed in the jackknife manipulations. The independent test point was correctly 

predicted in 7 of the 9 jackknife models for the Solutrean and in all 11 models for the 

Epigravettian, with associated probabilities of P = 0.00005 and P < 0.00001, respectively.  

Although potential distributions predicted for these two technocomplexes show 

only minimal overlap geographically, conclusions of ecological differentiation are 

complex. These models are geographic projections of ecological niches defined by 

multiple environmental variables, so small differences between ecological niches can 

result in different potential geographic distributions when ecological differences 

correspond to environmental conditions present over large regions. 

 A Principal Component Analysis of the environmental variables indicated that 

overall environmental variability in the study area is satisfactorily explained (85%) by the 

first two components, which are most influenced by the different temperature variables 

associated with each technocomplex’s predicted distribution. Plotting the climatic 

variables’ values of the grid squares where all best-subset models predicted potential 
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presence against all of the available climatic data (Figure 6) showed that the ecological 

niches occupied by the two technocomplexes overlap broadly, with only slight 

differences on the edges of their predicted niches. These differences indicate that the 

Solutrean technocomplex had the potential to occupy somewhat cooler and more humid 

environments than the Epigravettian. T-tests performed on these data matrices to compare 

the two technocomplexes were uniformly significant (p << 0.05), indicating that the 

Solutrean and Epigravettian niches are not drawn from the same population. 

 

Discussion 

 The northern limits of the human range predicted by ECNM for the LGM (Figure 

4) are arguably accurate. These limits are consistent with the known distribution of 

archaeological sites for this period (Bocquet-Appel et al., 2005; Demars, 1996; Soffer 

and Gamble, 1990). The only radiometrically dated site for our temporal range that 

seemingly contradicts our results is that of Wiesbaden-Igstadt (Street and Terberger, 

1999), which has yielded 7 AMS ages from a single occupation level ranging from 

19,320–17,210 B.P. Street and Terberger (1999:267) think that these ages collectively 

represent the true age of the site but acknowledge, however, that uncertainties (e.g., 

contamination) could exist. When calibrated, two of these dates (UZ-3768 and OxA-

7500) fall within our LGM window, but they are appreciably younger than the other 

calibrated dates from the same level suggesting that they underestimate the true age of the 

occupation. This interpretation is supported by the fact that when these two ages are 

averaged (tave = 17,356 ± 118 B.P.) using the method described by Long and Rippeteau 

(1974), and compared to the next youngest age (OxA-7501), the null hypothesis of no 
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difference is rejected (t = 4.0143, P < 0.001). Because the younger and older ages from 

Wiesbaden-Igstadt cannot be considered to be drawn from the same statistical population, 

and the older ages fall before the LGM when calibrated, we hesitate to accept that this 

site represents an LGM human occupation of the Central Rhineland. Wiesbaden-Igstadt 

probably dates to Dansgaard-Oeschger Interstadial 2 to which Shackleton et al. 

(2004:1515) assign an age of 19.62 ± 0.21 kyr BP.  

 One might argue that the site samples used in our study are not representative of 

human population distributions, especially with respect to northern limits, during the 

LGM. In other words, some regions may have been only sporadically occupied leaving 

undetectable archaeological signatures. Such an argument is contradicted by statistical 

analyses (Bocquet-Appel et al., 2005) that convincingly show that the frequencies and 

distributions of recorded archaeological sites in Europe are representative, when 

considered with an appropriate taphonomic perspective, of prehistoric population 

distributions. Considering these arguments, the northern latitudinal limits of human 

occupation during the LGM indicated by our ECNM predictions represent accurate 

estimates of the areas occupied by hunter-gatherers during this period. 

Interestingly, the northern range of the GARP predictions corresponds to the 

southern boundaries of periglacial environments in Western and Central Europe (Huijzer 

and Vandenberghe, 1998; Lautridou and Sommé, 1981). The GARP limits in France 

follow closely those that separated regions characterized by continuous deep permafrost 

[depths of 50–600m (van Vliet-Lanoë, 2005:94)] and continuous permafrost (Figure 7) 

(van Vliet-Lanoë et al., 2004). The limits predicted by the ECNM for southern France, 

Iberia, and Italy generally follow the boundary between continuous and discontinuous 



 15 

permafrost (Texier, 1996; vanVliet-Lanoë, 1996). Such correspondence strengthens 

arguments for the predictive power of our modeling approach since periglacial 

environments have low biomass, which may have prevented systematic utilization by 

prehistoric human groups. 

The geographic distributions predicted by the ECNMs for the Solutrean and 

Epigravettian show only minimal overlap (Figure 5), suggesting that the populations 

associated with these two technocomplexes were to some degree adapted to different 

environments. Reconstructions of their ecological niches indicate that they overlap 

broadly, but that Solutrean populations were able to exploit colder and more humid areas, 

corresponding to areas with permanent permafrost during the LGM. In contrast, 

Epigravettian populations seem to have been more adapted to areas dominated by 

discontinuous permafrost and seasonal freezing. Neither technocomplex is associated 

with the more southerly, dry, and relatively warmer Mediterranean environments during 

the LGM.  

