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NUMERICAL SIMULATIONS OF BUOY ANCY DRIVEN FLOWS IN CYLINDERS 

AND CAVITIES FOR VAPOUR CRYSTAL GROWTH 

P. Bontoux, F. Elie, C. Smutek, G.P. Extremet, 
A. Randriamampianina, E. Cres po * , H. Branger, and B. Roux 

I.M.F.M., rue Honnorat, Marseille, France 

INTRODUCTION 

The paper reports about numerical works carried out by the 
authors at I.M.F.M. in the group of Numerical Fluid Mechanics. T h e  
common objectives of these works are related to the analysis of fluid 
dynamics in closed tube methods employed in crystal growth from 
vapours. Several numerical methods are considered and the solutions 
are discussed with respect to the results obtained with different 
approaches of the problem as the asymptotic theories, the stability 
analyses and the experiments. Some groups were associated in relation 
with these approaches and also the development of the numerical 
methods, finite difference and spectral methods. They are the groups of 
Prof. G. De Yahl Davis at University of New South Wales-Australia, Prof. 
F. Rosenberger at University of Utah-U.S.A. (with Dr. G.H. Schiroky, B.L. 
Markham, A.C. Hurford .. ), Prof. R. Sani at University of Colorado
Boulder-U.S.A. (with G. Hardin), Prof. M.G. Velarde at U.N.E.D.-Madrid
Spain (with E. Crespo), Dr. R. Peyret at Universite de Nice-France (with 
Dr. J. Ouazzani and J.M. Lacroix). 

The closed ampoule vapour transport techniques are used for the 
preparation of single crystal and very useful for research in crystal 
growth (however costly for production where open tube methods can be 
generally preferred). The ampoule is usually cylindrical and heated 
differentially inside a furnace which produces the thermal conditions for 
vaporization at the source and condensation at the sink (see Omaly et al., 
1981). The process involves very complex physical mechanisms, i.e. the 
sublimation of a material at the hot source, the transport of the volatile 
component A across the ampoule through other components B and the 
crystal growth at the cold end of the tube (see Rosenberger and co
workers, 1979 to 1984). The convection is 'the principal fluid mechanism 
and the transport can also be enhanced by tilting the tube with respect 
to the gravity field (Pamplin, 1 980). Depending on the values of the 
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physical parameters (Rayleigh numbers ... ), the aspect ratio and the 
inclination angle, many complex flows can develop in the ampoule which 
can be highly or moderately three-dimensional or simply two
dimensional as in axisymmetric situations. The understanding of 
convection in the nutrient by predictions of velocity scales and flow 
patterns is very important for the researchers because it affects the 
growth behaviour of the crystal (Carruthers, 1977, Olson and 
Rosenberger, 1979, Ostrach and co-workers, 1979, 1981 ,  1982). 

The mathematical model is given by the Navier-Stokes equations 
with the Boussinesq approximation. The three-dimensional simulation of 
thermal convection is made with a finite-difference method. Both 
hermitian finite differences and spectral approximations w e r e  
considered for the two-dimensional simulation of physical vapour 
transport with a simple analytical law or the Fick's law to modelize the 
mass flux at the interfaces. The characteristics of the numerical methods 
are shortly given. The typical flows obtained in horizontal, vertical and 
inclined cylinders are presented. An assessment of the validity of the 
two-dimensional approximation is discussed with respect to the  
experimental, analytical and numerical results in the symmetry plane of 
a horizontal cylinder. The fluid dynamics of crystal growth from vapours 
is studied when the thermal and solutal Rayleigh numbers vary. 

PHYSICAL MODELS AND GEOMETRIES 

Crystal growth by physical vapour transport (PVT) in a closed 
tube is experimentally simple. It consists in the vaporizatiqn of a 
material A at a source and its condensation to a crystal generally held at 
a "colder" temperature than the source (Greenwell et al., 198 1 ,  Markham 
et al., 198 1 ). The transport of the gaseous component A through (inert) 
components B across the ampoule is governed by the competit10n 
between the advection-diffusion driven by the interfacial mass flux and 
the convection generated by the density gradients in the changes of 
temperature and concentration. 

The cylindrical geometry is depicted in Fig. 1 with the associate 
rectangular cavity model. The reference frames are given for both 
geometries with the velocity components !!.. Y., YL. defined in the radial (r.
or x.), azimuthal (f) and axial (_LJ directions, respectively. The a xial
length is L,  R is the radius and D is the height (D= 2R). The aspect ratio is 
a=L/2R=L/D. The enclosure is filled with a binary mixture of gaseous 
components A and B (molecular weights MA and M8). At the source and 

the crystal, the solid S consists of A only. The interfaces (of length D) are 
flat, stationary and held at constant different temperatures (hot at the 
source T2 (z.=L), cold at the sink T1 (z.=0)) and concentrations (SA2;::SA1 ).

The growth rate is assumed to be limited by the mass transfer of A in 
the vapour phase. The flux of the (inert) component B vanishes at the 
interfaces (active walls). The passive side walls are impermeable to both 
species. 
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Fig .  l . Differentially heated cylinder and Fig . 2. Temperature profiles along the 
cavity at inclination with the gravi ty (axial) walls: 1-G model (a), 2-Z model 

vector: definition sketch for dimensions, (b) and 3-Z model (c). 
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components. 

Depending on the applications, various kinds of temperature 
profiles can be produced at the axial walls by the furnace in order to 
enhance the growth process (Omaly et al., 1981, 1983, Launay, 1982, 
Brisson, 1981, Extremet et al., 1986). They are presented in Fig.2. The 
simplest profile is linear and corresponds to the one-gradient model 
(abbreviated 1-G). In the general case one or more gradient can be 
inserted between isothermal zones (multizone models, with two and 
three zones abbreviated 2-Z and 3-Z). The conditions at the side walls 
are expressed as: 

T = T 1 + /::,. T El (z.) (1) 

where El (z..)= z,JL with /::,. T = T 2 - T  1, when O:;; z..:;; L for the 1-G model

(Fig.2a); El (z..)=0 when 0:5 z..:;; z..1 and El (z..)=l when z..2:;; z..:;; L for the 2-Z

model (Fig.2b); El (z..) =  0 when O:;; z..:;; z..1 , El (z..)= El m = (T m -T 1 )//::,. T w h e n

z.2:;;z.:;;z.3, E> (z..)=1 when L4:5Z.:5L for the 3-Z model (Fig.2c); in the 2-Z and

3-Z models the constant gradient zones (of widths ?f i= ( L 6 T) /L) are

inserted between the isothermal zones and T 1:;; T m:;; T 2•

The axis of the ampoule will not be always perpendicular to the 
gravity field, that is in microgravity environment but also on earth in 
the applications when the inclination is used to enhance convection 
(Pamplin, 1980). As defined in Fig. l, the inclination angle, Q , is referred 

to the vertical. The inclination Q =0° will correspond to the vertical  
cavity heated from below. 
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MATHEMATICAL MODELS 

The governing system is given by the Navier Stokes, energy and 
species equations with the Boussinesq approximation and the linear 
Fick's law. 

