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Spike Timing Dependent Plasticity Finds the Start of
Repeating Patterns in Continuous Spike Trains
Timothée Masquelier1,2*, Rudy Guyonneau1,2, Simon J. Thorpe1,2

1 Centre de Recherche Cerveau et Cognition, Université Toulouse 3, Centre National de la Recherche Scientifique (CNRS), Faculté de Médecine de
Rangueil, Toulouse, France, 2 SpikeNet Technology SARL, Prologue 1 La Pyrénéenne, Labège, France

Experimental studies have observed Long Term synaptic Potentiation (LTP) when a presynaptic neuron fires shortly before a
postsynaptic neuron, and Long Term Depression (LTD) when the presynaptic neuron fires shortly after, a phenomenon known
as Spike Timing Dependant Plasticity (STDP). When a neuron is presented successively with discrete volleys of input spikes
STDP has been shown to learn ‘early spike patterns’, that is to concentrate synaptic weights on afferents that consistently fire
early, with the result that the postsynaptic spike latency decreases, until it reaches a minimal and stable value. Here, we show
that these results still stand in a continuous regime where afferents fire continuously with a constant population rate. As such,
STDP is able to solve a very difficult computational problem: to localize a repeating spatio-temporal spike pattern embedded
in equally dense ‘distractor’ spike trains. STDP thus enables some form of temporal coding, even in the absence of an explicit
time reference. Given that the mechanism exposed here is simple and cheap it is hard to believe that the brain did not evolve
to use it.

Citation: Masquelier T, Guyonneau R, Thorpe SJ (2008) Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike
Trains. PLoS ONE 3(1): e1377. doi:10.1371/journal.pone.0001377

INTRODUCTION
Electrophysiologists report the existence of repeating spatio-

temporal spike patterns with millisecond precision, both in vitro

and in vivo, lasting from a few tens of ms to several seconds[1–3].

In this study we assess the difficult problem of detecting them, and

suggest how neurons could solve it. The problem is made

particularly difficult when only a fraction of the recorded neurons

are involved in the pattern. Fig. 1 illustrates such a situation. There

is a pattern of spikes (indicated by the red dots) that repeats at

irregular intervals, but is hidden within the variable background

firing of the whole population (shown in blue). The problem is

made hard because nothing in terms of population firing rate

characterizes the periods when the pattern is present, nor is there

anything unusual about the firing rates of the neurons involved in

the pattern. In such a situation detecting the pattern clearly

requires taking the spike times into account. However direct

comparison of each spike time to one another over the entire

recording period and across the entire set of afferents is extremely

computationally expensive. In this article we will see how a single

neuron equipped with STDP can solve the problem in a different

manner, taking advantage of the fact that a pattern is a succession

of spike coincidences.

STDP is now a widely accepted physiological mechanism of

activity-driven synaptic regulation. It has been observed exten-

sively in vitro[4–7], and more recently in vivo in Xenopus’s visual

system[8,9], in the locust’s mushroom body[10], and in the rat’s

visual cortex[11] and barrel cortex[12]. An exponential update

rule fits well the synaptic modifications observed experimental-

ly[13] (see Fig. 2). Very recently, it has also been shown that

cortical reorganization in cat primary visual cortex is in

accordance with STDP[14]. Note that STDP is in agreement

with Hebb’s postulate because it reinforces the connections with

the presynaptic neurons that fired slightly before the postsynaptic

neuron, which are those that ‘took part in firing it’. It thereby

reinforces causality links.

When a neuron is presented successively with similar volleys of

input spikes STDP is known to have the effect of concentrating

synaptic weights on afferents that consistently fire early, with the

result that the postsynaptic spike latency decreases[15–18]. This

theoretical observation is in accordance with recordings in rat’s

hippocampus showing that the so called ‘place cells’ fire earlier –

relative to the cycle of the theta oscillation in hippocampus – after

the animal has repeatedly traversed the corresponding area[19].

STDP has also been studied in an oscillatory mode, and was

shown to be able to select only phase-locked inputs among a broad

population with random phases, turning the postsynaptic neuron

into a coincidence detector[20].