 It is important to point out that GARP identifies the potential ecological niche for 

a population and not necessarily the actual distribution as determined by cultural and 

historical contingencies. With respect to the correspondence between predicted and actual 

geographic ranges, the relatively restricted potential geographic distribution for the 

Solutrean corresponds well to this technocomplex’s archaeological distribution. In 

contrast, the Epigravettian ECNM prediction exhibits a potential range across southern 

France and Spain that is not corroborated archaeologically. This phenomenon is common 

(Peterson 2003) when species’ predicted ecological niches are projected across broad 

geographic areas: habitable areas are frequently predicted outside their observed range. 
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Four factors are generally cited to account for such discordances: (1) limited dispersal, 

(2) speciation, (3) extinction on regional scales, and (4) competitive exclusion (Peterson, 

2003:422–423). Limited dispersal refers to the inability of a species to occupy other 

regions due to physical mobility constraints, which does not seem to apply to the 

Epigravettian populations since coastal corridors were open and habitable during the 

LGM and would have allowed them to colonize western territories. Speciation also is not 

a factor since human populations that occupied Europe at the end of OIS 3 and during 

OIS 2 arguably belonged to the same species. Likewise, regional extinction is not 

applicable, as it implies that Epigravettian populations were present in those regions 

before the LGM, but went extinct before its onset. The archaeological record 

demonstrates that such is not the case. 

 Of the factors proposed by Peterson (2003), competition may explain the 

discordance between actual and predicted Epigravettian distributions since GARP only 

models the potential niche of one population at a time. The competition hypothesis 

implies that Epigravettian populations could not occupy suitable regions of Western 

Europe, such as the northern Iberian Peninsula, because it would have been necessary to 

cross large areas occupied by competing human groups bearing a different cultural 

tradition, the Solutrean. This idea raises the question of why such competition would 

create a boundary between human groups, instead of resulting in occupation of the entire 

potentially exploitable geographic area by only one of them. 

In the case of a biological species, the reasons that create a boundary between 

competing species are mainly ecological (MacArthur, 1972; Hutchinson, 1978). With 

humans, other factors can play roles in creating boundaries between groups. Contrary to 
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most animal species, the carrying capacity of a human population is directly linked to its 

ability to maintain and transmit between generations not only a suitable technical system, 

but also a complex and dynamic set of social rules, cultural and religious values, systems 

of symbols, language, and ethnic identity. The geographic extent over which this heritage 

can be maintained may vary according to the nature of each human culture but is also 

highly dependent, particularly for hunter-gatherers, on ecological constraints. Nettle 

(1998) demonstrated convincingly that the geographic extent of linguistic entities 

increases in regions of high ecological risk, where ecological risk is defined as the 

amount of variation which people face in their food supply over time (seasonally or inter-

annually). Collard and Foley (2002) argued that cultural diversity decreases towards 

higher latitudes. Both studies attribute this pattern to the need to create long-distance 

social networks to increase the ability of human groups to survive in hostile 

environments. Limits to the expansion of such cultural and linguistic entities are thus 

arguably dictated by the need to maintain a degree of cultural and linguistic cohesiveness 

over these large ranges. The reconstructed ecological niches and their geographic 

projections for the two technocomplexes suggest that they occupied regions associated 

with different levels of ecological risk. Solutrean populations principally exploited 

regions characterized by colder and more humid conditions than those occupied by 

Epigravettian groups. 

Good agreement exists between the predicted eco-cultural range for the Solutrean 

technocomplex and its actual archaeological distribution. We contend that Solutrean 

populations faced relatively high levels of ecological risk and consequently occupied as 

much of the potential geographic distribution allowed by their cultural adaptation as 
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possible. Geographical barriers such as the Pyrenees and the Cantabrian range apparently 

were not obstacles to the occupation of their entire niche. In contrast, Epigravettian 

populations showed marked differences between potential and actual distributional areas. 

We suggest that Epigravettian groups faced lower levels of ecological risk and thus did 

not need to extend spatially as broadly. 

Additionally, the potential geographic range predicted by the ECNM for the 

Epigravettian technocomplex during the LGM is restricted to a latitudinal band 

determined by geographic barriers (western Alps and Pyrenees)―given the narrowness 

of the European Mediterranean coastline, corridors between areas suitable for 

Epigravettian groups would have been restricted. Such irregular potential distributional 

areas would certainly have constituted major obstacles to maintenance of viable cultural 

and linguistic networks across these regions. These restrictions were probably more 

effective between the Italian and Iberian Peninsulas than between the Italian Peninsula 

and the Balkans owing to the broad Adriatic plain created by low sea levels during the 

LGM (Antonioli et al., 2004; Lambeck et al., 2004). This difference certainly facilitated 

exchange between populations of the Italian Peninsula and southeastern Europe, as 

supported by Epigravettian affinities to LGM industries of the Balkans (Montet-White, 

1996:121–122).  

 

Conclusions 

ECNM is an effective approach by which to characterize and quantify eco-

cultural niches associated with specific technocomplexes, and better understand how 

environmental factors influenced distributions of prehistoric human populations. Future 
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research must focus on methods that can be used to evaluate more precisely the roles of 

competition and cultural cohesiveness in producing discords between predicted and 

actual ranges. The role of geography in constraining niches and creating cultural 

boundaries must be specifically targeted. Comparisons between the extent and location of 

niches occupied by populations associated with specific technocomplexes under similar 

climatic and environmental conditions may allow us to better disentangle the influences 

of environmental and cultural factors. It also would be useful to apply these techniques to 

animal species of the LGM and other climatic episodes to evaluate whether or not their 

predicted ecological niches were associated with those of humans. Finally, the 

application of ECNM to historically documented hunter-gatherers, for which detailed 

cultural and environmental data are available and cultural dynamics have been directly 

observed, would be instrumental in interpreting predictions based on archaeological and 

paleoclimatic data.  
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Combe Suaniere Solutrean 0.16 45.14 France OxA-488 17700 290 20940 AMS 
Jean Blancs Solutrean 0.49 44.86 France GifA-97147 17650 200 20844 AMS 
Grotte XVI Solutrean 1.2 44.8 France AA-2668 20070 330 22068 AMS 
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Vale Almoinha Solutrean -9.4 39.08 Portugal OxA-5676 19940 180 21932 AMS 
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