The Boussinesq Approximation and the Linear Fick's Law 

The density is linearly related to the variation of temperature, T, 
and mass fraction, SA= PAIP, of component A ( SA+ S B  =1) with the 

Boussinesq approximation (Joseph, 1976) as follows 

(2) 

where � is the thermal expansion factor ( l/T 0 for ideal gas), and 

ocA= M0( M8-MA) /MAM B is the solutal expansion factor expressed in 

terms of the molecular weights (subscript 0 refers to average quantities).

The diffusive flux of the components with respect to the mass 
average velocity, V=SA VA +S8 V B  , is given by the linear Fick's law as (see 

Rosenberger, 1979): 

(3) 

where DAB is the binary diffusivity. 

The Two-Dimensional Model 

The governing equations are written using the dimensionless 
.vorticity, t, streamfunction, 'f, temperature, e=2 ( T-T0)/(T2-T 1), and

mass fraction, S=2(SA-SA0)/(SArSA1), as :

e � /S t + Tl i V . V' � = Tl d 6 � + Tl t b go . V' e + Tl s b go . V' S

e e /S t + :>. i v . v e = :>. d 6 e

(4) 

(5) 

(6) 

(7) 

where "il and 6 are the gradient and Laplacian operators, V=(u=o 'f /S z, 
w = - e 'f /S x) and g0 is the unity gravity vector. Depending on the choice 

of the scaling factors for the velocities and space variables, the 
coefficients Tl , :A , o are expressed in terms of the physical parameters 

(De Yahl Davis, 1986): the Prandtl number, Pr=v/x, the Lewis number, 
L e =x/DAB , or the Schmidt number, Sc=v/DAB , the thermal and solutal 

Rayleigh numbers, RaT=�g6T(H)3/vx and Ras=ocAg6SA(H)3/vDAB , or
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the Grashof numbers, Gr=Ra/Pr , where !J. SA=SA2-SA1 and H=D/2 (or R in 

what will concern the cylindrical cavity). With x /H (x is the thermal
diffusivity) as scaling factor for the velocity, the dimensionless 
coefficients in system (4-7) are 'fli=A.i=O'i=l, 'fld=Pr, A.d=l, od=l/ Le ,  

'fltb= R a TPr and 'flsb= R a sPr/Le. The common scaling for the space 

variables in the following results will be based on the mid-height D/2 of 
the cavity (respectively R for the cylinder). 

The mass fraction at the side walls is governed by the no-flux 
condition for both species, 8 S/8 x=O. For the velocity the usual no-slip 
and no-permeability conditions are used (Jhaveri et al., 1981, 1982). 

Two models are considered to analyse the effect of the interfacial 
mass flux of component A at the active walls: 

- one is derived directly from the Fick's law (3) (see Rosenberger and 
co-workers, 1981 to 1984 ) ; the w-profile is then: 

W interface = (8 S/8 z) t (x) I Le (E - S) 

where E is a dimensionless number characterizing the mass 
the source and the sink (and then related to the molecular 

and MB and partial pressure conditions at sublimation and 

see Elie, 1984 ): 

(8) 

fractions at 
weights MA 

deposition, 

(9) 

The transport of components A and B is computed from the mass 
average solution using a second number F, defined as F+E=2/!J. SA. The 

function t (x) is artificially introduced in order to regularize the solution
near the corners. Its constant is also adjusted at the sink in order to 
ensure the mass conservation of species A (see Ouazzani, 1984, Elie, 
1984). 

an analytical model is also considered as a perturbation of the 
convective flow and following the quartic w-velocity profile (Extremet 
et al., 1986) 

W interface = Yd q [ X (x-1) ]2 (10) 

where q is related to the maximal velocity generated by buoyancy in 
the core (see following relation (14)) and vd is a proportionality factor 

suitably chosen to correspond to realistic conditions. 

The Three-Dimensional Model 

The governing system is considered with the velocity (V)-vorticity 
(�='i7 xV) formulation where V(u,v,w) (see definitions in Fig.l). With R 
and x /R as scaling factors for the coordinates and the velocities and
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with e as dimensionless temperature, the governing equations for
thermal convection are 

8 U8 t = \1 x (Vx 0 - 0.5 RaTPr \1 x (e g0) - Pr \1 x ('V x 0 (11) 

8 e /8 t = - v . (V . e ) + v 2 e

\1 2 V = - \1 x t + \1 (\1 . V) "' - \1 x t

(12) 

(13) 

The thermal boundary conditions correspond to the 1-G model. In 
addition to the usual no-slip conditions, the conditions on the vorticity at 
the rigid walls are derived as : tr= -8 v /8 z , t + = 8 u/8 z , t z= 0 at the

end walls and tr= 0, t+= -8 w/8 r , tz= 8 v/8 r at the side walls.

ANALYTICAL SOLUTIONS 

The basic flow in long horizontal cavities or cylinders filled with a 
mono-component fluid corresponds to two counter-flows corning from 
the hot zone in the upper part, and from the cold zone in the lower part. 
Analytical approximations for the axial velocity profile are available for 
the core of rectangular cavities and cylinders when they are 
differentially heated using a 1-G temperature model (see Bontoux et al., 
1986). These approximations are based on temperature gradient 
parameters derived from experiments and analyses. At low RaT, the 

horizontal temperature gradient is constant and generates the rn a i n  
buoyancy forces, which corresponds to the core driven regime, denoted 
CDR (see Cormack et al., 1974, Irnberger, 1974). At larger RaT, the main 

buoyancy forces are located in the end regions (boundary-layer driven 
regime, denoted BLDR). In these cases the functional laws available from 
Cormack et al. ( 1974), Bejan and Tien ( 1978) and Hart (1983) can be 
used to predict the flow profiles. The analysis was also recently 
extended for cavities in the case of rnultizone models by Extrernet et al. 
(1986). 

1-G Thermal Model for Cavities and Cylinders 

Parallel flow solutions were proposed by Klosse and Ullersrna 
( 1973), Birikh ( 1966), Hart ( 1972), and Bejan and Tien ( 1978). Elaborate 
approximations, including some interaction with the end regions and 
allowing for secondary flows in cavities, were given by Cormack et al. 
( 1974),  Bejan and Tien ( 1978) and Shih (198 1 )  (see also Ostrach et al., 
1980, 1982). These core solutions are still limited to the S-shaped 
profile for the horizontal velocity component. Further improvements, 
which remove this limit for higher RaT conditions, are due to Tichy and 

Gadgil ( 1982). For cylinders, Schiroky and Rosenberger ( 1984) proposed
a third-order power series in RaT which well predicts the shift of the 

maximum in the core velocity profile towards the wall for the low RaT

range of the BLDR. 
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The analytical expressions for the core flow (horizontal velocity) 
depend on the axial dimensionless temperature gradient k 1 =0 .5 (8 e /8 z).