The main limitation of these studies is the assumption that the

input spikes arrive in discrete volleys (sometimes also called ‘spike

waves’). They assume an explicit time reference – usually the

presentation of a stimulus[15,17,18], or the maximum (or

minimum) of an oscillatory drive[20,21] – that allows the

specification of a time-to-first spike (or latency) for the afferents,

which could be used by the brain to encode information[22,23].

Activity between the volleys is assumed to be spontaneous and

much weaker. Furthermore, many studies[15,17,20] also require

the pattern to be present in all volleys for the STDP to learn it, that

is no ‘distractor’ volleys are inserted between pattern presentations.

But what happens when the population of afferents is continuously

firing with a constant population firing rate, so that no explicit time

reference is available? Is STDP still able to find and learn spike

patterns among the inputs? Is the learning robust if, more
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realistically, pattern presentations occur at unpredictable times,

separated by long ‘distractor’ periods and if the pattern does not

involve all the afferents? Does it make sense to use the beginning of

the pattern as a time reference, and does the postsynaptic spike

latency with respect to this reference still decrease?

To answer these questions we inserted an arbitrary pattern at

various times into randomly generated ‘distractor’ spike trains, as

in Fig 1, and investigated whether a single receiving STDP

neuron, with a 10 ms membrane time constant, was able to learn

it in an unsupervised manner. To be precise, we simulated a

population of 2,000 afferents firing continuously for 450 s (see

Materials and Methods for details). Most of the time (3/4 of the

time in the baseline simulation) the afferents fired according to a

Poisson process with variable instantaneous firing rates. Spiking

activity in the brain is usually assumed to follow roughly Poisson

statistics, hence this choice, but here it is not crucial: what matters

is that the afferents fire stochastically and independently. But every

now and then, at random times, half of these afferents left the

stochastic mode for 50 ms and adopted a precise firing pattern.

This repeated pattern had roughly the same spike density as the

stochastic distractor part, so as to make it invisible in terms of

firing rates. To be precise the firing rate averaged over the

population and estimated over 10 ms time bins has a mean of

64 Hz and a standard deviation of less than 2 Hz (this firing rate is

even more constant than in the 100 afferent case of Fig. 1 because

of the law of large numbers). We further increased the difficulty

by adding a permanent 10 Hz Poissonian spontaneous activity

to all the neurons, and by adding a 1 ms jitter to the pattern.

Intriguingly, we will see that one single Leaky Integrate-and-Fire

(LIF) neuron receiving inputs from all the afferents, acting as a

coincidence detector (see Fig. 3), and implementing STDP, is

perfectly able to solve the problem and learns to respond

selectively to the start of the repeating pattern.

RESULTS
At the beginning of a first simulation the 2,000 synaptic weights

are all equal to 0.475 (arbitrary units normalized in the range

[0,1]). The neuron is therefore non-selective. Since the presynaptic

spike density – on its 10 ms time scale – is almost constant, it

discharges periodically (see Fig. 4a). The greater are the initial
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Figure 1. Spatio-temporal spike pattern. Here we show in red a repeating 50 ms long pattern that concerns 50 afferents among 100. The bottom
panel plots the population-averaged firing rates over 10 ms time bins (we chose 10 ms because it is the membrane time constant of the neuron used
later in the simulations), and demonstrates that nothing characterizes the periods when the pattern is present. The right panel plots the individual
firing rates averaged over the whole period. Neurons involved in the pattern are shown in red. Again, nothing characterizes them in terms of firing
rates. Detecting the pattern thus requires taking the spike times into account.
doi:10.1371/journal.pone.0001377.g001
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Figure 2. The STDP modification function. We plotted the additive
weight updates as a function of the difference between the presynaptic
spike time and the postsynaptic one. We used an exponential law (see
Materials and Methods). The left part corresponds to Long Term
Potentiation (LTP) and the right part to Long Term Depression (LTD).
doi:10.1371/journal.pone.0001377.g002
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weights (or the lower the threshold), the smaller is the period (here

it is about 16 ms, the initial firing rate is thus about 63 Hz). Each

time a discharge occurs we update the synaptic weights using the

STDP rule of Fig. 2, and clip them in the range [0,1]. At this stage,

the neuron discharges both outside and inside the pattern

(represented by grey rectangles on Fig. 4). In the first case

presynaptic and postsynaptic spike times are uncorrelated, and

since a2t2.a+t+ (where a2 and t2 are respectively the LTD

learning rate and time constant, and a+ and t+ are the same

parameters for LTP, see Materials and Methods), STDP leads to

an overall weakening of synapses[15] (note: if no repeating

patterns were inserted STDP would thus gradually decrease the

synaptic weights until the threshold would not be reached any

longer). But in the second case, by reinforcing the synaptic

connections with the afferents that took part in firing the neuron,

STDP increases the probability that the neuron fires again next

time the pattern is presented (reinforcement of causality link). As a

result, selectivity to the pattern emerges, here after about 13.5 s

(see Fig. 4b) that is after only about 70 pattern presentations and

700 discharges: the neuron gradually stops discharging outside the

pattern (no false alarms), while it does discharge most of the time

when the pattern is presented (high hit rate), and can even fire

twice per pattern as in the case illustrated here. Chance determines

which part(s) of the pattern the neuron becomes selective to at this

stage (i.e. the postsynaptic spike latency(ies), with respect to the

beginning of the pattern here about 5 ms and 40 ms). However

the increase in selectivity usually rapidly leads to only one

discharge per pattern, here at about 40 ms.

Once selectivity to the pattern has emerged STDP has another

major effect. Each time the neuron discharges in the pattern, it

reinforces the connections with the presynaptic neurons that fired

slightly before in the pattern. As a result next time the pattern is

presented the neuron is not only more likely to discharge to it, but

it will also tend to discharge earlier. In other words, the

postsynaptic spike latency locks itself to the pattern and decreases

steadily (with respect to the beginning of the pattern). However, it

cannot decrease endlessly. There is a convergence by saturation

when all the spikes in the pattern that precede the postsynaptic

spike already correspond to maximally potentiated synapses, and

all are necessary to reach the threshold. This usually occurs when

the latency is already very short, the value depending on the

threshold, although it could occur even earlier if the pattern has a

zone with low spike density. Spikes outside the pattern cannot

contribute efficiently to the membrane potential: since their times

are stochastic, STDP usually depresses the corresponding

synapses. We end up with a bimodal weight distribution with

synapses either maximally potentiated or fully depressed (as

predicted by van Rossum et al[24]).

Here this convergence occurs after about 2000 discharges. At

this stage, the postsynaptic spike latency (with respect to the

beginning of the pattern) is about 4 ms (see Fig. 4c). After

convergence the hit rate is then 99.1% with no false alarms

(estimated on the last 150 s). Notice that the signal/noise ratio has

increased with respect to the situation in Fig. 4b, that is the

potential reached on distractor periods is farther from the

threshold. Among the 2,000 synapses, 383 are fully potentiated

(weight<1), while the rest of them are almost completely depressed

(weight<0). All of the potentiated synapses correspond to afferents

involved in the pattern. The fact that there is no false alarms

means once the learning has been done, a neuron just waits for its
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Figure 3. Leaky Integrate-and-Fire (LIF) neuron. Here is an illustrative example with only 6 input spikes. The graph plots the membrane potential as
a function of time, and clearly demonstrates the effects of the 6 corresponding Excitatory PostSynaptic Potentials (EPSP). Because of the leak, for the
threshold to be reached the input spikes need to be nearly synchronous. The LIF neuron is thus acting as a coincidence detector. When the threshold
is reached, a postsynaptic spike is fired. This is followed by a refractory period of 1 ms and a negative spike-afterpotential.
doi:10.1371/journal.pone.0001377.g003
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preferred stimulus, and need never forget what it has learned. The

model thus predicts that fully specified neurons might actually

have very low spontaneous rates, whereas higher rates might

characterize less well specified cells.

Fig. 5 shows the latency reduction (with respect to the beginning

of the pattern) during the learning stage until it stabilizes at a

minimum of about 4 ms. Apart from the initial part (before

selectivity emerges) the curve looks similar to those observed in

earlier work with discrete spike volleys[17]. By convention the

latency is 0 when the neuron discharged outside the pattern, that is

when it generated a false alarm. There are no false alarms after the

676th discharge, that is for the last 436 s of simulation.