They are expressed as follows in terms of ki RaT : 

- for cavities: 
(14) 

- for cylinders: 
(15a) 

u3D=- (k1 RaT)2 cos2� (2r6- 1 Sr4+24r2- 1  l )r/ 1 84320 (15b) 

( 15c) 

In the CDR the value of k 1 is (2a)- l and the flow is mainly axial. 

For the CDR up to the beginning of the BLDR, Cormack et al. ( 197 4) 
derived an expression for k1 in terms of RaT 2 and a. For the fully

developed BLDR, Bejan and Tien (1978) proposed a RaT-3/5 dependence. 

More recently, Hart ( 1983) derived from Cormack et al's works an 
expression for k1 that is valid for the whole CDR and BLDR range. The 

expression is implicit but, for large values of RaT, one recovers the 

explicit relation 

(16) 

which is independent of the aspect ratio a (Q is a constant parameter), as 
Bejan and Tien's relation. For cylinders Schiroky ( 1982) proposed an 
extension of the end-integral method used by Bejan and Tien ( 1978) for 
the prediction of k1 (see also in Bontoux et al., 1986). When RaT is 

increased, three-dimensional flow structures superimpose to the basic 
flow as described by relations (15b-c). 

Multizone Thermal Models for Cavities 

With a multizone temperature profile, the analysis was developed 
b y  Extremet et al. ( 1986) for the conduction regime (CDR). The 

temperature gradient in the middle of the i1h temperature-gradient zone

is not only connected to the aspect ratio a as in the 1-G model but also
depends on the reduced width of the temperature gradient � i· The 

functional laws for k1 are empirically determined from c o m p utations  

(see Fig.3) when tlie wall gradient is inserted between two isothermal 
regions (2-Z model) as 

(17a) 

(17b) 
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Fig.3. Variation of the temperature gradient k1 in 2-Z models with IO�a� 1 and 

1 �y�0.05 for conduction regime. From Extremet et al., 1986. 

The maxima of the velocity profile (14) can be expressed by: 

(18) 

with A= RaT k1 ll i s i and where ll i is a discrepancy factor determined

from comparisons with computed solutions (Extremet et al., 1986). ll i
was found to vary between 1 and 0.4 for a wide range of aspect ratios, 
a, and reduced widths of the temperature gradient, ?Ji· The factor s i is 1 

for the 2-Z model and is proportional to the local reduced temperature 
step, as ® m =<T m -T1 )/�T and (1-® m )  for the 3-Z model (see Extremet et 

al., 1986). 

Binary Mixture 

The parallel flow solution is extended to the case of thermal and 
solutal convection, as follows, where ks 1 is related to the axial

concentration gradient, ks 1=0.5 (8 S/8 z):

(19) 

The motion corresponds again to two counterflows, but which 

direction depends on the sign of (k1 R aT,flisi+ kS1 R as/Le). For the 1-G

model and at low RaT, the horizontal gradients of temperature a n d  

concentration are constant in the core. Both these gradients are then 

nearly (2a)-1 . At the large RaT, the functional laws available from Bejan

and Tien ( 1978) and Hart (1983) can be used as a first approximation 
for a binary fluid. Also, the solution (1�) was discussed with respect to 
computed solutions by Extremer et al. (1986) for multizone models. 

8



NUMERICAL SOLUTIONS 

The solution of governing systems ( 4-7) and ( 11-13) was made by 
using different numerical methods. Classical finite differences known for 
their "robustness" were used for the computation of the complex three
dimensional flow patterns in cylinders. In cavities filled with a binary 
mixture higher-order accurate methods were considered as the 
hermitian finite-difference method and the spectral method based on 
Chebyshev-polynomial expansion of the variables. Their characteristics 
are briefly recalled with the details corresponding to the present 
applications. 

Classical Finite-Difference Methods 

The approximation is local and based on the classical explicit 
relations between the derivatives and the variables over three 
discretizing points. With a constant step size in space, t:,. z, the relations 
are second-order accurate and written as: 

(20a) 

(20b) 

The details of the method developed for the three-dimensional 
convection problem are reported in Leong and De Yahl Davis (1979), 
Leong (1983) and Smutek et al. (1983, 1985). The method is based on 
centered finite differences with an uniform mesh composed of L x M x N 
discretizing points in r-, t - and z-directions as ri=( i-1/2)6 r with i=l to 

L, t j= ( j-l)r:,. t with j=l to M and zk= ( k-1)6z with k=l to N, where

t:,. r=l/(L-1/2), t:,. t =21T /M, t:,. z=2a/(N-1). No mesh points are located on

the axis to avoid singularity problems (De Yahl Davis, 1979). 

The continuity equation, '\J .Y=O, is not automatically satisfied. 

Then, it is used to check the accuracy resulting from a given mesh size 
(see Bontoux et al. ,  1986) The solution of Poisson velocity equations ( 13) 
is made with the Fourier serie direct method (Le Bail, 1972) and using 
the FFT algorithm (Cooley and Tukey, 1965). The advancement in time is 
based on Samarskii-Andreyev ADI scheme (Mallinson and De Yahl 
Davis, 1973, Samuels and Churchill, 1967, Peaceman and Rachford, 
1955). 

The convergence of the solution towards a steady state with a 
9x32x33 mesh can be obtained with less than 100 iterations up to 
R aT"' 4000 and starting from initial conditions derived from relation (15) 

at a=5 and Pr=0.73. After the transition to the boundary layer dr iven 
regime (BLDR), convergence is generally obtained by incrementing RaT. 

For the most severe conditions at RaT=l8,720 and when the axis is tilted 

from the horizontal to nearly the vertical (90° � n � 20°) the convergence 

9



is achieved after about 500 to 3500 iterations using 
and varying progressively n by steps of 10° to 15°. 
cost per iteration is about 0.32, 0.60 and 1.19 sec on 
9x32x33, 65 and 129-meshes, respectively. 

Hermitian Finite-Difference Methods 

a 9x32x65-mesh 
The computation 
CRAY 1/S with 

The method considers implicit fourth-order accurate relations 
between the derivatives and the variable at three discretizing points 
(Krause and co-workers , 1972-76, Hirsh, 1975). The derivatives are 
cons idered as additional unknowns of the problem but can be 
eliminated in the case of linear solvers as in Poisson's equation (Adam, 
1977). The implicit relations are: 

(8 f/8 zh+i +4 (8 f/8 zh+(8 f/8 z)t_1 =3(fk+l -fk_1 )/ti z (2la) 

The method was applied to the two-dimensional governing system, 
using for the closure of the system additional relations at the boundaries 
as the Pade approximant (Roux et al., 1978, Bontoux et al., 1978, Peyret 
and Taylor, 1982). With the vorticity and streamfunction formulation a 
third-order accurate relation is considered for the vorticity at the walls. 
A mixed method was used here and based on classical finite differences 
for the transport equations combined with the hermitian method for 
Poisson's equation and Hirsh's relation for the wall vorticity (Loe and 
Daube, 1978, Roux et al.,1980). The integration is made with an A.D.I. 
false-transient method (see Peaceman and Rashford, 1955 , Mallinson 
and De Vahl Davis, 1973). The false-transient method is used which 
introduces relaxation factor to improve the convergence process. 

For a converged solution obtained after 240 iterations with 21x81 
discretizing points the computations take 3.15 seconds on CRAYl/S 
computer. 

Spectral Methods 

The spectral methods are based on the method of the weighted 
residuals and on trial-function expansions of the variables. Their use has 
become very popular as numerical methods after pioneering works by 
Orszag (1971) (see Gottlieb and Orszag, 1977) and the development of 
vector computers. The approximation gives highly accurate derivations 
in the spectral plane. The method is based on powerful vectorized 
algorithms as Fast Fourier Transforms (Temperton, 1983) and Poisson
Helmholtz solvers (Haidvogel and Zang, 1979, Bondet de la Bernardie, 
1980). 

In the case of Chebyshev-polynomial expansions the variable and 
its derivatives are expressed as : 
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N 
f ::::: � an Tn(x)

n=O 

N 

(8 f/8 z) ::::: �
n=O 

N 

(8 2f/8 z2) ::::: � 
n=O 

(1) 
with� = 

(2) 
with an = 

(22a) 

(22b) 

N 
(2/cn) � p aP 

p=n+l 
p+n odd 

(22c) 

N 
(l/cn) � p (p2-n2) �

p=n+2 
p+n even 

The solution of system (4-7) is made with the Tau-Chebyshev spectral 
method using Chebyshev polynomial expansions both in x- and z
directions (see Bondet de la Bernardie, 1980, Elie et al., 1983, 
Randriamampianina, 1984) as 

N M 
(t,e,>ji,S) ::::: � � (a,b,c,d)nm Tn(x) Tm(z)

n=O m=O 
(23) 

It results in a set of ordinary differential equations in the spectral space 
for the transport equations as: 

danm 10 01 20 02 
+ 'lli( enm + enm )-'lld ( anm + �m) -'lltb b* nm-'llsb d*nm =0 (24) 

dt 

and for the Poisson equation as 

20 02 
Cnm + Cnm �m ' (25) 

with O:sn:sN-2 and O :sm :sM-2 and where b*nm and d*nm are expressed 
similarly as b*nm"' cosQ b1 0 nm + sinQ b 01nm· The superscripts ij for the

variables a, b, c and d refer to the components of the ith x- and jth z
deri vatives of t , e , 'ii and S (diffusion and source terms). T h e
components eij , h ij and gij correspond to the non-linear convective
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terms. The closure of the system with the conventional boundary 
conditions was detailed elsewhere (Bontoux et al., 1981, Elie, 1984, 
Randriamampianina, 1984) . 

Among the various FFT algorithms available for the evaluation of 
the non-linear terms (Singleton-IMSL, CRA Y-SCILIB library, Lhomme et 
al. , 1982, Temperton, 1983), the algorithm of Temperton is chosen as it 
saves computation time on vector computers and works for any 

numbers of Fourier components such that 2p3q5r, Poisson equation (25) 
is solved using the Matrix Diagonalization Technique (Haidvogel and 
Zang, 1979, Bondet de la Bernardie, 1980). 

Various schemes can be used for the integration in time (Adams
Bashforth, Adams-Bashforth-Crank-Nicolson schemes, Runge-Kutta, 
LSODA methods). The multistep LSODA method (Livermore Solver for 
Ordinary Differential Equations with Automatic method switching 
between non-stiff and stiff problems, ODEPACK) utilizes two predictor
corrector schemes adapted for non-stiff and stiff problems, respectively 
the Adams-Moulton scheme (AM) and the Backward-Di fferent ia t ion  
Formula (BDF) (for details see Hindmarsh, 1976, 1982, Petzold, 1980). 

With the LSODA method, no crucial stability problem was 
encountered as both the time step and order of integration are adapted 
automatically. The cost of LSODA is approximatively the same as the 
explicit AB method at small (NxM). When (NxM)>400 the iteration cost 
(as the memory required) increases strongly due to the internal 
generation of the jacobian which varies as 2(NxM) (see Randriamampia
nina et al., 1985). 

RESULTS 

The results bring some insights about three points of in  te rest 
concerning the prediction of vapour transport in closed tubes. 

- The first point is related to the understanding of the 
dimensional flows which develop in cylinders when the 
is governed by the temperature differences and when 
varies. The finite difference solutions are analysed 
experimental and theoretical results when they exist. 

complex three
buoyancy force 
the inclination 

with respect to 

- The second point concerns the validity of two-dimensional solutions to 
predict significantly the main features of the flow patterns. Two
dimensional finite difference and spectral solutions are analysed with 
respect to the various results in a horizontal cylinder. 

- The last point is related to the analysis of the fluid dynamics of 
physical vapour transport in a two-dimensional model with var i ous 
axial wall temperature models. The analysis is  made for a binary 
mixture in some horizontal and vertical situations. 
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Fig.4. Velocity fields in vertical midplane (<\>=0'. 1 8 0 ° )  for RaT = 1 8,720, a =5 

(L= l Ocm, R=lcm) and n =90 ° :  (a) experiments, (b) computations. From Smutek et 

al., 19 85. 

Hot 
W11JI 

-------=--- .__._ 
-- --

(b) 

llot 

Fig.5.  Three-dimensional v elocity field (magnitude larger than 20% o f  the 

maximum) at v arious azimuths : (a) 4>=45 °, 135 ° and (b) 4>=9 0 °, 180"; RaT= 1 8 , 7 2 0 ,  

a=5. From Bontoux e t  al., 1986. 