Fig. 6 illustrates the situation after convergence. It can be seen

that STDP has potentiated most of the synapses that correspond to

the earliest spikes of the pattern (Fig. 6a), and depressed most of

the synapses that correspond to presynaptic spikes which follow

the postsynaptic one, as in the previous work with discrete volleys

[15,17,18]. This results in a sudden increase in membrane

potential when the neuron starts integrating the pattern, and the

threshold is quickly reached (Fig. 6b). Notice that all the synaptic

connections with afferents not involved in the pattern have been

completely depressed.

We performed 100 similar simulations with different pseudo-

randomly generated spike trains and patterns. Our criteria for a

‘successful’ simulation were: convergence to a state with a

postsynaptic latency inferior to 10 ms, a hit rate superior to 98%

and no false alarms. This occurred in 96% of the cases. For the

remaining 4%, the neurons stopped firing when too many

discharges occurred outside the pattern in a row (leading to an

overall weakening of synapses, so the threshold was no longer

reached).

We ran other batches of 100 simulations to systematically

investigate the impact on this 96% success performance of five

parameters.

The first one is the pattern relative frequency (i.e sum of pattern

durations over total duration ratio, assuming a fixed pattern

duration of 50 ms), 1/4 in the baseline condition, and Fig. 7a

shows its effect. We see that while the performance is very high as

long as the ratio is above 15%, with smaller values the probability

of success drops. This means the pattern needs to be consistently

present for the STDP to learn it. However, this applies only at the

beginning (say during the first 1000 discharges). Here we used a

constant pattern frequency, but after the initial part the neuron has

already become selective to the pattern, so presenting longer
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Figure 4. Overview of the 450 s simulation. Here we plotted the membrane potential as a function of simulation time, at the beginning, middle, and
end of the simulation. Grey rectangles indicate pattern presentations. (a) At the beginning of the simulation the neuron is non-selective because the
synaptic weights are all equal. It thus fires periodically, both inside and outside the pattern. (b) At t<13.5 s, after about 70 pattern presentations and
700 discharges, selectivity to the pattern is emerging: gradually the neuron almost stops discharging outside the pattern (no false alarms), while it
does discharge most of the time the pattern is present (high hit rate), here even twice (c) End of the simulation. The system has converged (by
saturation). Postsynaptic spike latency is about 4 ms. Hit rate is 99.1% with no false alarms (estimated on the last 150 s).
doi:10.1371/journal.pone.0001377.g004
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Figure 5. Latency reduction. Here we plotted the postsynaptic latency as a function of the number of discharges (by convention the latency is 0
when the neuron discharged outside the pattern, i.e. when it generated a false alarm). We clearly distinguish 3 periods: the beginning, when the
neuron is non-selective; the middle, when selectivity has emerged and STDP is ‘tracking back’ through the pattern; and the end, when the system has
converged towards a fast and reliable pattern detector.
doi:10.1371/journal.pone.0001377.g005

Figure 6. Converged state (a) we represented the spike trains of the 2,000 afferents. We have reordered the afferents with respect to Fig. 1 so that
afferents 1–1000 are involved in the pattern, and afferents 1001–2000 are not and we use a color code ranging from black for spikes that correspond
to completely depressed synapses (weight = 0) to white for spikes that correspond to maximally potentiated synapses (weight = 1). This allows the
visualization of the spikes which generate a significant EPSP and those which do not. The pattern is represented with a grey line rectangle. Notice the
cluster of white spikes at the beginning of it: STDP has potentiated most of the synapses that correspond to the earliest spikes of the pattern. Note
that virtually all the synaptic connections with afferents not involved in the pattern have been completely depressed. (b) The membrane potential is
plotted as a function of time, over the same range as above. We clearly see the sudden increase that corresponds to the above-mentioned cluster.
doi:10.1371/journal.pone.0001377.g006
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distractor periods does not perturb the learning at all. We also

tried to change the pattern duration while maintaining its relative

frequency at 1/4. It turns out that what makes the detection

difficult is the delay between two pattern presentations, not the

pattern duration itself. Since we kept the pattern relative frequency

constant, this delay increased with the pattern duration so the

performance dropped: 97% with a 40 ms pattern, 96% with

50 ms, 93% with 60 ms, 59% with 100 ms and 46% with 150 ms.