Three-Dimensional Convection in Tilted Cylinders 

Convection regimes in horizontal cylinders. The core driven regime 
(CDR) is characterized by a parallel flow in the core and the w(r)-profile 
is S-shaped as predicted by relation (15a) (see Smutek et al., 1985, also 
in following Fig.18 for RaT=660). At RaT"' 18,700 which is after the 

transltlon to the BLDR for a=5 (L=lOcm, R=lcm, see Bontoux et al., 1986), 
the flow is inclined with respect to the axis (see Fig.4). The maximum w
velocity in the core has increased and shifted towards the walls (see 
following Fig.18 for RaT=l8,720). As shown in Fig.5 secondary vorticies 

develop near the end walls and boundary layers expand along the 
lateral walls (see Schiroky and Rosenberger, 1984, Smutek et al., 1985). 
In Fig.5 the fully three-dimensional velocity patterns are given at four 
regularly spaced azimuths : � = rr /4, 3rr /4, rr /2 and rr and the velocity 

vectors are plotted only when they exceed some 10% of their maximum. 
In the regions hidden by the lateral (shaded) surfaces, they are only 
plotted at the last row in the r-direction. The circular section at the left 
of the cylinder corresponds to the cross-section at the plane nearest the 
cold end wall. The cross-flow structure superimposed on the main 
counterflows in the entire cavity is demonstrated in Fig.6 at various  

13



Fig.6. Flow structures in the (r,cl> )-plane at v arious vertical cross-sections b e t w e e n  

the hot wall (z=2a) and the centre (z=a) fo r  R a  T =  1 8 ,  720 and a=5 .  From S mutek e t  

al., 1983. 

Fig. 7 .  Track of a par ticle rele ased 
near the axis in the hot end region 
for RaT=l8,720 and a=5 . 

Fig . 8 .  Schematic flow pattern in a hori
zontal cylinder in the BLDR. Primary, 
second ary flows. From Bontoux et  al ., 

1986 

cross-sections (r,4 ) between the hot wall and the centre. The track of a 
fluid particule released at a point near the axis of the cylinder in the hot 
region is displayed in Fig. 7. It reveals the occurence of both secondary 
vortices which set near the hot and cold end walls, and azimuthal 
transport in the axial direction (refer to the helicoidal flow structures 
emphasized in Fig.6) .  A sketch of the complete flow pattern is presented 
in Fig.8 at RaT� 18,700 (see Bontoux et al., 1986). 

Effect of the inclination Q . Experimental results by Rosenberger 
and co-workers are available in an a=5 cylinder (L=lOcm, R=lcm) when 
the axis is tilted at an angle of 20°::> Q:;; 1 5 0  ° with the gravity ( s ee  

Schiroky and Rosenberger, 1984, also in  Bontoux et al. ,  1986) at 
R a T=3580 and 18, 720 which correspond to supercritical values in 

vertical cylinders heated from below (RaTc� 431a when Q=0° and a>>l) .  

The computations were carried out for severe flow patterns at 
RaT=l8,720 and 20°::> Q:;; 90° (heating from below) with a 9x32x65-mesh. 

The computed and experimental w-results in the core (z=5) are 
plotted vs. radius in Fig.9a. The comparison shows fairly good agreement 
(less than a 10% difference on the maximum of w when 30°:SQ::>60°) . 
Between Q =90° and 30°, the w-profile changes from a Z-shape in BLDR 

at Q =90° to a S-shape (again, as in CDR at Q =90°) at Q =30° . The 

14
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Fig.9. Effect of inclination Q: (a) axial velocity (w) profiles vs radius at various 0, 
computed ( 0, \1 , +) and experimental ( • , T , •) results; (b) maximal core w-velocity

vs n ,  computed (L.) and experimental (e ,•) results. From Hurford et al., 1982/84, 

Bontoux et al., 1986. 
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Fig. 10. Velocity fields in the vertical midplane (<I> =0°, 18Q ° )  at an inclination angle 

n =30° for R aT = 1 8,720 and a=5. Experiments (a,b) and computations (c) over 

O:S z:S a (a) and O:S z:S a/5 (b,c) from the cold end. (Refer to Fig.4.) From Hurford et 

al., 1982/84, Bontoux et al., 1986. 
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Fig. 1 1. Three-dimensional velocity field (magnitude larger than 20% of the 

maximum) at various azimuths: ( a) $=90°,180' and (b) $=45', 135'; R aT=l8 , 7 2 0, 

a=5, 0=30'. From Bontoux et al., 1986. 

variation vs. Q of the maxima of w is displayed in Fig. 9a. Experimental 
results exhibit a dependence on both Q and RaT. At RaT=3580 the 

variation of w is well represented with Wmax<0>/wmax(90'),,, 1-sin(2Q-1f)

up to Q =20'. The experiments reveal a slight asymmetry at Q :s 45° when  
RaT=3580 and Q :s 60° when RaT=l8,720. Also, the numerical results for 

R a T=18,720 are shown in Fig.9b to slightly underpredict the 

experimental variation. 

The velocity fields in the vertical symmetry plane and in the 
vicinity of the cold end wall are shown in Fig. I Oa-c. The basic flow 
coming from the hot end wall separates into two parts in plane '= 0- rr 
at the junction with the cold wall : - the main part is turned downward 
by the cold wall and at a certain distance from the endwall the flow 
becomes parallel again to the axis ; - the second part is driven into a 
secondary counter-rotating vortex which develops in azimuth. The 
agreement is obvious between experiments (Fig. l Ob) and computations 
(Fig. lOc) in both magnitude and direction; the discrepancies are small 
and mainly concern to the size and location of the vortices in the vertical 

plan 

The fully three-dimensional velocity field is given in Fig.11 at 
Q =30° (same details as for Q =90° in Fig.5). The velocity patterns show

the occurence of a weak flow everywhere in the plane (' =TT /2, 3 TT /2)
except near the end walls where boundary layers and vortices develop. 
The secondary co-rotating vortex which exists at the cold end for Q =90°, 

has disappeared at Q =60'. The counter-rotating vortex (see Fig. lOb-c) is
much smaller and expands in azimuth in a way which is similar to the 
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!l=60· 

n=30· 

Fig.12. Isotherm patterns at '1=30° and 60° for RaT= l8,720 and a=5 (isotherms 

spaced by � T/10). From Bontoux et al., 1986. 

vertical case (Smutek, 1 984 ). Except in the end regions the flow is 
mainly parallel to the axis as shown in Fig.11  for � = 7T /4, 3rr /4 and 7T • 

The isotherm patterns displayed in Fig. 12 exhibit distortions close 
to the end walls and in the core which result from the increase of 
transport at Q <90" (see following Fig. 19 for Q =90°). The isotherms also 

reveal the onset of the secondary counter-rotating vortices shown in 
Fig.10 at Q <60°. 

Axisymmeuic and asymmetric re�imes in vertical cylinders 
(Q =0°). The first transition from rest to steady convection in a vertical 
cylinder heated from below is predicted by linear stability analyses (see 
Charlson and Sani, 1 97 1 ,  Gershuni and Zhukhovitski, 1 976, Buell and 
Catton, 1 983) to be dominated by the axisymmetric mode in flat 
cylinder (a<ac) and by the antisymmetric mode in long cylinder (a>ac). 

The study of these regimes is detailed elsewhere (see Smutek, 1 984, 
Bontoux et al., 1 986), however, some points are reported here. 