However we think this delay is more naturally investigated by

changing the pattern relative frequency as in Fig. 7a.

The second parameter we investigated is the amount of jitter

(1 ms in the baseline condition), and Fig. 7b shows its influence.

We see that the performance is very good for jitter levels lower

than 3 ms. For larger amounts of jitter the spike coincidences are

lost, and the STDP weight updates are inaccurate, so the learning

is impaired. In the brain millisecond spiking precision has been

reported in many structures, including the retina[25,26], the

Lateral Geniculate Nucleus[27,28], the visual cortex[29,30], the

somatosensory system[31,32] and the auditory system[33]. Some

authors report higher variability, but this could result from non

controlled variables rather than intrinsic noise (see Discussion).

The third parameter is the proportion of afferents involved in

the pattern (1/2 in the baseline condition), and Fig. 7c shows its

influence. The threshold was scaled proportionally. Not surpris-

ingly, with fewer afferents involved in the pattern, it becomes

harder to detect, but it is still detected more than half of the times

when only 1/3 of the afferents are involved in the pattern. Note

that the other 2/3 of afferents are discarded by STDP. This

suggests that activity-driven mechanisms could select a small set

of ‘interesting’ afferents among a much bigger set of initially

connected afferents, probably specified genetically, a phenomenon

known as ‘developmental exuberance’ for which there is

considerable experimental evidence[34].

The fourth parameter is the initial weight (0.475 in the baseline

condition) and Fig. 7d shows its influence. Recall discharges

outside the pattern lead to an overall decrease of synaptic weights.

If too many of them occur in a row the threshold may no longer be

reachable. Thus a high initial value for the weights increases the

resistance to discharges outside the pattern, leading to a better

performance. High initial weights also cause the neuron to

discharge at a high rate at the beginning of the learning process,

when it is non-selective: 63 Hz for an initial weight of 0.475,

38 Hz for 0.325. These values may seem high in regard to usual

experimental values. But first after only 13 s selectivity has

emerged, and the neuron fires at a rate between 5 and 10 Hz. It is

conceivable that electrophysiologists rarely record such short very

active initial phases. Second, we consider here that the population

of afferents is constantly firing with a mean rate of 64Hz. This is to

make the problem of pattern detection harder, but if the afferents

have less active periods, which is likely to occur in the brain, so will

have the post-synaptic neuron. We also added Gaussian noise to

the initial weights, with increasing standard deviation until 0.475

(thus equal to the mean). Following this noise addition the weights

were clipped in [0,1]. This had no significant impact on the

performance, at least in the present case when the initial weights

are relatively high.

The fifth parameter is the proportion of missing spikes (0 in the

base line condition). The threshold was scaled proportionally. Not

surprisingly the number of successfully learned patterns decreases

with the proportion of spikes deleted. However with a 10%

deletion the pattern was correctly learnt 82% of the time,

demonstrating that the system is quite robust to spike deletion.

We also tried changing the membrane time constant tm (10 ms

in the baseline condition), scaling the threshold proportionally.

This had little impact on the performance (79% success with

tm = 5 ms, 88% with tm = 20 ms), but it did have an impact on the

minimal latency that is reached after convergence. A smaller time

constant (and the smaller threshold that goes with it) causes the

neuron to be interested in more coincident spikes. The system

converges when the very few nearly coincident first spikes of the

pattern all correspond to maximally potentiated synapses, and the

postsynaptic spikes is fired just after them. The final latency is thus

shorter than the one we have with a longer time constant, which

enables the neuron to integrate spikes over a longer time window.

Taken together these results demonstrate that the learning is

amazingly robust to the model parameters. We thus believe that

we have captured a mechanism than emerges from STDP rather

than from a precise neural model configuration. While we admit it

is still somewhat speculative to affirm that a similar mechanism

takes place in the brain, it is at least very plausible.

DISCUSSION
Our first claim is that the main results previously obtained for

STDP based learning with the highly simplified scheme of discrete

spike volleys[15–18] still stand in this more challenging continuous

framework. This means that global discontinuities such as saccades
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or micro-saccades in vision and sniffs in olfaction[35], or brain

oscillations in general[23] are not necessary for STDP-based

learning of temporal patterns (although they will almost certainly

help). Temporal code skeptics often point out the fact that neurons

would need to know a time reference to decode a temporal code,

and we see here that this is not necessary: as long as there are

recurrent spike patterns in the inputs, and even if they are

embedded in equally dense ‘distractor’ spike trains, a neuron

equipped with STDP can potentially find them in only a few tens

of pattern presentations, and will gradually respond faster and

faster when the pattern is presented, by potentiating synapses that

correspond to the earliest spikes of the patterns, and depressing all

the others. This last point strongly reinforces the idea that a

substantial amount of information could be available very rapidly,

in the very first spikes evoked by a stimulus[36].

It is worth mentioning that the proposed learning scheme is fully

unsupervised. No teaching signal tells the neuron when to learn

nor labels the inputs. Biologically plausible mechanisms for

supervised learning of spike patterns have also been proposed[37].

It is also surprising to see how such a simple mechanism can

solve a problem as complex as spike pattern detection. However,

there is no consensus on the definition of a spike pattern, and we

admit ours is quite simple: here a pattern is seen as a succession of

coincidences. A Leaky Integrate and Fire (LIF) neuron is known to

be capable of coincidence detection, and it has even been

proposed that this is its main function in the brain[38,39]. Here

the membrane time constant (10 ms) is shorter than the duration

of the pattern (50 ms), and so the LIF neuron can never be

selective to the whole pattern. Instead, it is selective to ‘one

coincidence’ of the pattern at a time, that is, selective to the nearly

simultaneous arrival of certain spikes, just as it occurs in one

subdivision of the pattern. At the beginning of the learning process

STDP will cause the LIF neuron to become selective to one such

coincidence (chance determines which one). Then STDP will track

back through the pattern, from one coincidence to the previous

one, until the initial coincidence is reached and the chain of

causality is stopped. At this point the neuron is selective only to the

simultaneous arrival of the pattern’s earliest spikes, and can serve

as ‘earliest predictor’ of the subsequent spike events[15,16,19], at

the risk of triggering a false alarm if these subsequent events don’t

occur, but with the benefit of being very reactive.

This contrasts with approaches where the whole pattern needs

to be taken into account, sometimes including finer structural

aspects such as spike orders or relative delays[2,3,40,41]. But

neuronal mechanisms able to reliably decode such structures have

to be proposed and looked for in the brain. One appealing

candidate mechanism is the synfire chain[42] but direct evidence

for their existence is still fairly limited[43]. Here we limit the

notion of pattern to successive coincidences, and suggest a way

such patterns could be decoded, using widely accepted neuro-

physiological mechanisms, namely coincidence detection and

STDP.

Another limitation of this work is the excitatory-only scheme.

Consequently, something like ‘afferent A must not spike’ cannot be

learnt, only ‘positive patterns’ can. However, evidence for

plasticity in inhibitory synapses in the brain is weak and inhibition

is often assumed to be non-selective. So we propose that most of

the selectivity could be achieved using only excitatory synapses, as

in this model.

Whether spike times contain additional information with respect

to discharge rates has been the object of an ongoing debate for

some time. Electrophysiologists have tried to answer this question

mostly by recording neurons in sensory and motor systems with a

repeating stimulus or action, and looking at inter-trial variability of

the spike times. Some claim that spike times can be very reliable

while others are more skeptical (see ref [22,44] for reviews). Given

that the simple and cheap mechanism exposed here reliably

detects spatio-temporal spike patterns, it is hard to believe that the

brain did not evolve to use at least the form of temporal coding

exposed above (‘successive coincidences’), unless there is an

unavoidable intrinsic source of noise in the integrate-and-fire

mechanism that makes all spike times unreliable. The main source

for this sort of noise is probably at the level of synaptic

transmission[45], since neurons stimulated directly by current

injection in the absence of synaptic input give highly stereotyped

and precise responses[46]. However, spike times can be very

reliable in some experiments[22,44], particularly in the auditory

cortex, proving that reliable synapses do exist. So we argue that

variability in other recorded spike times, in particular in the visual

system, could come from non-controlled variables that might also

affect neuronal activation, such as attention, eye movements,

mental imagery, top-down effects etc. As Barlow wrote about

neural responses in 1972, ‘‘their apparently erratic behavior was

caused by our ignorance, not the neuron’s incompetence.’’[47]

We would like to emphasize the fact that the approach

presented here is generic. It is not limited to sensory systems,

and it could be applied to either experimental or model-generated

data. The first step would be to see if STDP finds spike patterns in

the data. Providing it does, the second step would be to understand

what those patterns mean by solving the corresponding inverse

problem.