Axisymmetric flows were computed at small a=0.5 and at 
a=0.625� ac.  For this last value of aspect ratio a, both axisymmetric and 

asymmetric patterns were obtained depending on the initial 
disturbances imposed to the fluid at rest. Also, as shown in Fig. 1 3, the 
axisymmetric solutions can involve either an upstream or a downstream 
-at the centre. 

Attention was focused on the asymmetric solution in an a=l 
cylinder above critical RaTc· At RaT/RaTc� 5.3 secondary counter-rotating 

vortices are superimposed on the basic flow in the symmetry plane 
( � = 0, 7T ) and develop in azimuth into a four-eddy pattern in the plane 

( � = 7T / 2, 3 7T /2) as shown in the two-dimensional velocity fields

displayed in Fig.14  at RaT=6250. The three-dimensional velocity field is 

displayed in Fig. 1 5  which emphasizes the azimuthal expansion of the 
plane rolls shown in Fig.14. A schematic pattern is proposed in Fig.16. 
The occurence of such patterns is confirmed by solutions obtained with 
insulated side walls (see Muller et al., 1984). 
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cold wall 

hot wall 
(a)

Fig.13. Axisymmetric velocity field at a=0.625, il=0° and RaT=2000: (a) ascending 

and (b) descending flow in the centre. From Smutek, 1984, and Bontoux et al., 
1986. 

37t/8 

7t/4 Ra:6250 

77t/16 
hot 

7t/2 

Fig.14. Asymmetric solution at a=l, Q=0° and RaT=6250. Velocity fields in various 

planes (r,z). From Smutek, 1984. 

cold wall 

(a) hot wall (b)

Fig.15. Three-dimensi onal veloci ty field (magni tude Fig.16. Schematic flow pattern 
larger than 20% of the maximum) at vari ous for the asymmetric regime in a 

azimuths: (a) $=45',135' and (b) $=90' , 180'; vertical cylinder heated fro m  

RaT=6 a=l, n=o From Bontoux et al., 198 6. below. From Bontoux et al., 198 6. 
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Comparisons of Two- and Three-Dimensional Solutions in a Horizontal 
Cylinder 

Analytical solutions for the maximum values of the horizontal w
velocity component can be derived from (14) and (15a) respectively as 

(26) 

and 
(27) 

These solutions are plotted for a=5 with the conduction condition 

k1 = (2a)-1 in Fig.17 together with various experimental and numerical

results. The numerical results are obtained with the three-dimensional 
(3-D) finite difference solutions (FD3D), the two-dimensional (2-D) 
hermitian finite difference (HFD2D) and Tau-Chebyshev spectral (TC2D) 
solutions. In addition, Fig.17 contains plots of (27) with evaluations of k 1 

obtained for the BLDR and also with the third-order expansion term in 
( R aTk 1 )  proposed by Schiroky and Rosenberger ( 1984) (see Bontoux et 

al. , 1986). The analysis of these curves results in the following 
observations : 

(i) The experimental and 3-D numerical results agree well over the 
range covered by the numerical data (74<RaT<30,000). The 2-D results 

show significant deviations from these 3-D results not only, as expected, 
in the CDR but also in the BLDR. 

(ii) At low RaT (in the CDR) the 3-D analytical solution (27) yields good 

predictions. The 2-D solution (26), though correctly reflecting the linear 
dependence of wm ax on RaT, overestimates by 1/3 with respect to the 

cylinder. 

(iii) At high RaT (i.e. in the BLDR) the experimental and 3-D numerical 

results for the core velocity vary as RaTl /2 , parallel to Gill (1966)'s

relation for boundary-layer. The velocity in the cylinder is about 1 .5 
times larger than the 2-D numerical solution, which however shows a 
realistic Rardependence. The velocities obtained from the analytical 

solutions derived by Schiroky (1982) (see Bontoux et al., 1986) are too 
low and their Rardependence is nearly RaTo.4 .

(iv) If we define a critical RaTc for the transition between the CDR and 

BLDR, then we find a factor of about 3 for a=S, between the 2-D 

(RaTc2D"'2000) and 3-D (RaTc3D"'6000) behaviours.

The above points are further illustrated by w(r)-profiles for two 
Ra values in the CDR and BLDR, and by streamline and isotherm patterns 
compared to 3-D velocity fields and isotherm patterns. In Fig.18a one 
sees that in the CDR (RaT=660) the 3-D analytical results agree well with 

the experimental and numerical values. The 2-D numerical values lie too  
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Fig.17. Maximum value of dimensionless axial velocity (core velocity) vs RaT for 

Q =90° : comparison of experimental, analytical and numerical results . 
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Fig.18. Core velocity (w) profiles for: 

From Bontoux et al., 1986. 
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(a) RaT=660 and (b) RaT=l8,720. 0=90', a=5. 
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(a) RaT=3580 

FD3D 
TC2D 
HFD2D 

Fig. 19.  Computed (FD3D) velocity fields and isotherms in the vertical midplane of 
a cylinder. Computed (HFD2D and TC2D) streamlines and isotherms in a cavity. 

a=5 and Q =90' . Comparison for various RaT : (a) R a T =35 80, (b) RaT =8 860 and (c) 

R a T= l 8,720. 

high. At RaT=l8,720 (Fig.18b), the 2-D numerical results and 3-D 

analytical velocity profiles differ strongly from each other and from 
experiments. There are also distinctions into "S-shapes" and "Z-shapes". 
The evolution of the Z-shape from the S-shape occurs slower for 2-D 
than for 3-D solutions. One should point out the good agreement 
between experiment and 3-D numerical solutions. 

The streamline and isotherm patterns are presented with the 
velocity fields computed in the vertical plane of the cylinder in Fig.19 
near and above the transition to the BLDR. The agreement is rather good 
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Ho1 
wall 

Fig. 2 0. Three-dim ensional velocity field (magnitude larger than 20% of the 
maximum) over a distance of a/5 from the hot wall. RaT = l 8 ,7 2 0 ,  a=S. From 

Bontoux et al., 1986. 

between the (21 x41) finite difference solutions and the ( 12x27) Tau
Chebyshev solutions. The streamlines in the cavity remain nearly 
parallel to the horizontal walls up to RaT=18,720 while the velocity 

fields are already inclined at RaT=8860 in the cylinder. Also, the onset of 

secondary vortices near the vertical walls is revealed in both 2-D and 3-
D computations but they arise differently near the cold wall : below the 
axis in the cavity, and above in the vertical plane of the cylinder. The 
distortion of the isotherms near the end wall is more important in the 
cavity than in the cylinder. This reflects the three-dimensional 
transport. As suggested by the experimental results of Schiroky and 
Rosenberger (1984) and observed in the 3-D numerical simulation by 
Smutek et al. (1985) and Bontoux et al. ( 1986), the U-turn of the flow 
occurs there over more than 180" in azimuth as displayed in Fig.20. 

Simulation of Physical Vapour Transport in Cavities 

The numerical solution of the governing system (4-7) is 
considered for PVT with both spectral Tau-Chebyshev method (TC2D) 
and mixed 0 ( h 2 , h  4) finite-difference method (HFD2D) detailed in
previous sections. Chebyshev-polynomial expansions are well adapted 
when the gradient zones are located near the boundaries. They are used 
with the 1-G thermal model (Fig.2a) and the linear Fick's law (8) at the 
interfaces. For a=4 the computations are carried out with no more than 
17x17 Chebyshev components when RaT�6.l03and 1Rasl�2. I 03 (Elie et 

al., 1986). For the multizone thermal models, 2-Z and 3-Z, the mixed 
finite differences are used with a 21x81 uniform mesh (Extremet et al., 
1986). Also, the simple analytical model (10) is taken at the interfaces. 

Fick's Law and 1-G Thermal Model. Negative solutal Rayleigh 
numbers correspond to binary mixtures where the heavier component 
(MA�Ms) is the active one (A) in PVT process (SA2�SA1). Then, solutal 

and thermal buoyancy terms act in opposite directions giving rise to 
more complex flow patterns than with Ras >0. In Fick's model (8) the 

values for E (and F) are derived from relation (9) with. l<SAo<0.5 and 

/::,S A  <0.5. The computations are carried out for steady solutions in 

cavities with 1� a� 4 at horizontal (Q =90°) and vertical inclinations (with 
heating from below, Q =0°, and from above, Q = 180°). 
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Fig.21. S treamlines for various E at Ra8=-12.5, RaT"'O, a=4. (Elie, 1984) 
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SOURCE 
Fig .22. S treaml ine, isotherm, iso -concentration patterns and velocity fields (A-B
components) for E= lO at Ra8=-12.5, RaT"'O, a=4. 
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Fig .23. S treamline, isotherm, iso-concentration patterns and velocity fields (A-B 
components ) for E= l .05 at Ra8=-12. 5, RaT"'O, a=4. From Elie, 1984, also Elie et al., 

1986. 

(i)Horizontal cavities (Q =90°). In horizontal cavities the 
temperature and concentration gradients between the source and the 
sink are perpendicular to the gravity vector. As above mentioned a 
basic flow, then, exists even at very low Ra and can be descending at the 
(hot) source depending on the density gradient due to dom i n ant  
temperature or concentration change. Also the mass flux of component 
A superimposes to thermal and solutal convection an advective diffusive 
motion through the cavity. A variety of such complex flows is studied 
with Pr=Le=l at a=4. 
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Fig.24. Computed concentration profiles along the axis for various E (related to a 

Peclet number) at R a s=-1 2.5, Rar"' 0, a=4. From Elie, 1984. (Refer also to 

Greenwell et al., 1981.) 

When MA>Ms the streamline pattern (at Ra5=-12.5 and Rar"'O in 

Fig.21) is strongly affected by an increase of the interfacia1 mass flux at 
the source (as E varies from 10 to 1.05). The basic cell is descending at 
the source and ascending at the sink. The mass flux of A organizes into a 
forced flow which develops from the source to the sink below the solutal 
cell. When the flux rate increases, the cell is progressively damped 
towards the sink. Typical velocity fields are given in Fig.22 and 23 with 
streamline, isotherm and iso-concentration patterns, at small (E= 10) and 
large (E=l.05) flux rates and for F=lO. When E=lO (Fig.22) the motion of 
B is mainly driven by the solutal cell, while component A is dominantly 
advected in the lower part of the cavity by the net flow between the 
interfaces. When E=l.05 (Fig.23) the advection from the source 
dominates. The concentration varies then strongly near the sink (see the 
concentration profiles at various E in Fig.24). The mass average and A
component velocity fields are very similar and the motion of B occurs in 
the regions where A-velocities are the lowest, i.e. in the solutal cell and 
near the horizontal walls. 

When MA"' M B  (Ras"' 0) the basic cell is driven by the temperature 

changes. The basic cell is ascending at the hot source and descending at 
the cold sink (see Fig.25). Then, the net flow develops in the upper part 
of the cavity and gets more and more confined as Rar is increased. At 

R ar=5860 the streamlines suggest the onset of a secondary cell near the 

sink (crystal). (See in Fig.19 for a mono-component gas). Informative 
patterns and velocity fields are presented in Fig.26 to 28 for Rar= 19.  5 ,  

586 and 1950. The flow of  A is mainly driven by the net flow. The 
transport of B is associated with the thermal cell. Strong gradients 
develop at Rar=1950 (Fig.28) near the vertical walls. 
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Fig.25. Streamline patterns when RaT varies at Ras"'O, E=5.27, a=4. 
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Fig .26. Streamline, isotherm, iso-concentration patterns and velocity fields (A-B 
components) for E=5.27 at RaT=l9.5, Ras"'O, a=4. 

When RaT"' IR as I/Le there is a direct competition between the 

thermal and solutal buoyancy forces. At a large flux rate (E=l.20) the 
results are displayed in Fig.29 for RaT=ll.7 and Ras=-1�.5. The net flow

dominates but the opposite effects of concentration and temperature 
gradients are still revealed by slight distortions in the streamline 
pattern. In the following section the competition will be emphasized for 
a multizone thermal model. 

(ii)Vertical cavities heated from below (Q =0°). In a cylindrical 

enclosure filled with monocomponent gases, a steady antisymmetric 
instability is predicted to onset at a= 1 by both stability analyses and 
computations (see above sections). Computed 2-D solutions involving a 
net flow (E=2.3) are found, however, to be axisymmetric at RaT= 3 8 0 0 
and Ras"' 0 with Pr=l and Le=0.114 (Fig.30) in agreement with previous

results by Markham et al. (1980, 1981). The flow is driven upward 
along the axis and two cells develop on both sides due to temperature 
gradients. 
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Fig.27. Streamline, isotherm, iso 
concentration patterns for E= S.27 at 
Ra r=5 86, Ras"' 0, a=4. 

Fig.2 8. Streamline, isotherm, iso
concentration patterns for E= S.27 at 
Rar= 1950, Ras"'O, a=4. 
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Fig.29. Streamline, isotherm, iso-concentration patterns for E= l.20 at Rar= 1 1 . 7, 

Ras=-12.5, a=4. 