What happens if there is more than one repeating pattern

present in the input? We verified that as the learning progresses,

the increasing selectivity of the postsynaptic neuron rapidly

prevents it from responding to several patterns. Instead, it picks

one (chance determines which one), and becomes selective to it

and only to it. To learn the other patterns other neurons are

needed.

A competitive mechanism could ensure they optimally cover all

the different patterns and avoid learning the same ones. Such a

mechanism could be implemented through inhibitory horizontal

connections between neurons, such that as soon as one neuron

fires, it could prevent other cells from learning the same pattern, as

in previous work[48]. The neural population would then self-

organize to cover all the input patterns. The ‘coverage’ could be

optimized using neurons that differ in their parameters (for

example their thresholds), leading to more robust learning and

detection. Furthermore a long input pattern can be coded by the

successive firings of several STDP neurons, each selective to a

different part of the pattern, and competition would prevent them

all from tracking back through the pattern and clustering at the

beginning. Note that within such a competitive framework a

pattern detection probability of 50% is hardly a disaster: it means

that with 2 neurons the risk that one pattern is not detected is

25%, with 3 neurons 12.5%, with 4 neurons 6.25% and so on. The

system could then work with suboptimal parameters (highlighted

in Fig. 7), for example weaker initial weights.

Further work is needed to evaluate this form of competitive

network. However in this paper we wanted to stress the fact that

one single LIF neuron equipped with STDP is consistently able to

detect one arbitrary repeating spatio-temporal spike pattern

embedded in equally dense ‘distractor’ spike trains, which is a

remarkable demonstration of the potential for such a scheme.

MATERIALS AND METHODS
The simulations were performed using MATLAB R14 (Math-

works 2005, Natick MA). The source code is available from the

authors upon request.
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Poisson spike trains
The spike trains were prepared before the simulation (Fig. 1

illustrates the type of spike trains we used, though with a smaller

set of neurons). For memory issues instead of using spike trains

defined over a 450 seconds period, we pasted the same 150s long

pattern three times (this repetition had no impact on the results).

Each afferent emits spikes independently using a Poisson process

with a variable instantaneous firing rate r, that varies randomly

between 0 and 90 Hz. The maximal rate change s was chosen so

that the neuron could go from 0 to 90 Hz in 50 ms. To be precise,

time was discretized using a time step dt of 1 ms. At each time

step:

1. the afferent has a probability of r.dt of emitting a spike (whose

exact date is then picked randomly in the 1 ms time bin)

2. its instantaneous firing rate is modified: dr = s.dt where s is the

speed of rate change (in Hz/s), and clipped in [0, 90] Hz.

3. its speed of rate change is modified by ds, randomly picked

from a uniform distribution over [2360+360] Hz/s, and

clipped in [21800+1800] Hz/s

Note that we chose to apply the random change to s as opposed

to r so as to have a continuous s function and a smoother r

function.

As mentioned in the Discussion, a limitation of this work is the

excitatory-only scheme. Consequently, something like ‘afferent A

must not spike’ cannot be learnt, only ‘positive patterns’ can. We

thus wanted a pattern in which all the afferents spike at least once.

We could have made up such a pattern, but we wanted the pattern

to have exactly the same statistics as the Poisson distractor part (to

make the pattern detection harder), so we preferred to randomly

pick a 50 ms period of the original Poisson spike trains and to

‘copy-paste’ it (see below). To make sure this randomly selected

period did contain a spike from each afferent we implemented a

mechanism that triggers a spike whenever an afferent has been

silent for more than 50 ms (leading to a minimal firing rate of

20 Hz). Clearly, such mechanism is NOT implemented in the

brain. It is just an artifice we used here to make the pattern

detection harder. As a result the average firing rate was 54 Hz,

and not the 45 Hz we would have without this additional

mechanism.