( iii)Vertical cavities heated from above (Q =180°). The 
computations are made again for a=l with RaT =500, Ras =-1660, Pr=l, 

Le=0.18, E=2.3 (SAo=0.99 and !:::. SA =0.009). Due to dominant advection 

diffusion an axisymmetric downward motion develops along the axis 
(Fig.31) with two small side cells near the vertical walls and driven by 
the density gradients. When a=4 with RaT =541 and Ras =-1475 with 

Pr=l, Le=0.18 and same E=2.3 (Fig.32) the flow pattern is noticeably 
different. The fluid does not flow longer downward along the axis but 
now along the side �alls with two recirculating cells in between 
symmetrically to the axis. 
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Fig. 3 0 .  S treamline , isotherm , iso-concentration patterns for E=2 . 3  at RaT = 3  8 0 0 ,  

R a s "' O, Le=0. 1 14,  Pr= l ,  a= l and Q =0° .  

s (}

D=n
Fig . 3 1 .  S treamline,  i sotherm , iso-concentration patterns for E=2 . 3  a t  RaT = 5  0 0 ,  

R a8 = - 1 660,  Le=0. 1 8 ,  Pr= l ,  a= l and Q = 1 80 ° .  
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Fig . 3 2 .  S treamline,  i sotherm , iso-concentration patterns for E=2 . 3  at RaT = 5 4  l ,  

R a s =- 1475,  Le=0 . 1 8 ,  Pr= l ,  a=4 and Q = 1 80° .  
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Fig.33. Variation of the maximum axial velocity with ay in the conduction regime 
for various computed values of a and the analytical laws (26) and (17). From 
Extremet et al., 1986. 

Multizone Thermal Models . and Horizontal Cavities (Q =0°).  The 
analytical solution (26) with k1 derived from (17a-b) have b e e n  

compared in Fig.33 to the maximum velocities computed for 2-Z thermal 
models (Fig.2b) at various a and o .  The agreement is fairly good as the 

computed solutions shows a (ao )-dependence when ao >1 and are 
independent on ao when ao <1. When ao <1 the computed values, 
however, stay substantially below the prediction by about 60% at most 
(refer to discrepancy factor fl in (18)). Also, the analytical solution (19)
is shown elsewhere to predict correctly the order of magnitude (at least) 
of the velocities for 3-Z thermal models (Fig .2c) and binary mixtures 
(see Extremet et al., 1986). 

With a 3-Z thermal model more than with a 1-G model, completely 
different flow patterns can be expected if RaT » IR a s I/Le (thermal 

convection dominated regime), RaT« IRasl/Le (solutal convection 

dominated regime) or RaT"' I Ras I/Le (mixed regime). For the mixed 

regime the buoyancy terms have coefficients of comparable magnitudes 
everywhere and the density gradients determines locally the resulting 
ascending or descending motion. The flow patterns also depend on the 
strength of interfacial fluxes modelized with relation (10) and 
characterized by v d. 

(i)Without interfacial flux ( v d =O) for a=4 and E> m = ( T m -

T 1)/t:. T=0.75, the flow in the mixed regime (Ra s"'-40, RaT"' 19.5 , Le,,,1.4) 

is composed of two counter-rotating cells. (See Fig.34 and compare with 
the solution for Ras"'O). The larger one, extending over 5/6 of the cavity , 

is driven by dominant solutal buoyancy. The motion is clockwise and the 
effect of the small temperature gradient (of width o 2) which drives 

opposite buoyancy forces, is revealed by the streamline pattern. 
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Fig . 3 5  . S treamlines ,  i s o - concen tra t i ons  

for  a=4, RaT = l 9 . 5 ,  Le= l .4 and lv d 1=2 at

various R a 8 :  (a) Ra8 =-40, (b) R a 8 = - 2 1 ,  

(c) Ra8 =-3 .  From Extremet et al . ,  1986 .  

(ii)With an interfacial flux (vd x 0) the modifications of the
streamline pattern are displayed in Fig.35. The forced flow entering the 
cavity from the source, develops under the "solutal cell" then above the 
"thermal cell "  (Fig.35a). In Fig.35b-c we show the flow patterns when 
R a s decreases. The forced flow mostly runs in the lower part of the 

domain when RaT< I Rasl/Le at Ras"' -40 (except in the close vicinity of the 

sink, see Fig.35a). When R aT> I Rasl/Le (Ras"' -3) it moves entirely in the 

upper part of the cavity (Fig.35c). In this case, the secondary cells in the 
bottom of the cavity are anti-clockwise and mostly driven by the 
thermal buoyancy force in the two gradient-zones. In Fig. 35b, the 
thermal and solutal buoyancy balances as RaT"' I R a 8 1 /Le (Ras"' · 21) . 

Solutal buoyancy still dominates near the source but the basic "solutal " 
cell is, then, cut into two co-rotating cells by the second t h e r m a l  
gradient ( �  2) . Near the sink, the "thermal" cell corresponding to the first

gradient (�  1 )  extends over the entire height. The forced flow visualized

by one streamline, is shown to slide between these three cells . 
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CONCLUSIONS 

The paper is an amalgam of various (published and un-published) 
numerical works which common purpose is the understanding of the 
fluid dynamics and the heat and mass transfer for vapour crystal 
growth applications in enclosures. The experimental studies carried out 
in the group of Prof. F. Rosenberger were used for the validation of the 
three-dimensional numerical solutions in cylinders. The results concern 
the following points : 

(i) The complex flow patterns were analysed for various inclinations 
with respect to the gravity vector. The transition from conduction 
dominated regime (core driven regime, CDR) to boundary layer driven 
regime (BLDR) is characterized for a horizontal cylinder. A good 
agreement is obtained between computations and experiments in long 
tilted cylinders for the BLDR, and between computations and stability 
analyses at the onset of convection in vertical cylinders (at moderate 
aspect ratios). 

(ii) The limitations of the 2-D model to predict the main features of the 
flow were studied for a mono-component gas and aspect ratio a=5. The 
velocity scales can be under- or over-estimated by 30 to 50% depending 
on RaT. The RaT for the transition between CDR and BLDR for the core 

velocity is underestimated with the 2-D solutions by a factor of 3 
(RaTc2D,.,2000, RaTc3D,.,6000). 

(iii) The analysis of a vapour growth process (PVT) was made with 2-D 
solutions and using mass-flux models at the interfaces. Both analytical 
approximations and direct simulations were considered for one-gradient 
and multizone (wall) temperature profiles. Very complex flow patterns 
were emphasized for various RaT and Ras. Agreement was obtained also 

with other numerical results obtained with different methods. 

Experiments are in process in the laboratory of F. Rosenberger and 
data should be soon available for comparison with numerical solutions. 
Some effects connected with the presence of a seed located (for 
cristallization) at the side walls of a horizontal ampoule were discussed 
by Extremet et al . ( 1986). Also, 3-D solutions were computed for 
multizone devices (Extremet, 1986). A recent modelling has been used 

in the interface conditions which introduce a coupling between 

convection in the fluid and surface kinetics (see Zappoli and Elie, 1984, 

and Zappoli, 1986). 
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