Once the random spike train has been generated, a part of it,

defined as the ‘pattern’ to be repeated, is ‘copy-pasted’. This ‘copy-

paste’ does not involve the last 1000 afferents (obviously the indices

are arbitrary), which conserve their original spike trains. But we

discretize the spike trains of the first 1000 afferents into 50 ms

sections. We randomly pick one of these sections and copy the

corresponding spikes. Then we randomly pick a certain number of

these sections (1/4 in the baseline condition), avoiding consecutive

ones, and replace the original spikes by the copied ones. A jitter

was added before the pasting operation, picked from a Gaussian

distribution with mean zero and standard deviation 1 ms (in the

baseline condition).

After this ‘copy-paste’ operation a 10 Hz Poissonian spontane-

ous activity was added, to all neurons and all the time. The total

activity was thus 64 Hz on average, and spontaneous activity

represented about 16% of it.

Leaky Integrate and Fire (LIF) neuron (see Fig. 3)
For computational reasons we modeled the LIF neuron using

Gerstner’s Spike Response Model (SRM)[16,49]. That is instead

of solving the membrane potential differential equation we used

kernels to model the effect of presynaptic and postsynaptic spikes

on the membrane potential. Each presynaptic spike j, with arrival

time tj, is supposed to add to the membrane potential an Excitatory

Post-Synaptic Potential (EPSP) of the form:

e t{tj

� �
~K : exp {

t{tj

tm

� �
{ exp {

t{tj

ts

� �� �
:H t{tj

� �
where tm is the membrane time constant (here 10 ms), ts is the

synapse time constant (here 2.5 ms), H is the Heavyside step

function:

H sð Þ~
1 if s§0

0 if sv0

�

and K is just a multiplicative constant chosen so that the maximum

value of the kernel is 1 (the voltage scale is arbitrary in this paper).

The last emitted postsynaptic spike i has an effect on the

membrane potential modeled as follows:

g t{tið Þ~T: K1
: exp {

t{ti

tm

� �
{

�

K2
: exp {

t{ti

tm

� �
{ exp {

t{ti

ts

� �� ��
:H t{tið Þ

where T is the threshold of the neuron (here 500, arbitrary units).

The first term models the positive pulse and the second one the

negative spike-afterpotential that follows the pulse (see Fig. 3).

Here we used K1 = 2 and K2 = 4. For simplicity, the resting

potential is supposed to be zero, but a non zero value would simply

shift the kernel, and shifting the threshold by the same value would

lead to the same computation.

Both e and g kernels were rounded to zero when respectively

t2tj and t2ti were greater than 7?tm.

At any time the membrane potential is:

p~g t{tið Þz
X

j=tjwti

wj
:e t{tj

� �

where the wj are the excitatory synaptic weights, between 0 and 1

(arbitrary units).

This SRM formulation allows us to use event-driven program-

ming: we only compute the potential when a new presynaptic

spike is integrated. We then estimate numerically if the

corresponding EPSP will cause the threshold to be reached in

the future and at what date. If it is the case, a postsynaptic spike is

scheduled. Such postsynaptic spike events cause all the EPSPs to

be flushed, and a new ti is used for the g kernel. There is then a

refractory period of 1 ms, during which the neuron is not allowed

to fire.

Spike Timing Dependent Plasticity
An exponential update rule (see Fig. 2):

Dwj~
az: exp

tj{ti

tz

� �
if tjƒti LTPð Þ

{a{: exp {
tj{ti

t{

� �
if tjwti LTDð Þ

(

with the time constants t+ = 16.8 ms and t2 = 33.7 ms, provides a

reasonable approximation of the synaptic modification observed

experimentally[13].We restricted the learning window to

[ti27?t+,ti] for LTP and to [ti,ti+7?t2] for LTD. For each afferent,

we also limited LTP (respectively LTD) to the last (first)
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presynaptic spike before (after) the postsynaptic one (‘nearest spike’

approximation). We did not take the effects of finer triplet of

spikes[50] into account.

It was found that small learning rates led to more robust

learning. We used a+ = 0.03125 and a2 = 0.85?a+ Following

learning the weights were clipped to [0,1]. Note that all synapses

remain excitatory: there is no inhibition in all these simulations.
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